# o4: Conditional Probability and Bayes

Lisa Yan and Jerry Cain September 21, 2020

# Quick slide reference

| 3  | Conditional Probability + Chain Rule | 04a_conditional |
|----|--------------------------------------|-----------------|
| 15 | Law of Total Probability             | 04b_total_prob  |
| 22 | Bayes' Theorem I                     | 04c_bayes_i     |
| 31 | Bayes' Theorem II                    | LIVE            |
| 59 | Monty Hall Problem                   | LIVE            |

Lisa Yan and Jerry Cain, CS109, 2020

04a\_conditional

# Conditional Probability

# Dice, our misunderstood friends

```
Roll two 6-sided dice, yielding
values D_1 and D_2.
Let E be event: D_1 + D_2 = 4.
                                   Let F be event: D_1 = 2.
What is P(E)?
                                   What is P(E, given F a ready observed)?
|S| = 36
E = \{(1,3), (2,2), (3,1)\}
P(E) = 3/36 = 1/12
                                                                  Stanford University 4
```

Lisa Yan and Jerry Cain, CS109, 2020

# **Conditional Probability**

The conditional probability of E given F is the probability that E occurs given that F has already occurred. This is known as conditioning on F.

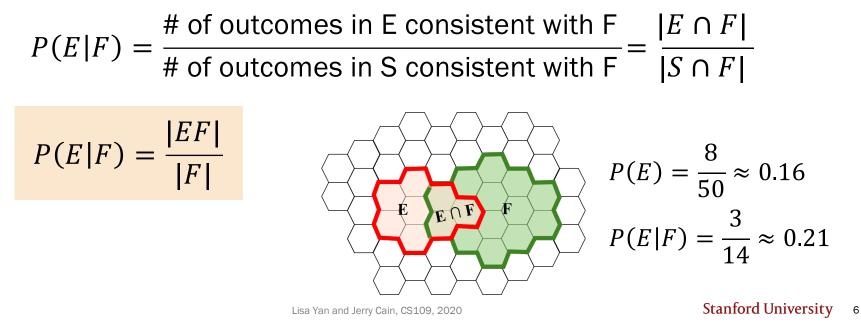
| Written as:                | P(E F)                                                       |
|----------------------------|--------------------------------------------------------------|
| Means:                     | "P(E, given F already observed)"                             |
| Sample space $\rightarrow$ | all possible outcomes consistent with $F$ (i.e. $S \cap F$ ) |
| Event $\rightarrow$        | all outcomes in E consistent with F (i.e. $E \cap F$ )       |

Lisa Yan and Jerry Cain, CS109, 2020

# Conditional Probability, equally likely outcomes

The conditional probability of E given F is the probability that E occurs given that F has already occurred. This is known as conditioning on F.

#### With equally likely outcomes:



| Slicing up the spar                                                                                                                                  | $P(E F) = \frac{ EF }{ F }$                                       | Equally likely outcomes |                                         |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------|-----------------------------------------|--|--|--|--|
| <ul> <li>24 emails are sent, 6 each to 4 users.</li> <li>10 of the 24 emails are spam.</li> <li>All possible outcomes are equally likely.</li> </ul> |                                                                   |                         |                                         |  |  |  |  |
| Let $E$ = user 1 receives<br>3 spam emails.<br>What is $P(E)$ ?                                                                                      | Let $F$ = user 2 receives<br>6 spam emails.<br>What is $P(E F)$ ? |                         | er 3 receives<br>spam emails.<br>(G F)? |  |  |  |  |
|                                                                                                                                                      |                                                                   |                         |                                         |  |  |  |  |

Lisa Yan and Jerry Cain, CS109, 2020

Stanford University 7

# Slicing up the spam

 $P(E|F) = \frac{|EF|}{|E|}$ 

Equally likely outcomes

24 emails are sent, 6 each to 4 users.

- 10 of the 24 emails are spam.
- All possible outcomes are equally likely.

Let F = user 2 receives Let E = user 1 receives Let G = user 3 receives 3 spam emails. 6 spam emails. 5 spam emails. What is P(E)? What is P(E|F)? What is P(G|F)?  $P(G|F) = \frac{\binom{4}{5}\binom{14}{1}}{\binom{18}{5}}$  $P(E|F) = \frac{\binom{4}{3}\binom{14}{3}}{\binom{18}{5}}$  $P(E) = \frac{\binom{10}{3}\binom{14}{3}}{\binom{24}{6}}$ = 0 $\approx 0.3245$  $\approx 0.0784$ No way to choose 5 spam from 4 remaining spam emails! Stanford University 8

Lisa Yan and Jerry Cain, CS109, 2020

# Conditional probability in general

General definition of conditional probability:

$$P(E|F) = \frac{P(EF)}{P(F)}$$

The Chain Rule (aka Product rule):

P(EF) = P(F)P(E|F)

These properties hold even when outcomes are not equally likely.

Lisa Yan and Jerry Cain, CS109, 2020



and Learn

 $P(E|F) = \frac{P(EF)}{P(F)}$  Definition of Cond. Probability

Let E = a user watches Life is Beautiful. What is P(E)?

**X** Equally likely outcomes?

 $S = \{ watch, not watch \}$  $E = \{ watch \}$ P(E) = 1/2 ?

 $\mathbf{\nabla} P(E) = \lim_{n \to \infty} \frac{n(E)}{n} \approx \frac{\text{\# people who have watched movie}}{\text{\# people on Netflix}}$ 

 $= 10,234,231 / 50,923,123 \approx 0.20$ 

Lisa Yan and Jerry Cain, CS109, 2020

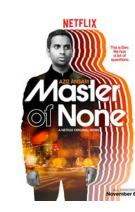
Definition of  $P(E|F) = \frac{P(EF)}{P(F)}$  Definition of Cond. Probability

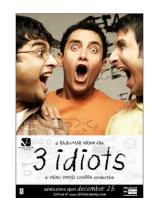
#### Let *E* be the event that a user watches the given movie.



P(E) = 0.19 P(E) = 0.32 P(E) = 0.20 P(E) = 0.09 P(E) = 0.20









Lisa Yan and Jerry Cain, CS109, 2020

Let E = a user watches Life is Beautiful.

Let F = a user watches Amelie.

What is the probability that a user watches Life is Beautiful, given they watched Amelie?

P(E|F)



 $P(E|F) = \frac{P(EF)}{P(F)}$  Definition of Cond. Probability

 $P(E|F) = \frac{P(EF)}{P(F)} = \frac{\frac{\# \text{ people who have watched both}}{\# \text{ people on Netflix}}}{\frac{\# \text{ people who have watched Amelie}}{\# \text{ people on Netflix}}}$  $= \frac{\# \text{ people who have watched both}}{\# \text{ people who have watched both}}$ 

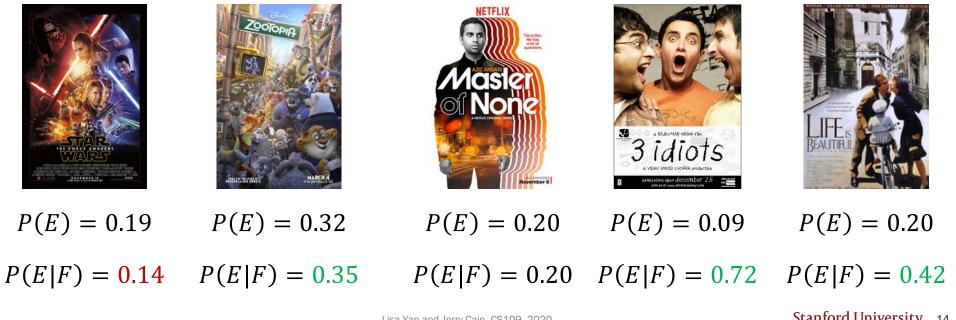
**≈ 0.42** 

Lisa Yan and Jerry Cain, CS109, 2020

Definition of  $P(E|F) = \frac{P(EF)}{P(F)}$ Cond. Probability

Let *E* be the event that a user watches the given movie. Let F be the event that the same user watches Amelie.



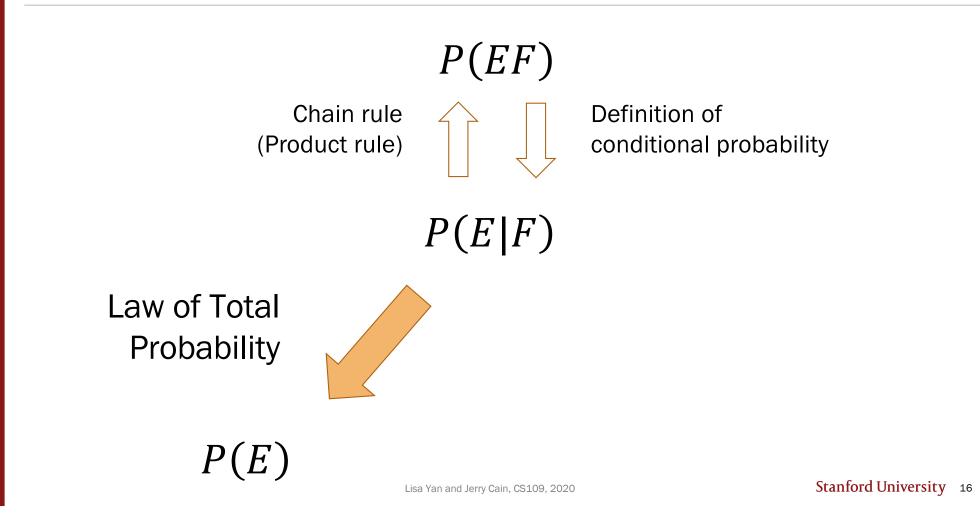


Lisa Yan and Jerry Cain, CS109, 2020

04b\_total\_prob

# Law of Total Probability

## Today's tasks



## Law of Total Probability

<u>Thm</u> Let F be an event where P(F) > 0. For any event E,  $P(E) = P(E|F)P(F) + P(E|F^{C})P(F^{C})$ 

#### <u>Proof</u>

1. F and  $F^C$  are disjoint s.t.  $F \cup F^C = S$ Def. of complement2.  $E = (EF) \cup (EF^C)$ (see diagram)3.  $P(E) = P(EF) + P(EF^C)$ Additivity axiom4.  $P(E) = P(E|F)P(F) + P(E|F^C)P(F^C)$ Chain rule (product rule)

#### Note: disjoint sets by definition are mutually exclusive events

Lisa Yan and Jerry Cain, CS109, 2020

# General Law of Total Probability

<u>Thm</u> For mutually exclusive events  $F_1, F_2, ..., F_n$ s.t.  $F_1 \cup F_2 \cup \cdots \cup F_n = S$ ,

$$P(E) = \sum_{i=1}^{n} P(E|F_i)P(F_i)$$

Lisa Yan and Jerry Cain, CS109, 2020

# Finding P(E) from P(E|F)

- Flip a fair coin.
- If heads: roll a fair 6-sided die.
- Else: roll a fair 3-sided die.

You win if you roll a 6. What is P(winning)?







Lisa Yan and Jerry Cain, CS109, 2020

# Finding P(E) from P(E|F)

- Flip a fair coin.
- If heads: roll a fair 6-sided die.
- Else: roll a fair 3-sided die.

You win if you roll a 6. What is P(winning)?

Define events
 & state goal

Let: E: win, F: flip heads Want: P(win)= P(E) 2. Identify <u>known</u> probabilities

 $P(E) = P(E|F)P(F) + P(E|F^{C})P(F^{C})$  Law of Total Probability



3. Solve

 $P(\text{win}|\text{H}) = P(E|F) = 1/6 \quad P(E) = (1/6)(1/2)$   $P(\text{H}) = P(F) = 1/2 \quad +(0)(1/2)$  $P(\text{win}|\text{T}) = P(E|F^{C}) = 0 \quad = 1 - 1/2 \quad = \frac{1}{12} \approx 0.083$ 

Lisa Yan and Jerry Cain, CS109, 2020

# Finding P(E) from P(E|F), an understanding

- Flip a fair coin.
- If heads: roll a fair 6-sided die.
- Else: roll a fair 3-sided die.

You win if you roll a 6. What is P(winning)?

#### 1. Define events & state goal

Let: E: win, F: flip heads Want: P(win)= P(E)

> "Probability trees" can help connect your understanding of the experiment with the problem statement.

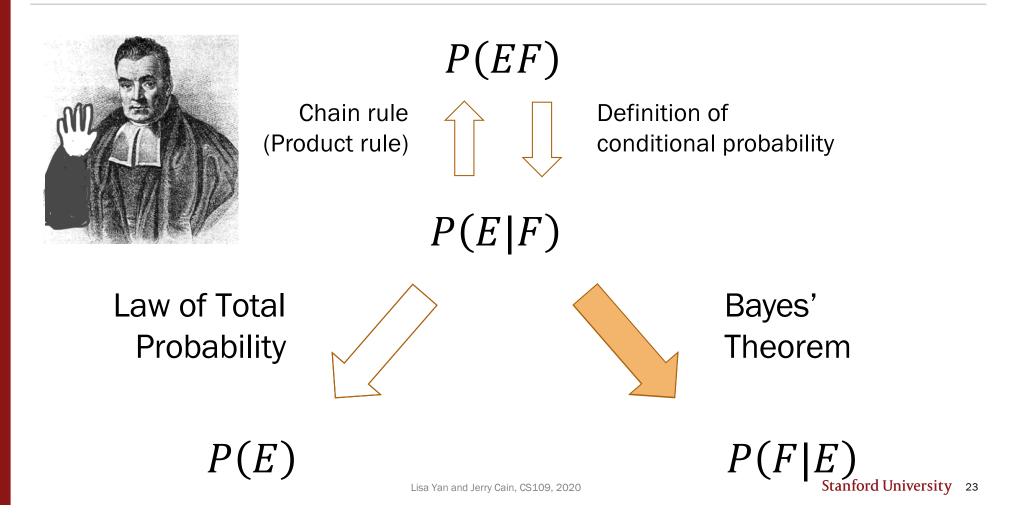
> > Lisa Yan and Jerry Cain, CS109, 2020



04c\_bayes\_i

# Bayes' Theorem I

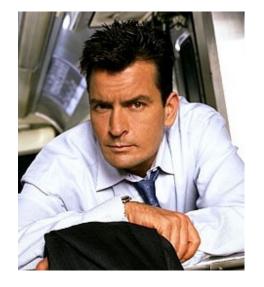
## Today's tasks



### **Thomas Bayes**

#### Rev. Thomas Bayes (~1701-1761): British mathematician and Presbyterian minister

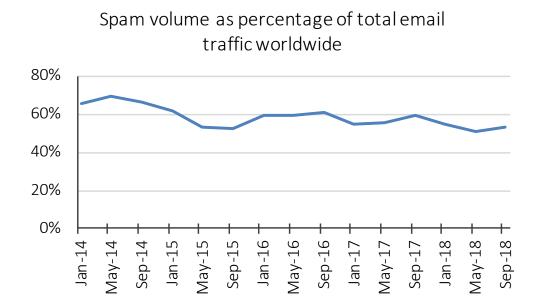




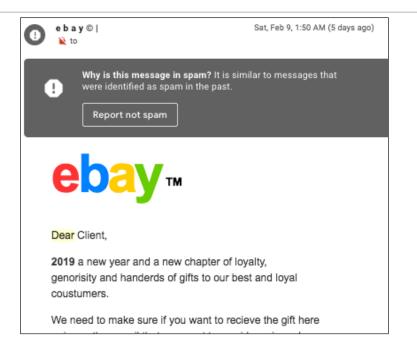
#### He looked remarkably similar to Charlie Sheen (but that's not important right now)

Lisa Yan and Jerry Cain, CS109, 2020

# Detecting spam email



We can easily calculate how many spam emails contain "Dear":  $P(E|F) = P(\text{"Dear"} | \begin{array}{c} \text{Spam} \\ \text{email} \end{array})$ 



But what is the probability that an email containing "Dear" is spam?

$$P(F|E) = P\left(\begin{array}{c} \text{Spam} \\ \text{email} \end{array} \middle| \text{``Dear''} \right)$$

Lisa Yan and Jerry Cain, CS109, 2020



# (silent drumroll)

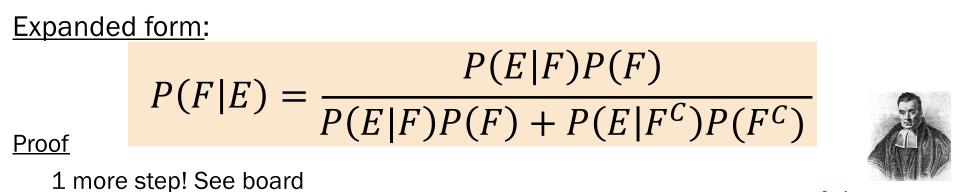
# Bayes' Theorem

 $P(E|F) \square P(F|E)$ 

# <u>Thm</u> For any events *E* and *F* where P(E) > 0 and P(F) > 0, $P(F|E) = \frac{P(E|F)P(F)}{P(E)}$

<u>Proof</u>

2 steps! See board



Lisa Yan and Jerry Cain, CS109, 2020

# Detecting spam email $P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^{c})P(F^{c})}$ Bayes'• 60% of all email in 2016 is spam.• 20% of spam has the word "Dear"• 1% of non-spam (aka ham) has the word "Dear"You get an email with the word "Dear" in it.What is the probability that the email is spam?1. Define events2. Identify known3. Solve

Let: E: "Dear", F: spam Want: P(spam| "Dear") = P(F|E)

& state goal

probabilities

# Detecting spam email, an understanding

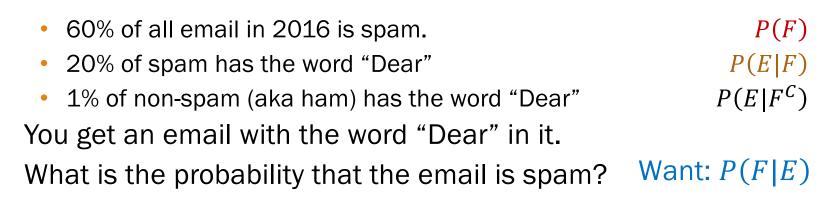
- 60% of all email in 2016 is spam.
- 20% of spam has the word "Dear"

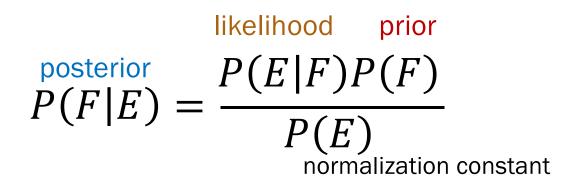
1% of non-spam (aka ham) has the word "Dear"
You get an email with the word "Dear" in it.
What is the probability that the email is spam?

# 1. Define events & state goal

Let: E: "Dear", F: spam Want: P(spam|``Dear")= P(F|E) Note: You should still know how to use Bayes/ Law of Total Probab., but drawing a probability tree can help you identify which probabilities you have. The branches are determined using the problem setup.

# Bayes' Theorem terminology



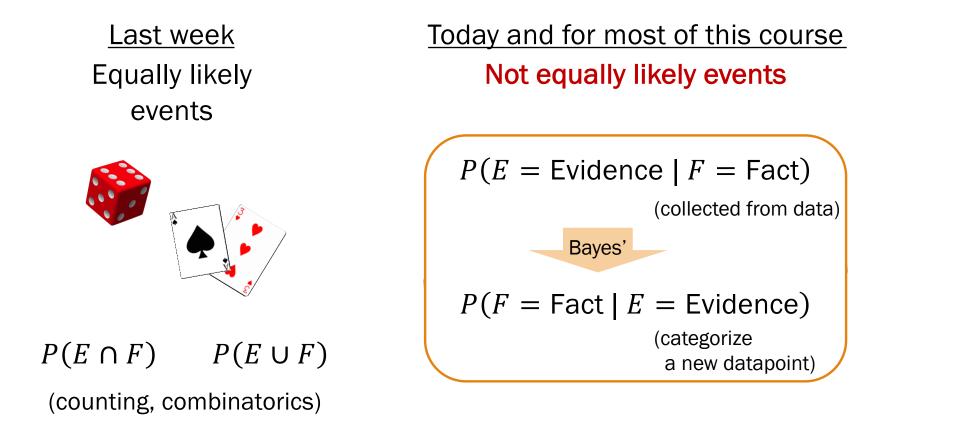


Lisa Yan and Jerry Cain, CS109, 2020

# o4: Conditional Probability and Bayes

Lisa Yan and Jerry Cain September 21, 2020

# This class going forward



Lisa Yan and Jerry Cain, CS109, 2020

# Conditional probability in general

General definition of conditional probability:

$$P(E|F) = \frac{P(EF)}{P(F)}$$

The Chain Rule (aka Product rule):

P(EF) = P(F)P(E|F)

These properties hold even when outcomes are not equally likely.

Lisa Yan and Jerry Cain, CS109, 2020

Stanford University 33

**Review** 

Think, then Breakout Rooms

Then check out the question on the next slide (Slide 35). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/128395

Think by yourself: 1 min

Breakout rooms: 4 min. Introduce yourself!

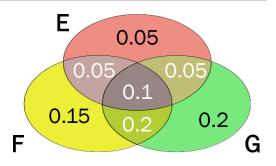


# Think, then groups

You have a flowering plant.

- Let E = Flowers bloom F = Plant was watered G = Plant got sun
- G = Plant got sun1. How would you write





- i. the probability that the plant got sun, given that it was watered and flowers bloomed?
- ii. the probability that the plant got sun and flowers bloomed given that it was watered?
- 2. Using the Venn diagram, compute the above probabilities.
- 3. Chain Rule: Fill in the blanks.
  - i.  $P(GE) = \underline{\qquad} \cdot P(E)$
  - ii.  $P(GE|F) = P(G|EF) \cdot \_$

Lisa Yan and Jerry Cain, CS109, 2020

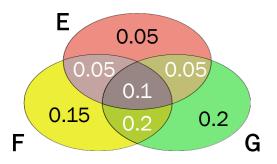


# Think, then groups

You have a flowering plant.

- Let E = Flowers bloom F = Plant was watered G = Plant got sun





- 1. How would you write the probability that the plant got sun, İ. given that it was watered and flowers bloomed?
  - the probability that the plant got sun ii. and flowers bloomed given that it was watered?
- 2. Using the Venn diagram, compute the above probabilities.
- Chain Rule: Fill in the blanks. 3
  - i.  $P(GE) = \underline{\qquad} \cdot P(E)$
  - ii. P(GE|F) = P(G|EF).

Lisa Yan and Jerry Cain, CS109, 2020

LIVE

# Bayes' Theorem II

# Why is Bayes' so important?



It links belief to evidence in probability!

#### Bayes' Theorem

Review

posteriorlikelihoodprior
$$P(F|E) = \frac{P(E|F)P(F)}{P(E)}$$

Mathematically:

$$P(E|F) \to P(F|E)$$

Real-life application:

Given new evidence *E*, update belief of fact *F* Prior belief  $\rightarrow$  Posterior belief  $P(F) \rightarrow P(F|E)$ 

Lisa Yan and Jerry Cain, CS109, 2020

#### Zika, an autoimmune disease



A disease spread through mosquito bites. Usually no symptoms; worst case paralysis. During pregnancy: may cause birth defects





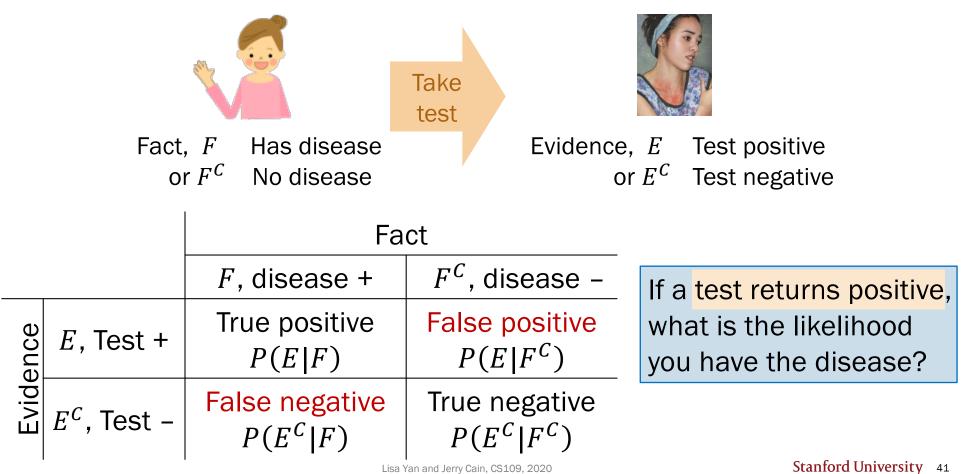


Rhesus monkeys

If a test returns positive, what is the likelihood you have the disease?

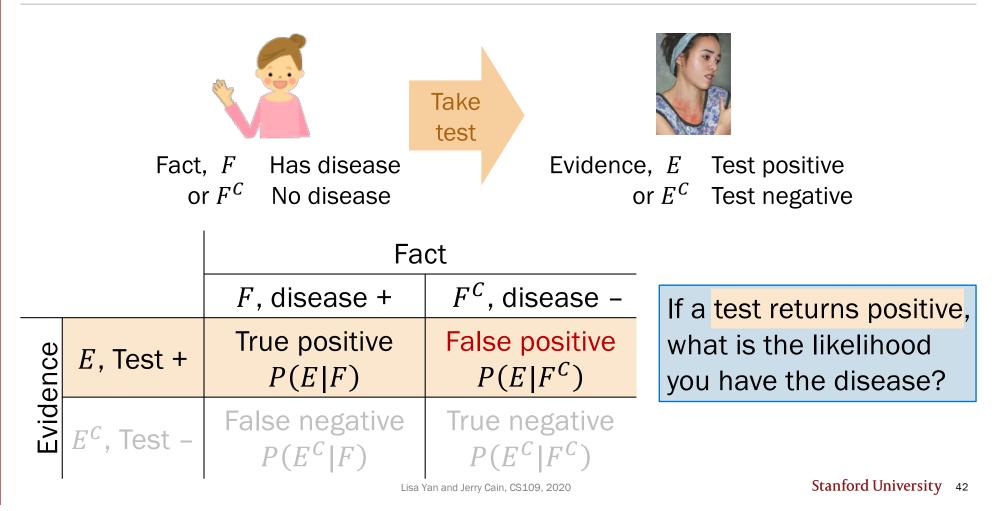
Lisa Yan and Jerry Cain, CS109, 2020

#### Taking tests: Confusion matrix



Lisa Yan and Jerry Cain, CS109, 2020

#### Taking tests: Confusion matrix



# Breakout Rooms

Check out the question on the next slide (Slide 43). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/128395

Breakout rooms: 5 minutes



43

## Zika Testing

```
P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^{C})P(F^{C})}Bayes'
Theorem
```

- A test is 98% effective at detecting Zika ("true positive").
- However, the test has a "false positive" rate of 1%.
- 0.5% of the US population has Zika.

What is the likelihood you have Zika if you test positive?

Why would you expect this number?

#### Define events & state goal

Let: E = you test positive F = you actually have the disease

#### Want:

```
\begin{array}{l} \mathsf{P}(\mathsf{disease} \mid \mathsf{test+}) \\ = P(F|E) \end{array}
```



Lisa Yan and Jerry Cain, CS109, 2020

## Zika Testing

```
P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^{C})P(F^{C})}Bayes'
Theorem
```

- A test is 98% effective at detecting Zika ("true positive").
- However, the test has a "false positive" rate of 1%.
- 0.5% of the US population has Zika.

What is the likelihood you have Zika if you test positive?

Why would you expect this number?

1. Define events & state goal

2. Identify <u>known</u> probabilities 3. Solve

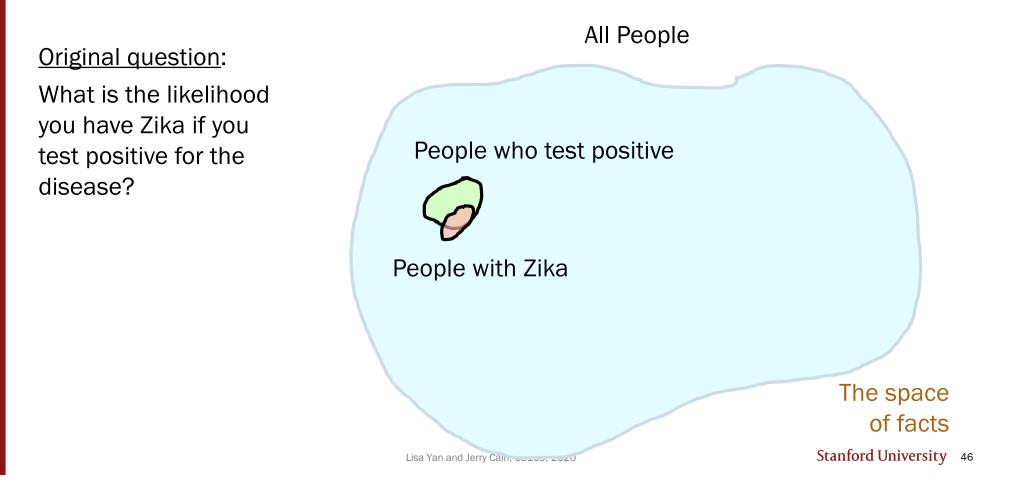
Let: E = you test positive F = you actually have the disease

#### Want:

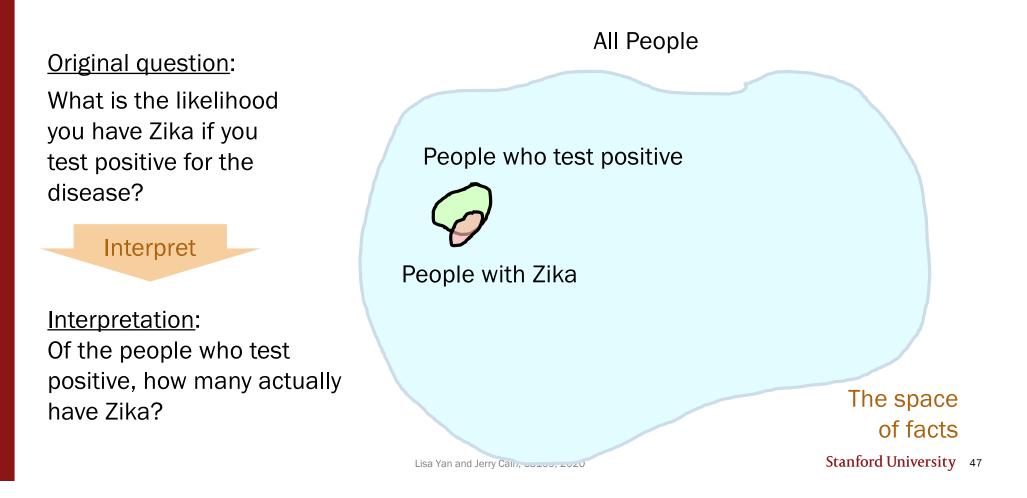
```
P(\text{disease } | \text{ test+}) \\= P(F|E)
```

Lisa Yan and Jerry Cain, CS109, 2020

#### Bayes' Theorem intuition



### Bayes' Theorem intuition



#### Bayes' Theorem intuition

#### Original question:

What is the likelihood you have Zika if you test positive for the disease?

#### Interpret

Interpretation: Of the people who test positive, how many actually have Zika?

#### People who test positive

People who test positive but don't have Zika

People who test positive and have Zika

The space of facts, **conditioned** on a positive test result

Lisa Yan and Jerry Cain, CS109, 2020

#### Zika Testing

- A test is 98% effective at detecting Zika ("true positive").
- However, the test has a "false positive" rate of 1%.
- 0.5% of the US population has Zika.

What is the likelihood you have Zika if you test positive?

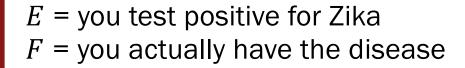
Say we have 1000 people:

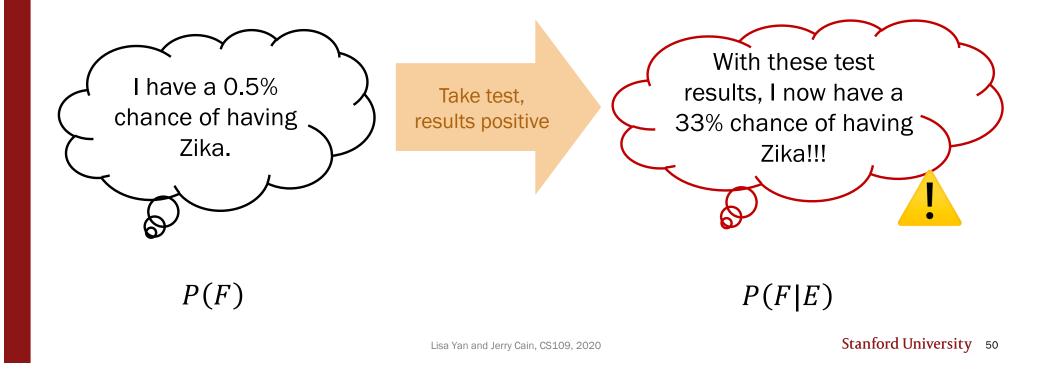


5 have Zika and test positive
985 do not have Zika and test negative.
10 do not have Zika and test positive.
≈ 0.333

Demo (class website) Stanford University 49

#### Update your beliefs with Bayes' Theorem





## Topical probability news: Bayes for COVID-19 testing



How representative are today's testing rates?

How do we know if a positive test is a true positive or a false positive?

# Reasonable Question:Why test if there are errors?

https://covidtracking.com/data http://med.stanford.edu/news.html

#### A. Jul 10:

Florida started reporting hospitalizations of people with a "primary diagnosis of COVID-19."

Lisa Yan and Jerry Cain, CS109, 2020

# Think

Slide 53 is a question to think over by yourself. We'll go over it together afterwards.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/128395

Think by yourself: 2 minutes



52

- $P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^{C})P(F^{C})}$ Bayes' Theorem
- A test is 98% effective at detecting Zika ("true positive").
- However, the test has a "false positive" rate of 1%.
- 0.5% of the US population has Zika.

What is  $P(F|E^{C})$ ?

| Let: | E = you test positive<br>F = you actually have                         |           | F, disease +                  | F <sup>C</sup> , disease –         |
|------|------------------------------------------------------------------------|-----------|-------------------------------|------------------------------------|
| Let: | the disease<br>$E^{C}$ = you test negative<br>for Zika with this test. | E, Test + | True positive $P(E F) = 0.98$ | False positive $P(E F^{C}) = 0.01$ |
|      |                                                                        |           |                               |                                    |

(by yourself)

Lisa Yan and Jerry Cain, CS109, 2020

 $P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^{C})P(F^{C})}$ Bayes' Theorem

- A test is 98% effective at detecting Zika ("true positive").
- However, the test has a "false positive" rate of 1%.
- 0.5% of the US population has Zika.

What is  $P(F|E^{C})$ ?

| Let: $E$ = you test positive<br>F = you actually have        | - $F^C$ , disease –                   |
|--------------------------------------------------------------|---------------------------------------|
| the disease $E$ , Test<br>Let: $E^{C}$ = you test negative   | False positive<br>$P(E F^{C}) = 0.01$ |
| Let: $E^{C}$ = you test negative<br>for Zika with this test. | $ 8  P(E F^{c})$                      |

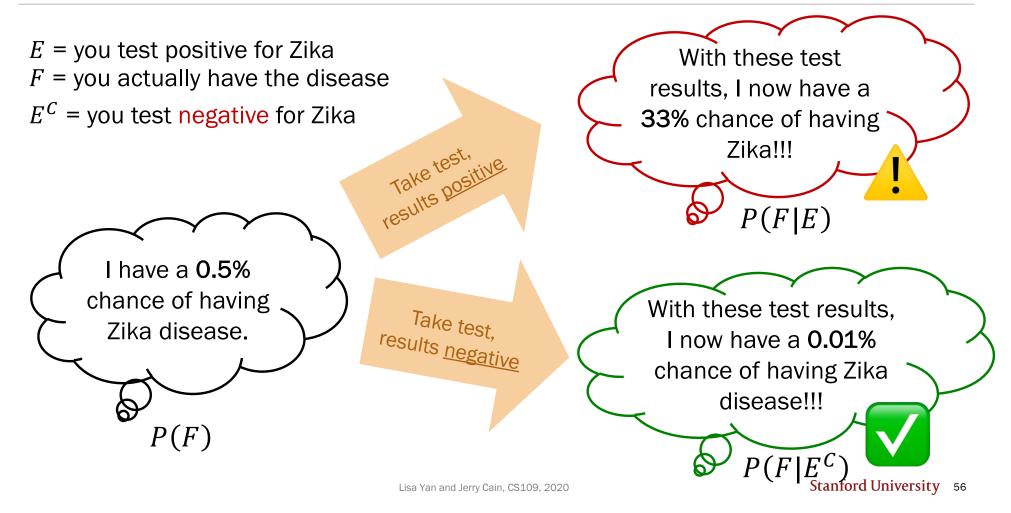
Lisa Yan and Jerry Cain, CS109, 2020

- $P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^{C})P(F^{C})}$ Bayes' Theorem
- A test is 98% effective at detecting Zika ("true positive").
- However, the test has a "false positive" rate of 1%.
- 0.5% of the US population has Zika.

| Let:                   | E = you test positive<br>F = you actually have |                         | F, disease +        | F <sup>C</sup> , disease – |
|------------------------|------------------------------------------------|-------------------------|---------------------|----------------------------|
|                        | the disease                                    | E, Test +               | True positive       | False positive             |
| Let:                   | $E^{C}$ = you test negative                    |                         | P(E F) = 0.98       | $P(E F^C) = 0.01$          |
| _00                    | for Zika with this test.                       | E <sup>C</sup> , Test – | False negative      | True negative              |
| What is $P(F E^{C})$ ? |                                                |                         | $P(E^{C} F) = 0.02$ | $P(E^{C} F^{C}) = 0.99$    |
|                        |                                                |                         |                     |                            |

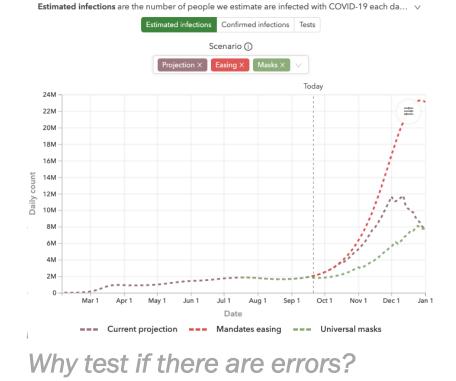
$$P(F|E^{C}) = \frac{P(E^{C}|F)P(F)}{P(E^{C}|F)P(F) + P(E^{C}|F^{C})P(F^{C})}$$

Lisa Yan and Jerry Cain, CS109, 2020



#### Topical probability news: Bayes for COVID-19 testing

- Antibody tests (blood samples) have higher false negative, false positive rates than RT-PCR tests (nasal swab). However, they help explain/identify our body's reaction to the virus.
- The real world has many more "givens" (current symptoms, existing medical conditions) that improve our belief prior to testing.
- Most importantly, testing gives us a noisy signal of the spread of a disease.



Daily infections and testing

Lisa Yan and Jerry Cain, CS109, 2020

### Topical probability news: Sources

COVID-19 https://rega.kuleuven.be/if/corona\_covid-19

#### Estimated infections Confirmed infections Tests Scenario (i) Easing X Masks X **COVID-19** Projections Today 24M http://covid19.healthdata.org/ 22M 20M Stanford Medicine (Sept 9 2020) 18M 16M http://med.stanford.edu/news/all-news/2020/09/researchers-14M test-antibodies-as-covid-19-treatment.html 12M Daily 10M 8M Overview of different testing types 6M 4M https://www.globalbiotechinsights.com/articles/20247/the-2M worldwide-test-for-covid-19 0 Mar Compilation of scientific publications on Mandates easing Universal masks

Lisa Yan and Jerry Cain, CS109, 2020

Stanford University 58

Dec 1

Daily infections and testing Estimated infections are the number of people we estimate are infected with COVID-19 each da...

LIVE

# Monty Hall Problem

## Monty Hall Problem and Wayne Brady





Lisa Yan and Jerry Cain, CS109, 2020

## Monty Hall Problem aka Let's Make a Deal

Behind one door is a prize (equally likely to be any door). Behind the other two doors is nothing

- 1. We choose a door
- 2. Host opens 1 of other 2 doors, revealing nothing
- 3. We are given an option to change to the other door.

Should we switch?



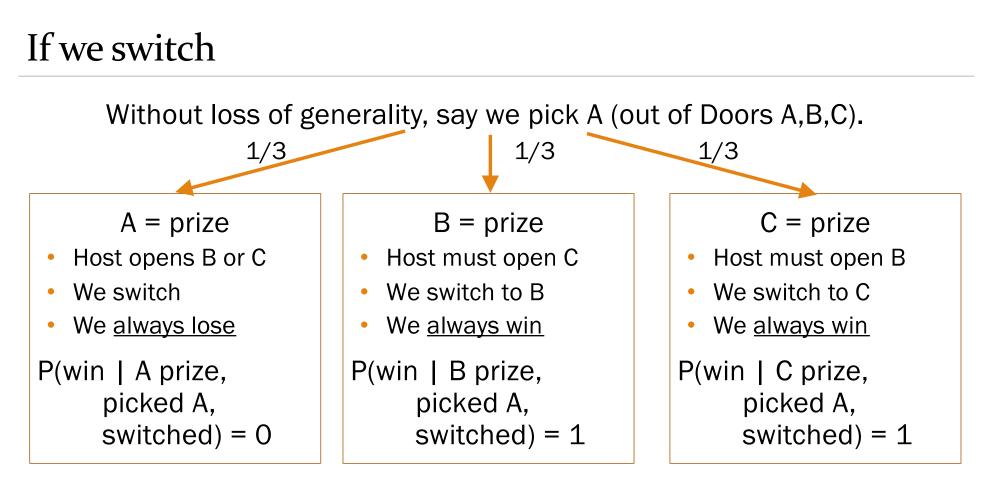
Doors A,B,C

Note: If we don't switch, P(win) = 1/3 (random)

We are comparing P(win) and P(win|switch).



Lisa Yan and Jerry Cain, CS109, 2020



P(win | picked A, switched) = 1/3 \* 0 + 1/3 \* 1 + 1/3 \* 1 = 2/3You should switch.

Lisa Yan and Jerry Cain, CS109, 2020

#### Monty Hall, 1000 envelope version

Start with 1000 envelopes (of which 1 is the prize).

 You choose 1 envelope.
 1 1000 = P(envelope is prize) <sup>999</sup>/<sub>1000</sub> = P(other 999 envelopes have prize)

 I open 998 of remaining 999 (showing they are empty).
 <sup>999</sup>/<sub>1000</sub> = P(998 empty envelopes had prize) 1000 = P(998 empty envelopes had prize)

+ P(last other envelope has prize)

= P(last other envelope has prize)

3. Should you No: P(win without switching) = switch?

Yes: P(win with new knowledge) =

Lisa Yan and Jerry Cain, CS109, 2020

original # envelopes - 1 original # envelopes

Stanford University 63

original # envelopes