06: Random Variables

Lisa Yan and Jerry Cain
September 25, 2020




Quick slide reference

3 Conditional Independence O6a_cond_indep
15 Random Variables O6b_random_variables
22 PMF/CDF 06¢c_pmf_cdf
30 Expectation 06d_expectation

40 Exercises LIVE

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 2



O6a_cond_inde
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Conditional Paradigm

For any events A, B, and E, you can condition consistently on E,
and all formulas still hold:

Axiom 1 0<P(AlE) <1

Corollary 1 (complement) P(A|E) =1—P(A%|E)
Transitivity P(AB|E) = P(BA|E)

Chain Rule P(AB|E) = P(B|E)P(A|BE)

P(BIAE)P(A|E) ‘=

P(B|E) BHES theorem?
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Bayes’ Theorem P(A|BE) =



Conditional Independence

Conditional Probability Independence
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Independent P(EF) = P(E)P(F)

Conditional Independence events E and F P(EIF) = P(E)

Two events A and B are defined as conditionally independent given E if:
P(AB|E) = P(A|E)P(B|E)

An equivalent definition:

A P(A
5. P(A
C. P(A

B) = P(4)
BE) = P(A)
BE) = P(A|E) P
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. . Independent P(EF) = P(E)P(F)
Conditional Independence events E and F P(EIF) = P(E)

Two events A and B are defined as conditionally independent given E if:
P(AB|E) = P(A|E)P(B|E)

An equivalent definition:

A. P(A|B) = P(A)
5. P(A|BE) = P(A)
C. P(A|BE) = P(A|E)
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Conditional Independence

Independence relations can change with conditioning.
Aand B
| Aand B | does NOT always| independent |
° independent mean given E. °

(additional reading in lecture notes)

Conditional Probability Independence
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Netflix and Condition

Let E = a user watches Life is Beautiful.

Let FF = a user watches Amelie.
What is P(E)?

# people who have watched movie _ 10,234,231 N

P(E) ~ # people on Netflix T 50023123

What is the probability that a user watches
Life is Beautiful, given they watched Amelie?

P(EF) _ # people who have watched both 049
P(F) ~ # people who have watched Amelie

P(E|F) =
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Netflix and Condition Review

Let E be the event that a user watches the given movie.
Let F be the event that the same user watches Amelie.

L
W
2 a RAJKUMAR HRAN in
g 3 & ! pa
a VIDH

P(E) = 0.19 P(E) = 0.32 P(E)=020 | P(E)=0.09 P(E)=0.20

s B

P(E|F)=0.14 P(E|F)=035 | P(E|F)=020) P(E|F)=0.72 P(E|F)=0.42
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Netflix and Condition (on many movies)

What if E;E,E3E, are not independent? (e.g., all international emotional comedies)

P(E\E,E3E,)  # people who have watched all 4
P(E,E,E;)  # people who have watched those 3

P(E4|E1E253) —

We need to keep track of an exponential number of movie-watching statistics
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Netflix and Condition (on many movies)

K: likes international emotional comedies

Assume: E1E,E5E, are conditionally independent given K

P(E4|E1E253K) — P(E4|K)

I
An easier probability to store and compute!
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Conditional independence is a Big Deal

Conditional independence is a practical, real-world way of
decomposing hard probability questions.

“Exploiting conditional independence to generate fast
probabilistic computations is one of the main

contributions CS has made to probability theory.”

—Judea Pearl wins 2011 Turing Award,
“For fundamental contributions to artificial intelligence
through the development of a calculus for probabilistic and causal reasoning”
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Netflix and Condition

K: likes international emotional comedies

A Challenge: How
NAIROBI HALF LIFE do we determine

-y K? Stay tuned in
A 4‘?’ i _)‘l
3"‘!“ a]| O weeks’ time!
E E,E5E, are E, E,E3E, are
dependent conditionally independent
given K

Dependent events can become conditionally independent.
And vice versa: Independent events can become conditionally dependent.
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Random variables are like typed variables

e _ O T

x\)? name ”6/06 A'is the number of Pokemon we @: @,’ @:
int a = 5; bring to our future battle. oy BN el
AE {1, 2, e 6} S AR - A >

B is the amount of money we get
double b = 4.2;  after we win a battle.

B € Rt

hit c = 1° C _is 1 if we success_fully beat the :
) Elite Four. O otherwise. ke

C € {0,1} - =

Random variables are like typed

variables (with uncertainty)
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Random Variable

A random variable is a real-valued function defined on a sample space.

) Outcome > X=k
Example: 1. What is the value of X for the outcomes:
« (T,T,T)?
* (HH,T)?

3 coins are flipped.
Let X = # of heads. 2. What is the event (set of outcomes) where X = 27

X IS a random variable.

-_—

3. Whatis P(X = 2)? (‘j)
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Random Variable

A random variable is a real-valued function defined on a sample space.

) Outcome > X=k
Example: 1. What s the value of X for the outcomes:
- (T,T,T)?
* (HH,T)?

3 coins are flipped.
Let X = # of heads. 2. What is the event (set of outcomes) where X = 27

X IS a random variable.

3. Whatis P(X = 2)?
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Random variables are NOT events!

It is confusing that random variables and events use the same notation.
Random variables # events.

We can define an event to be a particular assignment
of a random variable.

Example:

3 coins are flipped.
Let X = # of heads. X =2 P(X — 2)

X Is a random variable. event probability
(number b/t O and 1)
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Random variables are NOT events!

It is confusing that random variables and events use the same notation.
Random variables # events.

We can define an event to be a particular assignment
of a random variable.

X=x Set of outcomes P(X =k)
Example: X=0 (T, T, T) 1/8
X=1 {HTT),(THT), 3/8
_ _ (T, T, H)}
3 coins are flipped. X=2 (HHT),HTH 3/8
Let X = # of heads. (T, H, H)}
X IS arandom variable. X=3 {(H, H, H)} 1/8

=>4 {} o)
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So far

3 coins are flipped. Let X = # of heads. X is a random variable.

Outcome
_ X = P(X =
(flip __ heads) _ ( —)
l l
|
X=x PX=k) Setofoutcomes “ ”
o U8 1) Can we ggt a “shorthand” for
Yo1 38 (HT.T,THT, this last step?
(T. T, H) Seems like it might be useful!
X=2 3/8 {(H, H, T), (H, T, H),
(T, H, H)}
X=3 1/8 {(H, H, H)}
X=>4 0 {}

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 23



Probability Mass Function

3 coins are flipped. Let X = # of heads. X is a random variable.

parameter/input k

A function on k @ return value/output

with range [0,1] P(X = k) 0 numberbetweer

Oand 1

What would be a useful function to define?
The probability of the event that a random variable X takes on the value k!
For discrete random variables, this is a probability mass function.
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Probability Mass Function

3 coins are flipped. Let X = # of heads. X is a random variable.

parameter/input k:
a value of X

| O
A.functlon on k P(X _ k) E 0.375

with range [0’1] return value/output:

probability of the event
X =k

3

N
P=20.5

def prob_ event _y_ equals(k)

n_ways =
p_way = ,P[Q'?’."i‘bl"ty mass_fyqqt_len\_ - P, N-K)

return n_ways * p_way
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Discrete RVs and Probability Mass Functions

A random variable X is discrete if it can take on countably many values.
X = x, where x € {x{, x5, X3, ... }

The probability mass function (PMF) of a discrete random variable is

P(X =x) =px) = px(x)

shorthand notation

(0]
Probabilities must sum to 1: z p(x;) =1

i=1 This last point is a
good way to verify
any PMF you create.
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PMF for a single 6-sided die

Let X be a random variable that

represents the result of a single 1/6
dice roll.

- Supportof X:{1,2,3,4,5,6}

° Therefore X is a discrete
random variable.

- PMF of X:
p(x) ={

P(X = x)

1/6 x€{1,...,6}
0 otherwise

Stanford University 27



Cumulative Distribution Functions

For a random variable X, the cumulative distribution function (CDF) is
defined as
F(a) =Fy(a) =P(X <a),where —oo<a< o

For a discrete RV X, the CDF is:

F@=PX<a)= ) pk)

all x<a

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 28



CDFs as graphs

CDF (cumulative) Fa) = P(X < a)

distribution function

Let X be a random variable that
represents the result of a single
dice roll.

CDF of X

— ]

— P(X<6)=1

O—

P(X<0)=0

Lisa Yan and Jerry Cain, CS109, 2020
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Discrete random variables

PMF
P(X =x) = p(x)

8

Experiment
outcomes

Discrete
Random
Variable, X

(=) CDF F(x)

Without performing the experiment:

* The support gives us a ballpark of
what values our RV will take on

Support

Next up: How do we report the
“average” value?
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Expectation

The expectation of a discrete random variable X is defined as:
EXl= ) p@)-x
x:p(x)>0
* Note: sum over all values of X = x that have non-zero probability.

* Other names: mean, expected value, weighted average,
center of mass, first moment
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E[X] = Z p(x)-x Expectation

Expectation of a die roll of X

x:p(x)>0

What is the expected value of a 6-sided die roll?

1. Define random X = RV for value of roll
variables
pix=qx)=| 1/6 x€(1,...6
0 otherwise

E[X] =1 (%)”(%)+3(§)+4(2‘)+5<2‘)+6(2‘>=Z‘
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Important properties of expectation

1. Linearity: - Let X = 6-sided dice roll,
_ Y =2X — 1.
ElaX + b] = aE|X]|+ b . EX] =38
- E[Y]=6
2. Expectation of a sum = sum of expectation: Sum of two dice rolls:

EIX+Y]=EX]+ElY] 20000
- E[X4+Y]|=35+4+35=7
3. Unconscious statistician:
E[g (X)] — z g(x)p(x) These properties let you avoid
X

defining difficult PMFs.
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Proofs (OK to
stop here)




Important properties of expectation Review

1. Linearity:
ElaX + b] = aE|X]|+ b

2. Expectation of a sum = sum of expectation:

E[X+Y]|=E|X]+E|Y]

3. Unconscious statistician:

Elg(0l = ) gGp()

Stanford University 3s6



E[X] =

Linearity of Expectation proof PIRCR

ElaX + bl =aE|X]|+ b

Proof:

ElaX + b] Z(ax + b)p(x) = 2 axp(x) + bp(x)

- azxp<x>+b2p<x>

X

=aE[X]+b-1
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Expectation of Sum intuition E[X] =x:,,;>o”(")"‘

E[X +Y] = E[X] + E[Y] [

Intuition b'¢ P
for now: 3 6 9
2 4 6
6 12 18
10 20 30
1 -2
0 0
8 16 24
1w 1 1
Average: ;;xi n E;y" _ g;(xﬁyi)
1 1 1
;(28) + £(56) = (84)
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LOTUS proof

Elg(X)]

_ Zg(x)p( )  Expectation

of g(X)

Let Y = g(X), where g is a real-valued function.

Elg(X)] =

2 yip(¥;)

=Z)’j z p(x;)
J

i:g(x))=y;j

ZSI 7 yjp(xi)

J tgx)=yj

=) Y gl p0)

J igx)=y;

= ) 90 p(xi)

Lisa Yan and Jerry Cain, CS109, 2020
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For you to review
so that you can
sleep at night
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Discrete random variables Review

Experiment
outcomes

Note: Random Variables
also called distributions

Discrete
Random
Variable, X
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A Whole New World with Random Variables

Event-driven probability Random Variables
* Relate only binary events * Link multiple similar events
> Either happens (E) together (X =1, X =2,...,X = 6)

> or doesn’t happen (E£)

* Can only report probability « Can compute statistics: report the
“average” outcome

* Lots of combinatorics * Once we have the PMF (discrete
RVs), we can do regular math
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PMF for the sum of two dice

Let Y be a random variable that represents the sum of

two independent dice rolls.

6/36
Supportof Y:{2,3,...,11,12} 5/36
f = 4/36
y—1

~— YyEZ2<y<6 I 3/36

36 S~
p(y) =+ 1'f;_;yyezjgyslz a, 2/36
\ 0 otherwise 1/36

0

12
Sanity check:
d z p(y) =1

y=2

Lisa Yan and Jerry Cain, CS109, 2020
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Think,
then

Breakout
Rooms

Then check out the question on the next
slide (Slide 4b). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/128397

Think by yourself: 1 min

Breakout rooms: 3 min. Introduce yourself!
(though feel free to leave at any time)

=
o0

pa—

44


https://us.edstem.org/courses/2678/discussion/128397

Example random variable

Consider 5 flips of a coin which comes up heads with probability p.
Each coin flip is an independent trial. Let Y = # of heads on 5 flips.

What is the support of Y? In other words, what are the values that Y can
take on with non-zero probability?

Define the event Y = 2. Whatis P(Y = 2)?

What is the PMF of Y? In other words, what
is P(Y = k), for k in the support of Y?

°)
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Example random variable

Consider 5 flips of a coin which comes up heads with probability p.
Each coin flip is an independent trial. Let Y = # of heads on 5 flips.

What is the support of Y? In other words, what are the values that Y can
take on with non-zero probability? {0,1,2,3,4,5}

Define the event Y = 2. Whatis P(Y = 2)? P(Y =k) = (;) p*(1—p)°

What is the PMF of Y? In other words, what
is P(Y = k), for k in the supportof Y?  p(y — 1) = (5) pk(1 — p)5k
k
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Expectation Review

ElX] = z p(x) - x Expectation: The average value

e 0 of a random variable

Remember that the expectation of a die roll is 3.b.

X = RV for value of roll

s =1 (5) +2(5) +3(5) +4(5) +3(0) + () 2
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Lying with statistics

“There are three kinds of lies:
lies, damned lies, and statistics”

—popularized by Mark Twain, 1906
-generally attributed to Sir

Charles Dilke, 1891
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Lying with statistics

A school has 3 classes with b, 10, and 150 students.
What is the average class size?

Interpretation #1 Interpretation #2
Randomly choose a class Randomly choose a student
with equal probability. with equal probability.
X = size of chosen class Y = size of chosen class
E[X]=5 L 10 L 150 L E[Y]—S(5)+10(10)+150(150)
1x] = (BT) * (§) * (3_) ~ “\165 165 165
165 22635
3 165

Average student perception of class size

What universities usually report
Stanford University 49
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| used to make
omelettes with ...but the FDA said that
four eggs... one in four eggs may
contain salmonella...

...s0 now | make
omelettes with
three eggs!

Interlude for

announcements




Announcements

4 N )

Problem Set #2 Python tutorial #2

Out: today When: Wed 9/30 3:30-4:30pm PT

Due: Monday 10/5, 1:00pm Recorded? Yes

Covers: through today Covers: PS2 content
\ J Notes: to be posted online

N /

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University s1


http://web.stanford.edu/class/cs109/handouts/python.html

Important properties of expectation Review

1. Linearity: Roll a die, outcome is X. You win $2X — 1.

E[aX + b] = aE [X] + b What are your expected winnings?
Let X = 6-sided dice roll.

E[2X—-1]=235)-1=6
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Important properties of expectation Review

2. Expectation of a sum = sum of What is the expectation of the sum of
expectation: two dice rolls?

_ Let X = roll of die 1, Y = roll of die 2.
ElX +Y]=E[X] + E[Y] ) E[;?+OY]§3.5+3TC5) =O7 )
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Important properties of expectation Review

3. Unconscious statistician:

Elg(0] = ) gGp() extup

an and Jerry Cain, C5109, 2020 Stanford University 54



Thlnk’ Then check out the question on the next
then slide (Slide 56). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/128397
Breakout

Rooms

Think by yourself: 2 min

55



https://us.edstem.org/courses/2678/discussion/128397

. « e e . _ Expectation
Being a statistician unconsciously 91 =2,0@r@ CEES

Let X be a discrete random variable.
P(X = x) = %forx € {—1,0,1}

Let Y = |X|. What is E[Y]?

1 1 1
§°1+§°0+§'—1 =0
E|Y] = E|0] =0
l.o+2.1 — 2
3 3
1 1 1 2
il i e el (VI g B B ~
Cand D =)
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. « e e . _ Expectation
Being a statistician unconsciously 91 =2,0@r@ CEES

Let X be a discrete random variable.
P(X = x) = %forx € {—1,0,1}

Let Y = |X|. What is E[Y]?

1 1 1
§°1+§°0+§'—1 =0
E|Y] = E|0] =0
l.o+2.1 — 2

3 3
1 1 1 2
il i e el (VI g B B
CandD

E[X]

E|E[X]]
Find PMF of ¥: py(0) = =, py(1) = =
Compute E[Y]

Use LOTUS by using PMF of X:
P(X =x) - |x|
Sum up
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Then check out the question on the next
slide (Slide 59). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/128397

Think by yourself: 2 min


https://us.edstem.org/courses/2678/discussion/128397

Elg()] = ) gop() E?‘;‘?j}f“‘)”

St. Petersburg Paradox

A fair coin (comes up “heads” with p = 0.5)
Define Y = number of coin flips (“heads”) before first “tails”
Casino pays you $2%

How much would you bet to play? (How much can you expect to win?)

$0.50

$1

$2

$4

$oo -

| wouldn’t play (b§9;—‘5°yélf)
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_ Expectation
St. Petersburg Paradox Elg@] = ), 9w CEES

A fair coin (comes up “heads” with p = 0.5)

Define Y = number of coin flips (“heads”) before first “tails”

Casino pays you $2%

How much would you bet to play? (How much can you expect to win?)

i+1
Define random Fori>0: P(Y =i) = (_>
variables 2

Let W = your winnings,ZZY.
e e () 24 ()7
=;<§> 30 =

Lisa Yan and Jerry Cain, CS109, 2020
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. _ Expectation
St. Petersburg + Reality Aol 29 G ot g0

What if the casino has only $65,5367
« Same game ¢ DefineY = # heads before first tails
* Youwin W = $2Y

* If you win $65,536, the casino stops the game and closes.

i+1
1. Definerandom Fori>0: P(Y =i) = <_>
variables _ 2_
Let W = your winnings, 2¥.
1\' 1\° 1\°
- oo Ewl=(3) 20+ (3) 22+ (3) 22+

k =log,(65,536) i+1

2() o X
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