o5: Independence

Lisa Yan and Jerry Cain September 23, 2020

Quick slide reference

- 3 Generalized Chain Rule 05a_chain
- 9 Independence 05b_independence_i
- 16 Independent Trials 05c_independence_ii
- Exercises and deMorgan's Laws

LIVE

Lisa Yan and Jerry Cain, CS109, 2020

05a_chain

Generalized Chain Rule

Chain Rule

Definition of conditional probability:

$$P(E|F) = \frac{P(EF)}{P(F)}$$

The Chain Rule:

$$P(EF) = P(E|F)P(F)$$

Lisa Yan and Jerry Cain, CS109, 2020

Stanford University 4

Review

Generalized Chain Rule

$P(E_1 E_2 E_3 \dots E_n) = P(E_1) P(E_2 | E_1) P(E_3 | E_1 E_2) \dots P(E_n | E_1 E_2 \dots E_{n-1})$

Lisa Yan and Jerry Cain, CS109, 2020

Quick check

 $\begin{array}{ll} P(E_1E_2E_3\ldots E_n)=& & \mbox{Chain}\\ P(E_1)P(E_2|E_1)\ldots P(E_n|E_1E_2\ldots E_{n-1}) & \mbox{Rule} \end{array}$

You are going to a friend's Halloween party.

Let C = there is candy W = you wear a costume M = there is music E = no one wears your costume

An awesome party means that all of these events must occur.

What is P(awesome party) = P(CMWE)?

- A. P(C)P(M|C)P(W|CM)P(E|CMW)
- B. P(M)P(C|M)P(W|MC)P(E|MCW)
- C. P(W)P(E|W)P(CM|EW)
- D. A, B, and C
- E. None/other

Lisa Yan and Jerry Cain, CS109, 2020

Quick check

 $\begin{array}{ll} P(E_1E_2E_3\ldots E_n)=& & \mbox{Chain}\\ P(E_1)P(E_2|E_1)\ldots P(E_n|E_1E_2\ldots E_{n-1}) & \mbox{Rule} \end{array}$

You are going to a friend's Halloween party.

Let C = there is candy E = no one wears your costume M = there is music W = you wear a costume

An awesome party means that all of these events must occur.

What is P(awesome party) = P(CMEW)?

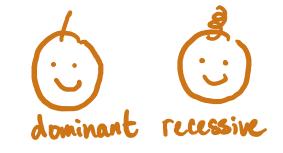
- A. P(C)P(M|C)P(E|CM)P(W|CME)
- B. P(M)P(C|M)P(E|MC)P(W|MCE)
- C. P(W)P(E|W)P(CM|EW)
- D. A, B, and C
- E. None/other

Chain Rule is a way of introducing "order" and "procedure" into probability.

Think of the children

Two parents both have an (A, a) gene pair.

- Each parent will pass on one of their genes (each gene equally likely) to their child.
- The probability of a single child having curly hair (recessive trait) is 0.25.



• There are three children.

What is the probability that all three children have curly hair?

Let E_1, E_2, E_3 be the events that child 1, 2, and 3 have curly hair, respectively.

$$P(E_1 E_2 E_3) = P(E_1) P(E_2 | E_1) P(E_3 | E_1 E_2)$$

Lisa Yan and Jerry Cain, CS109, 2020

05b_independence_i

Independence I

Independence

Two events *E* and *F* are defined as independent if: P(EF) = P(E)P(F)

Otherwise *E* and *F* are called <u>dependent</u> events.

If *E* and *F* are independent, then:

$$P(E|F) = P(E)$$

Lisa Yan and Jerry Cain, CS109, 2020

Intuition through proof

Independent events *E* and *F* P(EF) = P(E)P(F)

Statement:

If E and F are independent, then P(E|F) = P(E).

Proof:

$$P(E|F) = \frac{P(EF)}{P(F)}$$
$$= \frac{P(E)P(F)}{P(F)}$$
$$= P(E)$$

Definition of conditional probability

Independence of E and F

Taking the bus to cancellation city

Knowing that F happened does not change our belief that E happened.

Lisa Yan and Jerry Cain, CS109, 2020

Dice, our misunderstood friends

Independent events E and F P(EF) = P(E)P(F)P(E|F) = P(E)

- Roll two 6-sided dice, yielding values D_1 and D_2 .
- Let event E: $D_1 = 1$ event F: $D_2 = 6$ event G: $D_1 + D_2 = 5$

$$G = \{(1,4), (2,3), (3,2), (4,1)\}$$

1. Are E and F independent?

P(E) = 1/6 P(F) = 1/6 P(EF) = 1/36 $\overrightarrow{\text{independent}}$

2. Are *E* and *G* independent?

$$P(E) = 1/6$$

 $P(G) = 4/36 = 1/9$
 $P(EG) = 1/36 \neq P(E)P(G)$
× dependent

Lisa Yan and Jerry Cain, CS109, 2020

Generalizing independence

Three events E, F, and Gare independent if: P(EFG) = P(E)P(F)P(G), and P(EF) = P(E)P(F), and P(EG) = P(E)P(G), and P(FG) = P(F)P(G)for r = 1, ..., n: for every subset $E_1, E_2, ..., E_r$: $P(E_1, E_2, ..., E_r) = P(E_1)P(E_2) \cdots P(E_r)$

Lisa Yan and Jerry Cain, CS109, 2020

Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an independent trial. ۲
- Two rolls: D_1 and D_2 . •
 - Let event *E*: $D_1 = 1$ event *F*: $D_2 = 6$

event G: $D_1 + D_2 = 7$ G = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}

1. Are E and F **2.** Are E and G **3.** Are F and G **4.** Are E, F, Gindependent?

P(EF) = 1/36

independent?

- independent? independent?

Lisa Yan and Jerry Cain, CS109, 2020

Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2 . •
 - Let event *E*: $D_1 = 1$ event *F*: $D_2 = 6$ event *G*: $D_1 + D_2 = 7$

$$G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$$

🔽 independent?

independent?

1. Are E and F **2.** Are E and G **3.** Are F and G **4.** Are E, F, Gindependent? X independent?

P(EF) = 1/36

Pairwise independence is not sufficient to prove independence of >2 events!

Lisa Yan and Jerry Cain, CS109, 2020

05b_independence_ii

Independence II

Independent trials

We often are interested in experiments consisting of *n* independent trials.

- *n* trials, each with the same set of possible outcomes
- n-way independence: an event in one subset of trials is independent of events in other subsets of trials

Examples:

- Flip a coin *n* times
- Roll a die *n* times
- Send a multiple choice survey to *n* people
- Send *n* web requests to *k* different servers

Lisa Yan and Jerry Cain, CS109, 2020

Think of the children as independent trials

Two parents both have an (A, a) gene pair.

- Each parent will pass on one of their genes (each gene equally likely) to their child.
- The probability of a single child having curly hair (recessive trait) is 0.25.

• There are three children. Each child is an independent trial.

What is the probability that all three children have curly hair?

Let E_1, E_2, E_3 be the events that child 1, 2, and 3 have curly hair, respectively.

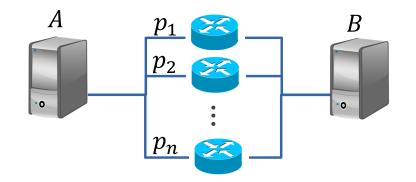
$$P(E_1 E_2 E_3) = P(E_1) P(E_2 | E_1) P(E_3 | E_1 E_2)$$

Network reliability

Consider the following parallel network:

- *n* independent routers, each with probability p_i of functioning (where $1 \le i \le n$)
- E = functional path from A to B exists.

What is P(E)?



Lisa Yan and Jerry Cain, CS109, 2020

Network reliability

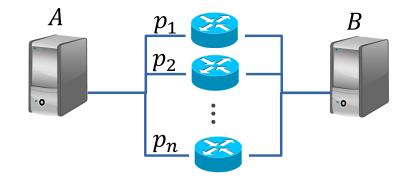
Consider the following parallel network:

- *n* independent routers, each with probability p_i of functioning (where $1 \le i \le n$)
- E = functional path from A to B exists.

What is P(E)?

$$P(E) = P(\ge 1 \text{ one router works})$$

= 1 - P(all routers fail)
= 1 - (1 - p₁)(1 - p₂) ··· (1 - p_n)
= 1 -
$$\prod_{i=1}^{n} (1 - p_i)$$



 \geq 1 with independent trials:

take complement

Lisa Yan and Jerry Cain, CS109, 2020

(live) 05: Independence

Lisa Yan and Jerry Cain September 23, 2020

Review

Independence

Two events *E* and *F* are defined as independent if: P(EF) = P(E)P(F)

For independent events E and F,

• P(E|F) = P(E)

Lisa Yan and Jerry Cain, CS109, 2020

Think

Slide 24 has two questions to think over by yourself. We'll go over it together afterwards.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/128396

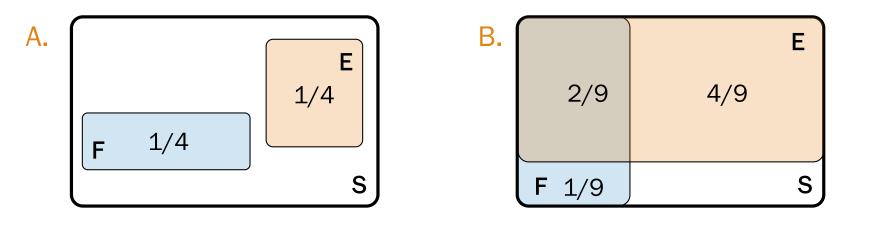
Think by yourself: 2 min

23

Independence?

Independent events E and F P(EF) = P(E)P(F)P(E|F) = P(E)

- **1.** True or False? Two events *E* and *F* are independent if:
- A. Knowing that F happens means that E can't happen.
- B. Knowing that F happens doesn't change probability that E happened.
- 2. Are *E* and *F* independent in the following pictures?

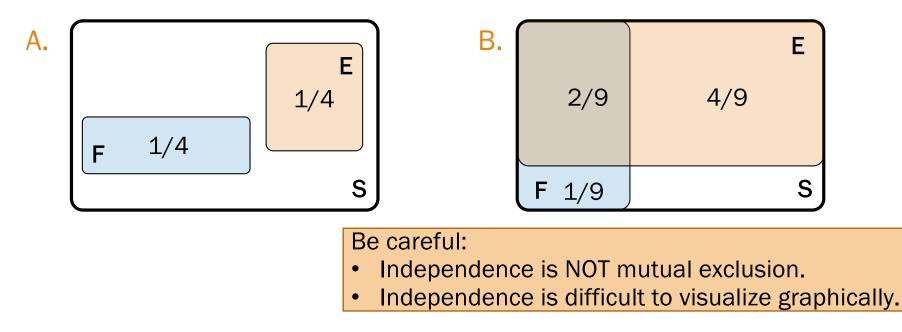


Lisa Yan and Jerry Cain, CS109, 2020

Independence?

Independent events E and F P(EF) = P(E)P(F)P(E|F) = P(E)

- **1.** True or False? Two events *E* and *F* are independent if:
- A. Knowing that F happens means that E can't happen.
- B. Knowing that F happens doesn't change probability that E happened.
- 2. Are *E* and *F* independent in the following pictures?



Independence

Two events *E* and *F* are defined as independent if: P(EF) = P(E)P(F)

For independent events *E* and *F*,

- P(E|F) = P(E)
- E and F^{C} are independent.

new

Lisa Yan and Jerry Cain, CS109, 2020

Independence of complements

Statement:

If E and F are independent, then E and F^{C} are independent.

Proof:

 $P(EF^{C}) = P(E) - P(EF)$ = P(E) - P(E)P(F)= P(E)[1 - P(F)]= $P(E)P(F^{C})$ E and F^{C} are independent

Intersection

Independence of E and F

Factoring

Complement

Definition of independence

Knowing that *F* did or didn't happen does not change our belief that *E* happened.

Lisa Yan and Jerry Cain, CS109, 2020

Review

Independence

Two events *E* and *F* are defined as <u>independent</u> if:

P(EF) = P(E)P(F)

For independent events *E* and *F*,

- P(E|F) = P(E)
- E and F^{C} are independent

Independent trials are when we observe independent sub-experiments, each of which has the same set of possible outcomes.

Lisa Yan and Jerry Cain, CS109, 2020

Breakout Rooms

Check out the questions on the next slide (Slide 30). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/128396

Breakout rooms: 5 min. Introduce yourself!

29

(biased) Coin Flips

Suppose we flip a coin n times. Each coin flip is an **independent trial** with probability p of coming up heads. Write an expression for the following:

- **1.** P(n heads on n coin flips)
- 2. P(n tails on n coin flips)
- 3. P(first k heads, then n k tails)
- **4.** *P*(exactly *k* heads on *n* coin flips)

Lisa Yan and Jerry Cain, CS109, 2020

(biased) Coin Flips

Suppose we flip a coin n times. Each coin flip is an **independent trial** with probability p of coming up heads. Write an expression for the following:

- **1.** P(n heads on n coin flips)
- 2. P(n tails on n coin flips)
- **3.** P(first k heads, then n k tails)
- **4.** *P*(exactly *k* heads on *n* coin flips)

$$\binom{n}{k} p^k (1-p)^{n-k}$$

of mutually P(a particular outcome's
 exclusive k heads on n coin flips)
 outcomes

Make sure you understand #4! It will come up again.

Lisa Yan and Jerry Cain, CS109, 2020

Interlude for announcements

Announcements

Free Online CTL Tutoring

CTL offers appointment tutoring for CS 109 (and many other courses as well). For more information and/or to schedule an appointment, visit the CTL's <u>tutoring appointments and drop-in</u> <u>schedule page</u>. They also offer a variety of <u>remote learning resources</u> and <u>academic</u> <u>coaching</u> available to assist with all your learning needs!

Sections started yesterday!

Need to join or change sections? Click here.

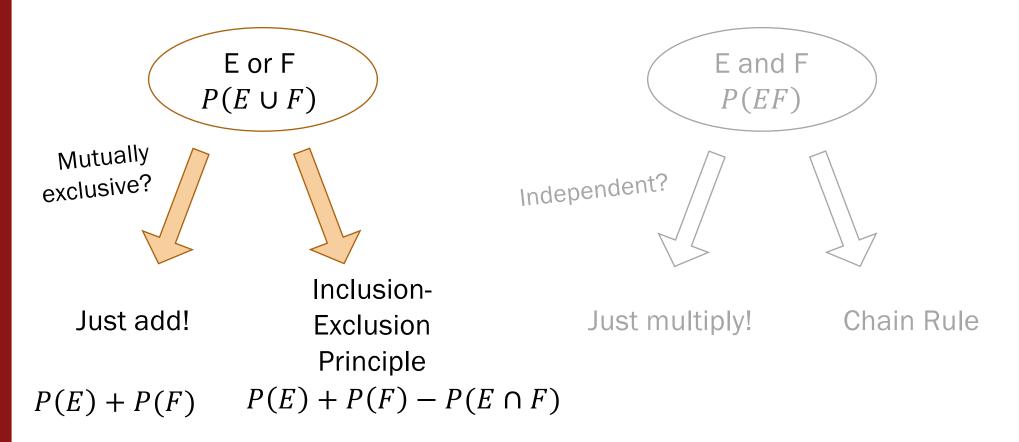
Problem Set 1

Due: 1:00pm Friday

Still confused about Monty Hall? We'll post a simulation today's lecture thread on Ed later this afternoon: <a href="https://www.https://wwww.https://wwww.https://wwwwwww.https://www.https://www.https://www.https://www.https://wwwwwwwwww.https://wwwwwwwwwwwwww.htttps://wwwwwwwwwwwwwwwwwwwwwwww

Lisa Yan and Jerry Cain, CS109, 2020

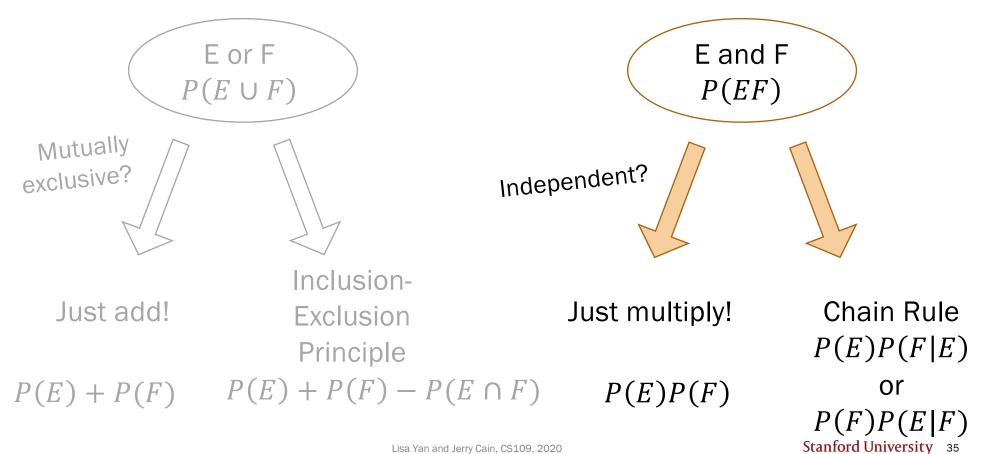
Probability of events



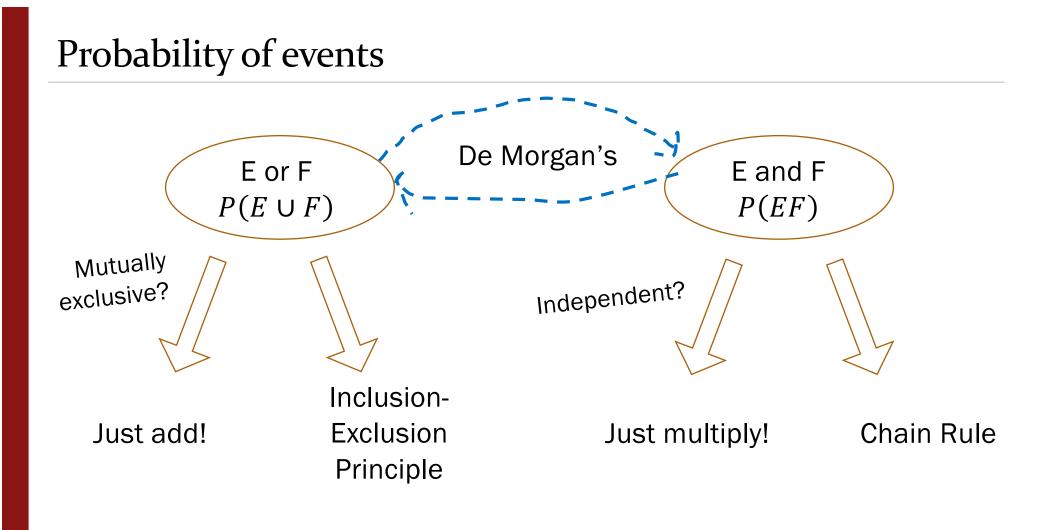
Stanford University 34

Lisa Yan and Jerry Cain, CS109, 2020

Probability of events



Lisa Yan and Jerry Cain, CS109, 2020

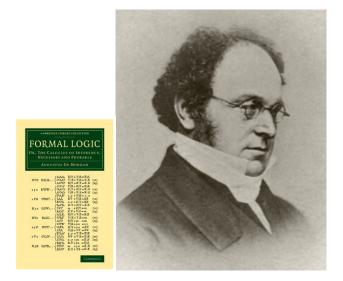


Lisa Yan and Jerry Cain, CS109, 2020

Augustus De Morgan

Augustus De Morgan (1806–1871):

British mathematician who wrote the book Formal Logic (1847).

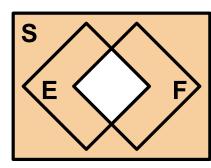


He looked remarkably similar to Jason Alexander (George from Seinfeld) (but that's not important right now)

Lisa Yan and Jerry Cain, CS109, 2020

De Morgan's Laws

DeMorgan's lets you switch between AND and OR.



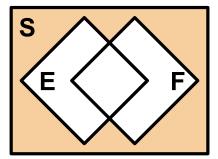
$$(E \cap F)^{C} = E^{C} \cup F^{C}$$
$$\left(\bigcap_{i=1}^{n} E_{i}\right)^{C} = \bigcup_{i=1}^{n} E_{i}^{C}$$

In probability:

$$P(E_1E_2 \cdots E_n)$$

$$= 1 - P((E_1E_2 \cdots E_n)^C)$$

$$= 1 - P(E_1^C \cup E_2^C \cup \cdots \cup E_n^C)$$
Great if E_i^C mutually exclusive!



$$(E \cup F)^{C} = E^{C} \cap F^{C}$$
$$\left(\bigcup_{i=1}^{n} E_{i}\right)^{C} = \bigcap_{i=1}^{n} E_{i}^{C}$$

In probability:

$$P(E_1 \cup E_2 \cup \cdots \cup E_n)$$

$$= 1 - P\left((E_1 \cup E_2 \cup \dots \cup E_n)^C\right)$$
$$= 1 - P\left(E^C E^C - E^C\right)$$

$$= 1 - P(E_1^c E_2^c \cdots E_n^c)$$

Great if E_i independent! Stanford University 38

Lisa Yan and Jerry Cain, CS109, 2020

Think, then Breakout Rooms Check out the questions on the next slide (Slide 40). **These are challenging problems.** Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/128396

Think by yourself: 2 min

Breakout rooms: 5 min

Hash table fun

- *m* strings are hashed (not uniformly) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket *i*.

What is P(E) if

1. E = bucket 1 has \geq 1 string hashed into it?

2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

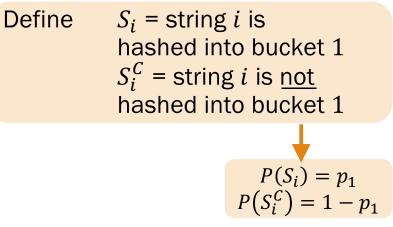
Lisa Yan and Jerry Cain, CS109, 2020

Hash table fun

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket *i*.

What is P(E) if

1. E = bucket 1 has \geq 1 string hashed into it?



Hash table fun

- *m* strings are hashed (not uniformly) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if **1.** E = bucket 1 has ≥ 1 string hashed into it? Define S_i = string *i* is hashed into bucket 1 <u>WTF</u> (not-real acronym for Want To Find): S_i^C = string *i* is <u>not</u> hashed into bucket 1 $P(E) = P(S_1 \cup S_2 \cup \cdots \cup S_m)$ $= 1 - P((S_1 \cup S_2 \cup \dots \cup S_m)^C)$ Complement $P(S_i) = p_1$ $= 1 - P(S_1^C S_2^C \cdots S_m^C)$ De Morgan's Law $P(S_{i}^{C}) = 1 - p_{1}$ $= 1 - P(S_1^{C})P(S_2^{C}) \cdots P(S_m^{C}) = 1 - (P(S_1^{C}))^m$ S_i independent trials $= 1 - (1 - p_1)^m$ Stanford University 42 Lisa Yan and Jerry Cain. CS109, 2020

More hash table **fun**: Possible approach?

- *m* strings are hashed (not uniformly) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket *i*.

What is P(E) if

- 1. E = bucket 1 has \geq 1 string hashed into it?
- 2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$P(E) = P(F_1 \cup F_2 \cup \cdots \cup F_k)$$

= $1 - P((F_1 \cup F_2 \cup \cdots \cup F_k)^C)$
= $1 - P(F_1^C F_2^C \cdots F_k^C)$
? = $1 - P(F_1^C) P(F_2^C) \cdots P(F_k^C)$

Define F_i = bucket *i* has at least one string in it

 $\stackrel{\bullet}{\frown}$ F_i bucket events are dependent!

So we cannot approach with complement.

Lisa Yan and Jerry Cain, CS109, 2020

More hash table fun

- *m* strings are hashed (not uniformly) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is P(E) if

- 1. $E = bucket 1 has \ge 1$ string hashed into it?
- 2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

$$P(E) = P(F_1 \cup F_2 \cup \dots \cup F_k)$$

= $1 - P((F_1 \cup F_2 \cup \dots \cup F_k)^C)$
= $1 - P(F_1^C F_2^C \cdots F_k^C)$
= $(P(each string hashes to k + 1 or higher))^m$
= $(1 - p_1 - p_2 \dots - p_k)^m$

$$= 1 - (1 - p_1 - p_2 \dots - p_k)^m$$

Lisa Yan and Jerry Cain, CS109, 2020

The fun never stops with hash tables

- *m* strings are hashed (not uniformly) into a hash table with *n* buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket *i*.

What is P(E) if

- 1. $E = bucket 1 has \ge 1$ string hashed into it?
- 2. *E* = at least 1 of buckets 1 to *k* has \geq 1 string hashed into it?

Looking for a challenge? \bigcirc

Lisa Yan and Jerry Cain, CS109, 2020

The fun never stops with hash tables

- m strings are hashed (unequally) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket *i*.

What is P(E) if

- 1. E = bucket 1 has \geq 1 string hashed into it?
- 2. E = at least 1 of buckets 1 to k has ≥ 1 string hashed into it?

3. E = each of buckets 1 to k has ≥ 1 string hashed into it?

Hint: Use Part 2's event definition:

Define F_i = bucket *i* has at least one string in it

Check out the Lecture Notes for a solution!

Lisa Yan and Jerry Cain, CS109, 2020