o2: Combinatorics

Lisa Yan and Jerry Cain September 16, 2020 з Permutations II

17 Combinations I

29 Combinations II

02a_permutations

02b_combinations_i

02c_combinations_ii

37 Buckets and dividers

LIVE

Today's discussion thread: https://us.edstem.org/courses/2678/discussion/124109

02a_permutations

Permutations II

Summary of Combinatorics

Sort *n* distinct objects

Summary of Combinatorics

Order *n* distinct objects

n!

Some indistinct All distinct Irina Ayesha Tim Waddie Coke Tim Coke Joey Joey Waddie Ayeshe = 120 Irina 120

How do we find the number of permutations considering some objects are indistinct?

By the product rule, permutations of <u>distinct</u> objects is a two-step process:

permutations of distinct objects permutations considering some objects are indistinct

Х

Permutations of just the indistinct objects

How do we find the number of permutations considering some objects are indistinct?

By the product rule, permutations of <u>distinct</u> objects is a two-step process:

 n^{1} permutations of distinct objects

Permutations of just the indistinct objects permutations

considering some objects are indistinct

General approach to counting permutations

When there are n objects such that n_1 are the same (indistinguishable or indistinct), and n_2 are the same, and

 n_r are the same,

The number of unique orderings (permutations) is

$$\frac{n!}{n_1! n_2! \cdots n_r!} \stackrel{()}{=} permuting assuming that all n objects distinct all n objects distinct permutations$$

For each group of indistinct objects, Divide by the overcounted permutations.

Order *n* semi- n!distinct objects $\overline{n_1! n_2! \cdots n_r!}$

How many permutations?

Summary of Combinatorics

Order *n* semi- n!distinct objects $\overline{n_1! n_2! \cdots n_r!}$

How many orderings of letters are possible for the following strings?

1. BOBA

2. MISSISSIPPI

Order *n* semi- n!distinct objects $\overline{n_1! n_2! \cdots n_r!}$

How many orderings of letters are possible for the following strings?

1. **BOBA** $A \circ B_1 B_2$ $A \circ B_2 B_1 = \frac{4!}{2!} = 12$

2. **MISSISSIPPI** $g_{1!4!4!2!} = 34,650$ $g_{1!4!4!2!} = 34,650$ $g_{1!4!4!2!} = 34,650$ $g_{1!4!4!2!} = 34,650$

Unique 6-digit passcodes with six smudges

Order *n* semi- n!distinct objects $\overline{n_1! n_2! \cdots n_r!}$

How many unique 6-digit passcodes are possible if a phone password uses each of six distinct numbers?

Total = 6!

= 720 passcodes

Unique 6-digit passcodes with five smudges $\left| \begin{array}{c} \text{Order } n \text{ semi-} \\ \text{distinct objects} \end{array} \right|_{n_1! n_2! \cdots n_r!}^{n!}$

How many unique 6-digit passcodes are possible if a phone password uses each of **five** distinct numbers?

<u>Steps</u>:

- 1. Choose digit to repeat
- 2. Create passcode

5 outcomes 4₁Ҷ₁ 215,6,& (sort 6 digits: 4 distinct, 2 indistinct)

Total =
$$5 \times \frac{6!}{2!}$$

= 1,800 passcodes

02b_combinations_i

Combinations I

Summary of Combinatorics

There are n = 20 people. How many ways can we choose k = 5 people to get cake?

There are n = 20 people. How many ways can we choose k = 5 people to get cake?

1. *n* people get in line

n! ways

There are n = 20 people.

How many ways can we choose k = 5 people to get cake?

1. *n* people get in line

2. Put first *k* in cake room

1 way

n! ways

There are n = 20 people. How many ways can we choose k = 5 people to get cake?

1 way

1. n people2. Put first kget in linein cake room

n! ways

There are n = 20 people. How many ways can we choose k = 5 people to get cake?

n! ways

1 way

k! different permutations lead to the same mingle

There are n = 20 people.

How many ways can we choose k = 5 people to get cake?

n! ways

1 way

Allow cake group to mingle permutations lead to the same mingle

There are n = 20 people.

How many ways can we choose k = 5 people to get cake?

n people get in line in cake room

n! ways

1 way

2. Put first *k* 3. Allow cake group to mingle k! different

permutations lead to

the same mingle

4. Allow non-cake group to mingle

> (n-k)! different permutations lead to the same mingle Stanford University 25

A combination is an <u>unordered</u> selection of k objects from a set of n distinct objects.

The number of ways of making this selection is

Overcounted: any ordering of unchosen group is same choice Stanford University 26 A combination is an <u>unordered</u> selection of k objects from a set of n distinct objects.

The number of ways of making this selection is

$$\underbrace{n!}_{\substack{k! (n-k)! \\ k! (n-k)!}} = n! \times 1 \times \frac{1}{k!} \times \frac{1}{(n-k)!} = \binom{n}{k} \quad \begin{array}{c} \text{Binomial coefficient} \\ \text{coefficient} \end{array}$$
Note:
$$\binom{n}{n-k} = \binom{n}{k} \quad \begin{array}{c} \binom{n}{n-k} = \frac{n!}{(n-k)!} \\ \binom{n}{k} = \frac{n!}{(n-k)!} \\ \binom{n}{k} = \frac{n!}{(n-k)!} \\ \binom{n}{k} = \frac{n!}{(n-k)!} \\ \begin{pmatrix} \binom{n}{k} = \frac{n!}{(n-k)!} \\ \binom{n}{k} = \frac{n!}{(n-k)!} \end{array}$$

How many ways are there to choose 3 books from a set of 6 distinct books?

$$\binom{6}{3} = \frac{6!}{3! \, 3!} = 20$$
 ways

02c_combinations_ii

Combinations II

Summary of Combinatorics

The number of ways to choose r groups of n distinct objects such that Nobjects Ingroups nr groups For all i = 1, ..., r, group *i* has size n_i , and $\sum_{i=1}^{r} n_i = n$ (all objects are assigned), is $\frac{n!}{n_1! n_2! \cdots n_r!} = \begin{pmatrix} n \\ n_1, n_2, \cdots, n_r \end{pmatrix} \qquad \begin{array}{c} \text{Browial coefficient} \\ \begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n \\ k, n \cdot k \end{pmatrix} \end{array}$ Multinomial coefficient

Datacenters

13 different computers are to be allocated to 3 datacenters as shown in the table:

How many different divisions are possible?

_	goal
Datacenter	# machines
А	6
В	4
С	3

A.
$$\binom{13}{6,4,3} = 60,060$$

B. $\binom{13}{6}\binom{7}{4}\binom{3}{3} = 60,060$
C. $6 \cdot 1001 \cdot 10 = 60,060$
D. A and B

E. All of the above

Datacenters

13 different computers are to be allocated	to
3 datacenters as shown in the table:	

How many different divisions are possible?

Datacenter	# machines
А	6
В	4
С	3

A.
$$\binom{13}{6,4,3} = 60,060$$

B. $\binom{13}{6}\binom{7}{4}\binom{3}{3} = 60,060$
C. $6 \cdot 1001 \cdot 10 = 60,060$
D. A and B
E. All of the above

13 different computers are to be allocated to 3 datacenters as shown in the table:

How many different divisions are possible?

A.
$$\binom{13}{6,4,3} = 60,060 = \frac{(3!)}{6(,4!,3!)}$$

Strategy: Combinations into 3 groups Group 1 (datacenter A): $n_1 = 6 <$ Group 2 (datacenter B): $n_2 = 4 <$ Group 3 (datacenter C): $n_3 = 3 <$

atacenter	# machines
А	6
В	4
С	3

Lisa Yan and Jerry Cain, CS109. 2020

Stanford University 35

 $\binom{13}{6}$

 $\binom{3}{3}$

Datacenters

machines

6

4

3

60,060

13 different computers are to be allocated to 3 datacenters as shown in the table: How many different divisions are possible?

A. $\binom{13}{643} = 60,060$

Strategy: Combinations into 3 groups Group 1 (datacenter A): $n_1 = 6$ Group 2 (datacenter B): $n_2 = 4$ Group 3 (datacenter C): $n_3 = 3$ $\binom{(3)}{6}\binom{7}{4}\binom{3}{3} = \frac{13!}{17!} \times \frac{7!}{4!3!} \times \frac{3!}{3!0!} = \frac{13!}{114!3!} \sim \binom{13}{8,43}$

Strategy: Product rule with 3 steps

Choose 6 computers for A

B. $\binom{13}{6}\binom{7}{4}\binom{3}{2}$

Datacenter

Α

R

- Choose 4 computers for B
- Choose 3 computers for C 3.

Stanford University 36

machines

6

4

3

13 different computers are to be allocated to 3 datacenters as shown in the table:

How many different divisions are possible?

A.
$$\binom{13}{6,4,3} = 60,060$$

Datacenters

Strategy: Combinations into 3 groups Group 1 (datacenter A): $n_1 = 6$ Group 2 (datacenter B): $n_2 = 4$ Group 3 (datacenter C): $n_3 = 3$ Strategy: Product rule with 3 steps

1. Choose 6 computers for A

B. $\binom{13}{6}\binom{7}{4}\binom{3}{3}$

Datacenter

Α

B

- 2. Choose 4 computers for B
- 3. Choose 3 computers for C

Your approach will determine if you use binomial/multinomial coefficients or factorials.

o2: Combinatorics (live)

Lisa Yan September 16, 2020

Reminders: Lecture with

- Turn on your camera if you are able, mute your mic in the big room
- Virtual backgrounds are encouraged (classroom-appropriate)

Today's discussion thread: https://us.edstem.org/courses/2678/discussion/124109

Summary of Combinatorics

Summary of Combinatorics

Think

Slide 42 is a question to think over by yourself (~1min).

Post any clarifications here or in chat!

https://us.edstem.org/courses/2678/discussion/124109

A trick question

How many distinct (distinguishable) ways are there to group 6 indistinct (indistinguishable) objects into 3 groups, where groups A, B, and C have sizes 1, 2, and 3, respectively?

A trick question

How many distinct (distinguishable) ways are there to group 6 indistinct (indistinguishable) objects into 3 groups, where groups A, B, and C have sizes 1, 2, and 3, respectively?

Review *n* distinct objects

Choose *k* of

How many ways are there to choose 3 books 1. from a set of 6 distinct books?

 $) = \frac{6!}{3!3!} = 20035$ 3

Think

Slide 46 is a question to think over by yourself (~2min).

Post any clarifications here or in chat!

https://us.edstem.org/courses/2678/discussion/124109

- 1. How many ways are there to choose 3 books from a set of 6 distinct books?
 - $\binom{6}{3} = \frac{6!}{3! \, 3!} = 20$ ways
- 2. What if we do not want to read both the 9th and 10th edition of Ross?
 - A. $\binom{6}{3} \binom{6}{2} = 5$ ways B. $\frac{6!}{3!3!2!} = 10$ E. Both C and D
 - C. $2 \cdot {4 \choose 2} + {4 \choose 3} = 16$ F. Something else

Ask: https://us.edstem.org/courses/2678/discussion/124109

- 1. How many ways are there to choose 3 books from a set of 6 distinct books? $\binom{6}{3} = \frac{6!}{3! \, 3!} = 20$ ways
- 2. What if we do not want to read both the 9th and 10th edition of Ross?

1. How many ways are there to choose 3 books from a set of 6 distinct books?

$$\binom{6}{3} = \frac{6!}{3! \, 3!} \neq 20 \text{ ways}$$

- 2. What if we do not want to read both the 9th and 10th edition of Ross?
- Strategy 2: "Forbidden method" (unofficial name) DO NOT choose both 9th 2 (oth, 2 one other Look <u>1</u>, <u>1</u>, <u>(4)</u> UANT choose both 9th 2 (oth, 4 one other Look <u>1</u>, <u>1</u>, <u>(4)</u>

Forbidden method: It is sometimes easier to exclude invalid cases than to include cases.

Interlude for jokes/announcements

Announcements

<u>Problem Set #1</u> Out: Due: Covers:	today Friday 9/25, 1:00pm through Friday 9/18	
<u>Section sign-up</u> Form released: Form due: Results:	s/Acquaintance form later today Saturday 5:00pm 9/19₽ latest Sunday	Getting help Ed discussion: find study buddies! Office hours: start today https://web.stanford.edu/class/cs109/stanfo rd/staff.html

Buckets and The Divider Method

Summary of Combinatorics

Balls and urns Hash tables and distinct strings

How many ways are there to hash *n* distinct strings to *r* buckets?

<u>Steps</u>:

- 1. Bucket 1st string
- 2. Bucket 2nd string

. . .

Summary of Combinatorics

Servers and indistinct requests

How many ways are there to distribute *n* indistinct web requests to *r* servers?

COUNTS IN Goal Server 1 has x_1 requests, Server 2 has x_2 requests, ... Server r has x_r requests (the rest)

Simple example: n = 3 requests and r = 2 servers

Bicycle helmet sales

How many ways can we assign n = 5 indistinct children to r = 4 distinct bicycle helmet styles?

....

Bicycle helmet sales

1 possible assignment outcome:

n = 5 indistinct children r = 4 distinct bicycle helmets 3 wirders

Goal Order *n* indistinct objects and r - 1 indistinct dividers.

Lisa Yan and Jerry Cain, CS109, 2020

n = 5 indistinct children r = 4 distinct bicycle helmets

Goal Order *n* indistinct objects and r - 1 indistinct dividers.

O. Make objects and dividers distinct

n = 5 indistinct children r = 4 distinct bicycle helmets

Goal Order *n* indistinct objects and r - 1 indistinct dividers.

0. Make objects and dividers distinct

1. Order n distinct objects and r - 1distinct dividers

(n + r - 1)!

n = 5 indistinct children r = 4 distinct bicycle helmets

Goal Order *n* indistinct objects and r - 1 indistinct dividers.

0. Make objects and dividers distinct

1. Order n distinct objects and r - 1distinct dividers 2. Make *n* objects indistinct

Lisa Yan and Jerry Cain, CS109, 2020

Stanford University 61

n = 5 indistinct children r = 4 distinct bicycle helmets

Lisa Yan and Jerry Cain, CS109, 2020

The number of ways to distribute n indistinct objects into r buckets is equivalent to the number of ways to permute n + r - 1 objects such that n are indistinct objects, and r - 1 are indistinct dividers:

Total =
$$(n + r - 1)! \times \frac{1}{n!} \times \frac{1}{(r-1)!}$$

= $\binom{n + r - 1}{r - 1}$ outcomes

How many integer solutions are there to the following equation:

 $x_1 + x_2 + \dots + x_r = n,$

where for all *i*, x_i is an integer such that $0 \le x_i \le n$? i = 1, ..., C

$$\begin{pmatrix} n+r-1\\ r-1 \end{pmatrix}$$

Positive integer equations can be solved with the divider method.

Breakout Rooms for working through lecture exercises

- We may incorporate some of these during lecture
- You are <u>always welcome</u> to exit breakout rooms if you are more comfortable staying in the main room

Breakout Rooms

Introduce yourself!

Then check out the three questions on the next slide (Slide 67). Post any clarifications here:

https://us.edstem.org/courses/2678/discussion/124109

Breakout Room time: 5 minutes

We'll then all come back as a big group to go over our approach.

You have \$10 million to invest in 4 companies (in \$1 million increments).

- 1. How many ways can you fully allocate your \$10 million?
- 2. What if you want to invest at least \$3 million in company 1?
- 3. What if you don't have to invest all your money?

You have \$10 million to invest in 4 companies (in \$1 million increments). 1. How many ways can you fully allocate your \$10 million?

You have \$10 million to invest in 4 companies (in \$1 million increments).

- 1. How many ways can you fully allocate your \$10 million?
- 2. What if you want to invest at least \$3 million in company 1?

You have \$10 million to invest in 4 companies (in \$1 million increments).

- 1. How many ways can you fully allocate your \$10 million?
- 2. What if you want to invest at least \$3 million in company 1?
- 3. What if you don't have to invest all your money?

Summary of Combinatorics

See you next time...

Divider method (n + r - 1)Venture capitalists. #2 (n indistinct objects, r buckets) You have \$10 million to invest in 4 companies (in \$1 million increments). $X_1 + X_2 + ... X_r = n$ 1. How many ways can you fully allocate your \$10 million? 2. What if you want to invest at least \$3 million in company 1? [3,1,2,4] e - [0,1,2,4] Solve Set up $x_1 + x_2 + x_3 + x_4 = 10$ fixxy $X_{1} + X_{2} + X_{3} + X_{4} = +$ bound x_i : amount invested in company *i* $\chi_{i} \geq 0$ $\chi_{1} \geq 3$

 $\chi_2, \chi_3, \chi_4 \geq 0$

n=7r=4 (7+4-1) = (10) = 120(3) = 120

"indistinct buckets" [1,3,4,2] $\begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$ (10) (3) vs (7) $\begin{bmatrix} 0 & 0 & 0 \\ -1 & 9 \end{bmatrix}$ q 5