
– 1 –

Lisa Yan and Jerry Cain
CS109

Lecture Notes #27
November 13, 2020

Deep Learning
Based on a chapter by Chris Piech

Deep Learning (the new term to refer to Neural Networks) is one of the greatest ideas in computer
science that I have been exposed to. On a practical level they are a rather simple extension of
Logistic Regression. But the simple idea has had powerful results. Deep Learning is the core idea
behind dramatic improvements in Artificial Intelligence. It is the learning algorithm behind Alpha
Go, Voice Recognition, Computer Vision (think Facebook’s ability to recognize a photo of you),
Google’s Deep Dream, Educational Knowledge Tracing and modern Natural Language Processing.
You are about to learn math that has had a big impact on every day life and will likely continue to
revolutionize many disciplines and sub-disciplines.

Let’s start with intuition gained from a simple analogy. You can think of a Logistic Regression
function: 𝜎(𝜃𝑇x), as a cartoon model of a single neuron inside your brain. Neural Networks (aka
Deep Learning) is the result of putting many layers of Logistic Regression functions together.

Figure 1: Logistic Regression is a cartoon model of a single neuron. Neural Networks model a
brain.

This simple idea allows for models which can represent complex functions from input features (x)
to outputs (�̂�). In CS109 we are going to interpret the output of a neural network in the same was as
we interpreted the output of logistic regression: as a prediction of the probability of a class label.

– 2 –

Simple Deep Network
As a motivating example we are going to build a simple Deep Network that can learn to classify
hand written digits as either the number “1" or the number “2". Here is a diagram of a neural
network that we will use. It has three “layers" of neurons. The input layer (x) is a vector of pixel
darkness in the hand drawn number. The hidden layer (h) is a vector of logistic regression cells
which are each take all the elements of x as input. The output layer is a single logistic regression
cell that takes all of the elements of the hidden layer h as input. We are going to interpret the
output value �̂� in the same way that we interpreted the output of vanilla logistic regression: as an
estimation of 𝑃(𝑌 = 1|x). Formally:

�̂� =𝜎
©«
𝑚ℎ∑
𝑗=0

h 𝑗𝜃
(�̂�)
𝑗

ª®¬ = 𝑃(𝑌 = 1|x) (1)

h 𝑗 =𝜎

(
𝑚𝑥∑
𝑖=0

x𝑖𝜃 (ℎ)𝑖, 𝑗

)
(2)

These equations introduce a few new pieces of notation. Let’s spell out what each term means.
The parameters of the equations are all of the symbols 𝜃. There are two groups of parameters:
the weights for the logistic cells in the hidden unit (𝜃 (ℎ)) and weights for the output logistic cell
(𝜃 (�̂�)). These are collections of parameters. There is a value 𝜃 (ℎ)𝑖, 𝑗 for every pair of input 𝑖 and hidden
unit 𝑗 and there is a 𝜃

(�̂�)
𝑗 for every hidden unit 𝑗 . There are 𝑚𝑥 = |x| number of inputs and there

are 𝑚ℎ = |h| number of hidden units. Familiarize yourself with the notation. The math of neural
networks isn’t particularly difficult. The notation is!

For a given image (and its corresponding x) the neural network will produce a single value �̂�.
Because it is the result of a sigmoid function it will have a value in the range [0, 1]. We are going to
interpret this value as the probability that the hand written digit is the number “1". This is the same
classification assumption made by logistic regression. Here are two diagrams of the same network
with one layer of hidden neurons. In the figure on the left a single hidden neuron is highlighted.
Keep in mind that all hidden neurons take all values x as input. I could only draw so many arrows
between x and h without it becoming too messy.

Once you understand the notation, and think through how you would compute a value �̂� given 𝜃
and x (called the “Forward Pass") you are most of the way there. The only step left is to think
through how to chose the values of 𝜃 that maximize the likelihood of our training data. Recall that
the process for MLE is to (1) write the log-likelihood function and then (2) find the values of theta
that maximize the log-likelihood. Just like in logistic regression we are going to use gradient ascent
to chose our thetas. Thus we simply need the partial derivative of the log likelihood with respect to
each parameter.

Log Likelihood
We start with the same assumption as logistic regression. For one datapoint with true output 𝑦 and
predicted output �̂� = 𝑃(𝑌 = 𝑦 |X = x), the likelihood of that data is:

𝑃(𝑌 = 𝑦 |𝑋 = x) = (�̂�)𝑦 (1 − �̂�)1−𝑦

– 3 –

Figure 2: Two diagrams of the same neural network.

If you plug in 0 or 1 in for 𝑦 you get the logistic regression assumption (try it)! If we extend this
idea to write the likelihood of 𝑛 independent datapoints (x(𝑖) , �̂� (𝑖))we get:

𝐿 (𝜃) =
𝑛∏
𝑖=1

𝑃(𝑌 = 𝑦 (𝑖) |𝑋 = x(𝑖))

=
𝑛∏
𝑖=1

𝜎(𝜃𝑇x(𝑖))𝑦 (𝑖) ·
[
1 − 𝜎(𝜃𝑇x(𝑖))

] (1−𝑦 (𝑖))
If you take the log of the likelihood you get the following log likelihood function for the neural
network:

𝐿𝐿 (𝜃) =
𝑛∑
𝑖=0

𝑦 (𝑖) log �̂� (𝑖) + (1 − 𝑦 (𝑖)) log[1 − �̂� (𝑖)] (3)

Though this doesn’t look like it is an equation in terms of 𝜃, it is. You could plug in the definition
for �̂�. Note that �̂� is a probability; during prediction, we report the argument that has maximal
probability �̂� = 𝑃(𝑌 = 𝑦 |X = x).

Backpropagation
We are going to chose values of 𝜃 using our old friend MLE (maximum likelihood estimation).
MLE applied to deep networks gets a special name “Backpropagation". To chose the optimal values
of theta we are going to use gradient ascent where we continually update our thetas in a way that
leads to a step up with respect to likelihood. In order to apply gradient ascent we will need to know
the partial derivatives of log-likelihood with respect to each of the parameters.

Since the log likelihood of all the data is a sum of the log likelihood of each data point, we can
calculate the derivative of the log likelihood with respect to a single data instance (x, 𝑦). The

– 4 –

derivative with respect to all the data will simply be the sum of the derivatives with respect to each
instance (by derivative of summation).

The one great idea that makes MLE simple for deep networks is that by using the chain rule from
calculus we can decompose the calculation of gradients in a deep network. Let’s work it out. The
values that we need to calculate are the partial derivatives of the log likelihood with respect to each
parameter. The big idea that is really worth wrapping your head around, is that chain rule can let us
calculate gradients one layer at a time. By the chain rule we can decompose the calculation of the
gradient with respect to the output parameters as such:

𝜕𝐿𝐿 (𝜃)
𝜕𝜃

(�̂�)
𝑗

=
𝜕𝐿𝐿

𝜕�̂�
· 𝜕�̂�

𝜕𝜃
(�̂�)
𝑗

(4)

Similarly we can decompose the calculation of the gradient with respect to the hidden layer
parameters as:

𝜕𝐿𝐿 (𝜃)
𝜕𝜃 (ℎ)𝑖, 𝑗

=
𝜕𝐿𝐿

𝜕�̂�
· 𝜕�̂�

𝜕h 𝑗
·
𝜕h 𝑗

𝜕𝜃 (ℎ)𝑖, 𝑗

(5)

Each of those terms is reasonable to calculate. Here are their closed form equations:
𝜕𝐿𝐿 (𝜃)

𝜕�̂�
=

𝑦

�̂�
− (1 − 𝑦)

(1 − �̂�)
𝜕�̂�

𝜕𝜃
(�̂�)
𝑗

= �̂�[1 − �̂�] · ℎ 𝑗

𝜕�̂�

𝜕ℎ 𝑗
= �̂�[1 − �̂�]𝜃 (�̂�)𝑗

𝜕ℎ 𝑗

𝜕𝜃 (ℎ)𝑖, 𝑗

= ℎ 𝑗 [1 − ℎ 𝑗]𝑥𝑖

In this simple model, we only have one layer of hidden neurons. If we added more we could keep
using the chain rule to calculate derivatives with respect to parameters deeper in the network.

Example 1
As an example, consider evaluating the partial derivative 𝜕𝐿𝐿 (𝜃)

𝜕�̂� . To do so first write out the function
for 𝐿𝐿 in terms of �̂� then differentiate:

𝐿𝐿 = 𝑦 log �̂� + (1 − 𝑦) log[1 − �̂�]
𝜕𝐿𝐿 (𝜃)

𝜕�̂�
=

𝑦

�̂�
− (1 − 𝑦)

(1 − �̂�)
It is that simple! Let’s try another example.

Example 2
Let’s calculate the partial derivative of �̂� with respect to an output parameter 𝜃 (�̂�)𝑗 :

�̂� = 𝜎 (𝑧) Where 𝑧 =
𝑚ℎ∑
𝑖=0

h𝑖𝜃
(�̂�)
𝑖

𝜕�̂�

𝜕𝜃
(�̂�)
𝑗

= 𝜎(𝑧) [1 − 𝜎(𝑧)] 𝜕𝑧

𝜕𝜃
(�̂�)
𝑗

Using the formulate for derivative of sigmoid

= �̂�[1 − �̂�] · ℎ 𝑗 Recognizing that �̂� = 𝜎(𝑧)

– 5 –

The Future
Deep learning is a growing field. There is a lot of room for improvement. Can we think of better
networks? Can we develop structures that do a better job of incorporating prior beliefs? These
problems (and many others) are open. It is worth knowing the math of deep learning well because
you may one day have to invent the next iteration.

