o7: Variance, Bernoulli, Binomial

Lisa Yan and Jerry Cain September 28, 2020

Quick slide reference

- з Variance
- 10 Properties of variance
- 17 Bernoulli RV
- 22 Binomial RV
- 34 Exercises

07a_variance_i

07b_variance_ii

07c_bernoulli

07d_binomial

LIVE

07a_variance_i

Variance

Average annual weather

Stanford, CA $E[high] = 68^{\circ}F$ $E[low] = 52^{\circ}F$

Washington, DC $E[high] = 67 \,^{\circ}F$ $E[low] = 51 \,^{\circ}F$

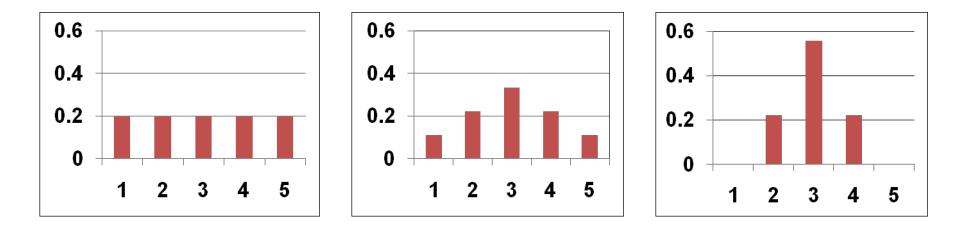
Is *E*[*X*] enough?

Average annual weather

Stanford, CA Washington, DC $E[high] = 67 \,^{\circ}F$ $E[high] = 68^{\circ}F$ $E[\text{low}] = 52^{\circ}\text{F}$ $E[\text{low}] = 51^{\circ}\text{F}$ Stanford high temps Washington high temps 0.4 0.4 68°F 67°F 0.3 0.3 (χ) (χ) Ш 0.2 0.2 P(X)P(X)0.1 0.1 0 \cap 65 75 80 65 70 75 80 35 50 35 90 90 50 Normalized histograms are approximations of PMFs.

Variance = "spread"

Consider the following three distributions (PMFs):



- Expectation: E[X] = 3 for all distributions
- But the "spread" in the distributions is different!
- <u>Variance</u>, Var(X): a formal quantification of "spread"

Variance

def standard deviation

The variance of a random variable X with mean $E[X] = \mu$ is

$$Var(X) = E[(X - \mu)^{2}]$$
Also written as: $E[(X - E[X])^{2}]$
Note: $Var(X) \ge 0$

$$Var(X) = E[X - \mu]$$

$$F[(X - \mu)] = E[X - \mu]$$

$$H[(X - \mu)] = F[X] - E[\mu]$$

• Other names: 2nd central moment, or square of the standard deviation

Var(X)Units of
$$X^2$$
 $SD(X) = \sqrt{Var(X)}$ Units of $X \leq 10^{-10}$

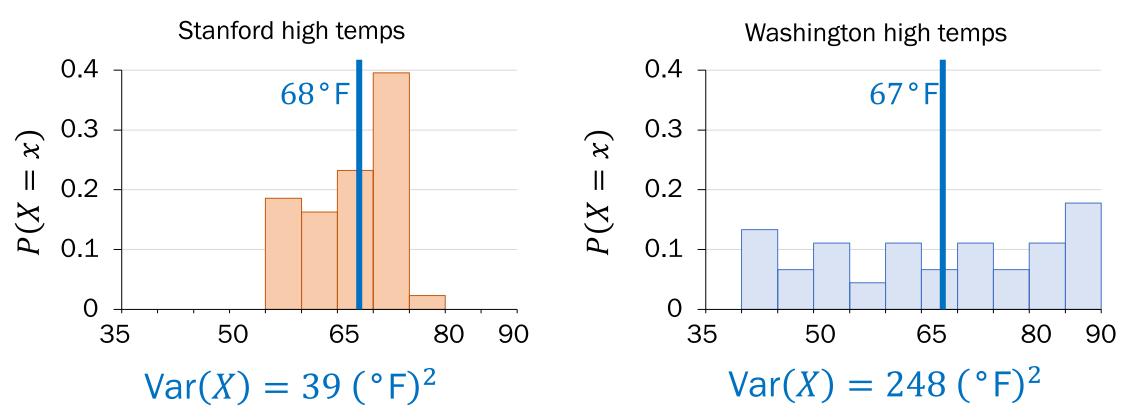
Lisa Yan and Jerry Cain, CS109, 2020

Variance of Stanford weather	Var(X) = E[(X	$(X - E[X])^2$ Variance of X
Stanford, CA		
$E[high] = 68^{\circ}F$ $E[low] = 52^{\circ}F$		$(X - \mu)^2$
Stanford high temps	57°F 71°F	124 (°F) ² 9 (°F) ²
$\widehat{\times}^{0.3} = \mu = 68^{\circ} \mathcal{F}$	75°F 69°F	49 (°F)² 1 (°F)²
□ 0.2		
No.1 Varian	ance $E[(X - \mu)^2] = 39 (°F)^2$	
-	ard deviation	$= 6.2 ^{\circ} F$

Comparing variance

Stanford, CA $E[high] = 68^{\circ}F$ $Var(X) = E[(X - E[X])^2]$ Variance of X

Washington, DC $E[high] = 67^{\circ}F$



07b_variance_ii

Properties of Variance

Properties of variance

Definition
$$Var(X) = E[(X - E[X])^2]$$
Units of X^2 def standard deviation $SD(X) = \sqrt{Var(X)}$ Units of X

Property 1 Property 2 $Var(X) = E[X^{2}] - (E[X])^{2}$ $Var(aX + b) = a^{2}Var(X)$

- Property 1 is often easier to compute than the definition
- Unlike expectation, variance is not linear

Properties of variance

Definition $Var(X) = E[(X - E[X])^2]$ def standard deviation $SD(X) = \sqrt{Var(X)}$

Units of X^2 Units of X

Property 1 Property 2 $Var(X) = E[X^{2}] - (E[X])^{2}$ $Var(aX + b) = a^{2}Var(X)$

Property 1 is often easier to compute than the definition
Unlike expectation, variance is not linear

Computing variance, a proof

Computing variance, a proof

$$= E[X^{2}] - (E[X])^{2} \text{ of } X$$

$$= E[(X - \overline{E[X]})^{2}] = E[(X - \mu)^{2}] \quad \text{Let } E[X] = \mu$$

$$= \sum_{x} (x - \mu)^{2} p(x)$$

$$= \sum_{x} (x^{2} - 2\mu x + \mu^{2}) p(x)$$

$$= \sum_{x} (x^{2} - 2\mu x + \mu^{2}) p(x)$$

$$= \sum_{x} (x^{2} - 2\mu x + \mu^{2}) p(x)$$

$$= \sum_{x} (x^{2} - 2\mu x + \mu^{2}) p(x)$$

$$= \sum_{x} (x^{2} - 2\mu x + \mu^{2}) p(x)$$

$$= \sum_{x} (x^{2} - 2\mu x + \mu^{2}) p(x)$$

$$= E[X^{2}] - 2\mu E[X] + \mu^{2} \cdot 1$$

$$= E[X^{2}] - 2\mu^{2} + \mu^{2}$$

$$= E[X^{2}] - \mu^{2}$$

$$= E[X^{2}] - (E[X])^{2}$$

 $Var(X) = E[(X - E[X])^2]$ Variance

= 35/12

Variance of a 6-sided die

Let Y = outcome of a single die roll. Recall E[Y] = 7/2. Calculate the variance of Y.

1. Approach #1: Definition

$$Var(Y) = \frac{2}{6} \frac{1}{6} \left(1 - \frac{7}{2}\right)^2 + \frac{1}{6} \left(2 - \frac{7}{2}\right)^2 + \frac{1}{6} \left(2 - \frac{7}{2}\right)^2 + \frac{1}{6} \left(3 - \frac{7}{2}\right)^2 + \frac{1}{6} \left(4 - \frac{7}{2}\right)^2 + \frac{1}{6} \left(5 - \frac{7}{2}\right)^2 + \frac{1}{6} \left(6 - \frac{7}{2}\right)^2$$

= 35/12

2. Approach #2: A property

$$2^{nd} \frac{moment}{E[Y^2]} = \frac{1}{6} [1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2]$$
$$= 91/6$$

 $Var(Y) = 91/6 - (7/2)^2$

6

Stanford University 14

 $Var(X) = E[(X - E[X])^2] Variance$ $= E[X^2] - (E[X])^2 of X$

Properties of variance

Definition $Var(X) = E[(X - E[X])^2]$ def standard deviation $SD(X) = \sqrt{Var(X)}$

Units of X^2 Units of X

Property 1 Property 2 $Var(X) = E[X^{2}] - (E[X])^{2}$ $Var(aX + b) = a^{2}Var(X)$

Property 1 is often easier to compute than the definition

• Unlike expectation, variance is not linear

Property 2: A proof

Property 2
$$Var(aX + b) = a^2 Var(X)$$

Proof:
$$\operatorname{Var}(aX + b)$$

$$= E[(aX + b)^{2}] - (E[aX + b])^{2} \qquad \text{Property 1}$$

$$= E[a^{2}X^{2} + 2abX + b^{2}] - (aE[X] + b)^{2}$$

$$= a^{2}E[X^{2}] + 2abE[X] + b^{2} - (a^{2}(E[X])^{2} + 2abE[X] + b^{2}) \qquad \text{Factoring/Linearity of}$$

$$= a^{2}E[X^{2}] - a^{2}(E[X])^{2}$$

$$= a^{2}(E[X^{2}] - (E[X])^{2})$$

$$= a^{2}\operatorname{Var}(X) \qquad \text{Property 1}$$

$$\operatorname{Var}(aX + b) \neq a \operatorname{Var}(X) \neq b$$

07c_bernoulli

Bernoulli RV

f(x) fables

Bernoulli Random Variable

Consider an experiment with two outcomes: "success" and "failure."

<u>def</u> A Bernoulli random variable *X* maps "success" to 1 and "failure" to 0. Other names: indicator random variable, boolean random variable

	$X \sim \operatorname{Ber}(p)$	PMF	-	= 1) = p(1) = p = P(E) = 0) = p(0) = 1 - p = P(E ^c)
	$X \sim \operatorname{Ber}(p)$	Expectation	E[X]	= p
	Support: {0,1}	Variance	Var(X	p(1-p)
Examples: • Coin flip		E[X] = 0.(1-p) $E[X^2] = 0^2.(1-p)$ Var(X) = p - p) = P P = P
• [Random binary digit	$\sum_{i=1}^{n} (i-i)$		Remember this nice property of
•	Whether a disk drive crashe	d		expectation. It will come back!
		Lisa Yan and Jerry Cain, CS109	9, 2020	Stanford University 18

Jacob Bernoulli

Jacob Bernoulli (1654-1705), also known as "James", was a Swiss mathematician

One of many mathematicians in Bernoulli family The Bernoulli Random Variable is named for him My academic great¹⁴ grandfather

Lisa Yan and Jerry Cain, CS109, 2020

Defining Bernoulli RVs

 $X \sim \text{Ber}(p)$ $p_X(1) = p$ $E[X] = p \qquad p_X(0) = 1 - p$



 $X \sim \text{Ber}(p)$ P(X = 1) = pP(X = 0) = 1 - p

Serve an ad.

- User clicks w.p. 0.2
- Ignores otherwise

Let X: 1 if clicked

 $X \sim \text{Ber}(_)$

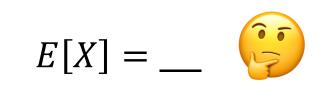
 $P(X = 1) = _$ $P(X = 0) = _$

Roll two dice.

- Success: roll two 6's
- Failure: anything else

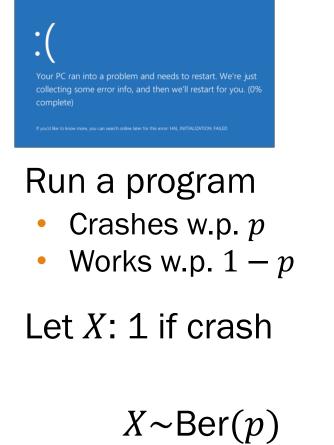
Let *X* : 1 if success

 $X \sim \text{Ber}(_)$



Defining Bernoulli RVs

 $X \sim \text{Ber}(p)$ $p_X(1) = p$ $E[X] = p \qquad p_X(0) = 1 - p$



Serve an ad.

- User clicks w.p. 0.2
- Ignores otherwise

Let X: 1 if clicked

 $X \sim \text{Ber}(p)$ P(X = 1) = pP(X = 0) = 1 - p

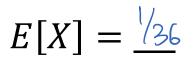
 $X \sim \text{Ber}(\underline{b},\underline{c})$ $P(X = 1) = \underline{o},\underline{c}$ $P(X = 0) = \underline{o},\underline{8}$

Roll two dice.

- Success: roll two 6's ¹/₃₆
- Failure: anything else

Let *X* : 1 if success

```
X \sim \text{Ber}(\underline{\times})
```



07d_binomial

Binomial RV

Binomial Random Variable

Consider an experiment: n independent trials of Ber(p) random variables.

JI

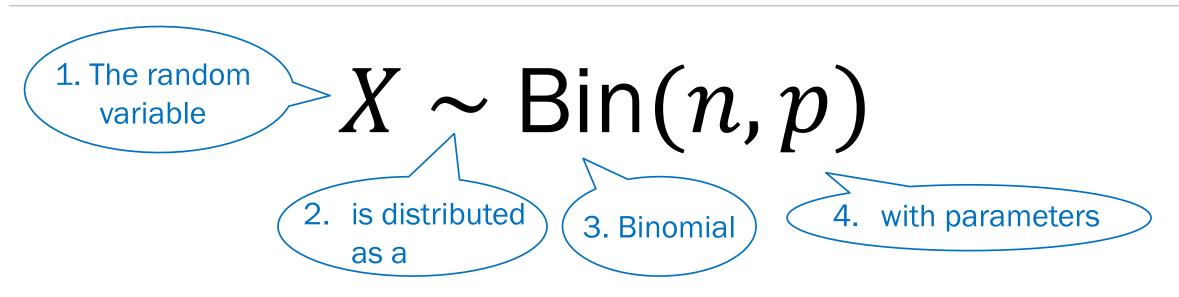
<u>def</u> A Binomial random variable X is the number of successes in n trials.

MF
$$k = 0, 1, \dots, n$$
: $X \sim Bin(n, p)$ PMF $k = 0, 1, \dots, n$: $P(X = k) = p(k) = {n \choose k} p^k (1 - p)^{n-k}$ Expectation $E[X] = np$ Support: $\{0, 1, \dots, n\}$ Variance $Var(X) = np(1 - p)$

Examples:

- # heads in n coin flips
- # of 1's in randomly generated length n bit string
- # of disk drives crashed in 1000 computer cluster (assuming disks crash independently)

Reiterating notation



The parameters of a Binomial random variable:

- *n*: number of independent trials
- *p*: probability of success on each trial

Reiterating notation

 $X \sim \operatorname{Bin}(n,p)$

If X is a binomial with parameters n and p, the PMF of X is

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Probability that *X* takes on the value *k*

Probability Mass Function for a Binomial

Lisa Yan and Jerry Cain, CS109, 2020

Stanford University 26

Three coin flips

$$X \sim \mathsf{Bin}(n, p) \quad p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Three fair ("heads" with p = 0.5) coins are flipped.

- X is number of heads
- $X \sim Bin(3, 0.5)$ N = 3 $P = 0 \leq$

Compute the following event probabilities:

P(X=0)P(X = 1)P(X = 2)P(X = 3)P(X = 7)P(event)

Three coin flips

 $X \sim \mathsf{Bin}(n, p) \quad p(k) = \binom{n}{k} p^k (1-p)^{n-k}$

ham

k= 30, ..., n3

Three fair ("heads" with p = 0.5) coins are flipped.

- X is number of heads
- $X \sim Bin(3, 0.5)$ N = 3, P = 0.5

Compute the following event probabilities:

$$P(X = 0) = p(0) = \binom{3}{0} p^{0} (1 - p)^{3} = \frac{1}{8}$$

$$P(X = 1) = p(1) = \binom{3}{1} p^{1} (1 - p)^{2} = \frac{3}{8}$$

$$P(X = 2) = p(2) = \binom{3}{2} p^{2} (1 - p)^{1} = \frac{3}{8}$$

$$P(X = 3) = p(3) = \binom{3}{3} p^{3} (1 - p)^{0} = \frac{1}{8}$$

$$P(X = 7) = p(7) = 0$$

$$P(X = 1) = \binom{3}{1} p^{3} (1 - p)^{0} = \frac{1}{8}$$

$$P(X = 7) = p(7) = 0$$

$$P(X = 1) = \binom{3}{1} p^{3} (1 - p)^{0} = \frac{1}{8}$$

$$P(X = 7) = p(7) = 0$$

$$P(X = 1) = p(7) = 0$$

Extra math note: By Binomial Theorem, we can prove $\sum_{k=0}^{n} P(X = k) = 1$ $(x_{ty})^{n-1} = \sum_{k=0}^{n} (x_{ty})^{n-1} = \sum_{k=0}$

Binomial Random Variable

Consider an experiment: n independent trials of Ber(p) random variables. <u>def</u> A Binomial random variable X is the number of successes in n trials.

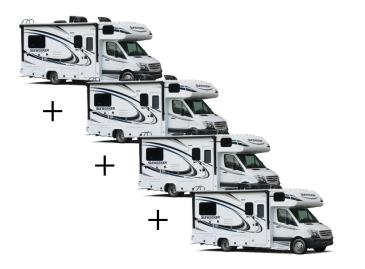
$$X \sim Bin(n,p)$$
PMF $k = 0, 1, ..., n$:
 $P(X = k) = p(k) = {n \choose k} p^k (1-p)^{n-k}$
ExpectationRange: $\{0,1,...,n\}$ Variance $Var(X) = np(1-p)$

Examples:

- # heads in n coin flips
- # of 1's in randomly generated length n bit string
- # of disk drives crashed in 1000 computer cluster (assuming disks crash independently)

Binomial RV is sum of Bernoulli RVs

• *X*~Ber(*p*)



Binomial

- *Y*~Bin(*n*, *p*)
- The sum of *n* independent Bernoulli RVs

 $X_i \sim \text{Ber}(p)$

$$Y = \sum_{i=1}^{n} X_i,$$
Binomial $i=1$

HTTTHHH Ber(p) = Bin(1, p)100011 Stanford University 30

Binomial Random Variable

Consider an experiment: n independent trials of Ber(p) random variables. def A **Binomial** random variable X is the number of successes in n trials.

Normalized bitsPMF
$$k = 0, 1, ..., n$$
:
 $P(X = k) = p(k) = {n \choose k} p^k (1-p)^{n-k}$ Normalized bitsPMF $k = 0, 1, ..., n$:
 $P(X = k) = p(k) = {n \choose k} p^k (1-p)^{n-k}$ Range: {0,1,...,n}Post of L (X) = npNormalized bitsVarianceVar(X) = np(1-p)Normalized bitsProof: $X = \sum_{i=1}^{n} X_i$, $X_i \sim Ber(p)$ # heads in n coin flips $H = 1000$ computer cluster# of 1's in randomly generated length n bit string $H = 1000$ computer cluster

Examples:

- # heads in n coin flips
- # of 1's in randomly generated length n bit string
- # of disk drives crashed in 1000 computer cluster (assuming disks crash independently)

 $= \sum_{i=1}^{n} P_{i}$

=NP

Binomial Random Variable

Consider an experiment: n independent trials of Ber(p) random variables. <u>def</u> A Binomial random variable X is the number of successes in n trials.

$$X \sim Bin(n,p)$$
PMF $k = 0, 1, ..., n$:
 $P(X = k) = p(k) = {n \choose k} p^k (1-p)^{n-k}$ Range: $\{0,1,...,n\}$ Expectation $E[X] = np$ Variance $Var(X) = np(1-p)$ Mail prove

Examples:

- # heads in n coin flips
- # of 1's in randomly generated length n bit string
- # of disk drives crashed in 1000 computer cluster (assuming disks crash independently)

We'll prove this later in the course

No, give me the variance proof right now

To simplify the algebra a bit, let q = 1 - p, so p + q = 1.

So:

$$\begin{split} \mathsf{E}\left(X^{2}\right) &= \sum_{k\geq 0}^{n} k^{2} \binom{n}{k} p^{k} q^{n-k} \\ &= \sum_{k=0}^{n} kn \binom{n-1}{k-1} p^{k} q^{n-k} \\ &= np \sum_{k=1}^{n} k \binom{n-1}{k-1} p^{k-1} q^{(n-1)-(k-1)} \\ &= np \sum_{j=0}^{m} (j+1) \binom{m}{j} p^{j} q^{m-j} \\ &= np \left(\sum_{j=0}^{m} j\binom{m}{j} p^{j} q^{m-j} + \sum_{j=0}^{m} \binom{m}{j} p^{j} q^{m-j}\right) \\ &= np \left(\sum_{j=0}^{m} m\binom{m-1}{j-1} p^{j} q^{m-j} + \sum_{j=0}^{m} \binom{m}{j} p^{j} q^{m-j}\right) \\ &= np \left((n-1)p \sum_{j=1}^{m} \binom{m-1}{j-1} p^{j-1} q^{(m-1)-(j-1)} + \sum_{j=0}^{m} \binom{m}{j} p^{j} q^{m-j}\right) \\ &= np ((n-1)p(p+q)^{m-1} + (p+q)^{m}) \\ &= np((n-1)p+1) \\ &= n^{2}p^{2} + np(1-p) \end{split}$$

Definition of Binomial Distribution:
$$p + q = 1$$

Factors of Binomial Coefficient:
$$\binom{n}{k} = \binom{n-1}{k-1}$$

Change of limit: term is zero when k - 1 = 0

putting j = k - 1, m = n - 1

splitting sum up into two

Factors of Binomial Coefficient:
$$j\binom{m}{j} = m\binom{m-1}{j-1}$$

Change of limit: term is zero when j - 1 = 0

Binomial Theorem

as p + q = 1

by algebra

Then:

$$\operatorname{var}(X) = \operatorname{E}(X^{2}) - (\operatorname{E}(X))^{2}$$
$$= np(1-p) + n^{2}p^{2} - (np)^{2}$$
Expectation of Binomial Distribution: $\operatorname{E}(X) = np$
$$= np(1-p)$$

as required.

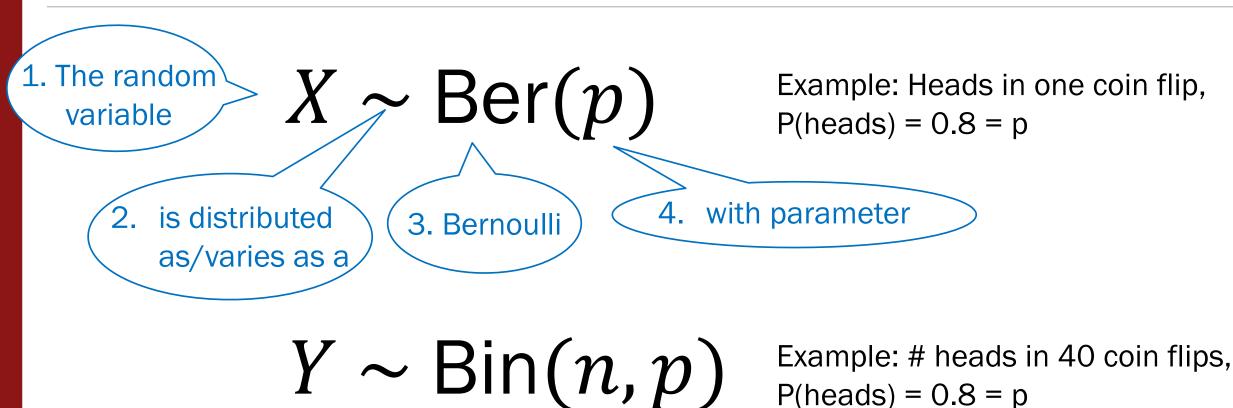
proofwiki.org Stanford University 33

(live) 07: Variance, Bernoulli, and Binomial

Lisa Yan and Jerry Cain September 28, 2020

Our first common RVs

Review



otherwise

Identify PMF, or identify as a function of an existing random variable

Lisa Yan and Jerry Cain, CS109, 2020

Breakout Rooms

Check out the questions on the next slide (Slide 37). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/134630

Breakout rooms: 5 min. Introduce yourself!

Statistics: Expectation and variance

- **1.** a. Let X = the outcome of a fair 4-sided die roll. What is E[X]?
 - b. Let Y = the sum of three rolls of a fair 4-sided die. What is E[Y]?
- 2. Let Z = # of *tails* on 10 flips of a biased coin (w.p. 0.4 of heads). What is E[Z]?
- 3. Compare the variances of $B_1 \sim \text{Ber}(0.1)$ and $B_2 \sim \text{Ber}(0.5)$.

Statistics: Expectation and variance

1. a. Let
$$X =$$
 the outcome of a fair 4-sided
die roll. What is $E[X]$?
b. Let $Y =$ the sum of three rolls of a fair
 4 -sided die. What is $E[Y]$?
2. Let $Z =$ # of *tails* on 10 flips of a
biased coin (w.p. 0.4 of heads). What is $E[Z]$?
3. Compare the variances of
 $B_1 \sim \text{Ber}(0.1)$ and $B_2 \sim \text{Ber}(0.5)$.
 $Y_{\text{br}}(B_2) = \{0.5\}^2 - 0.25$
 $E[X_1 + X_2 + X_3]$
 $= E[X_1 + K_2 + K_3]$
 $= E[X_1 + K_2 + K_3]$
 $= F[X_1 + K_3 + K_3$

If you can identify common RVs, just look up statistics instead of re-deriving from definitions.

Think

Slide 40 has a matching question to go over by yourself. We'll go over it together afterwards.

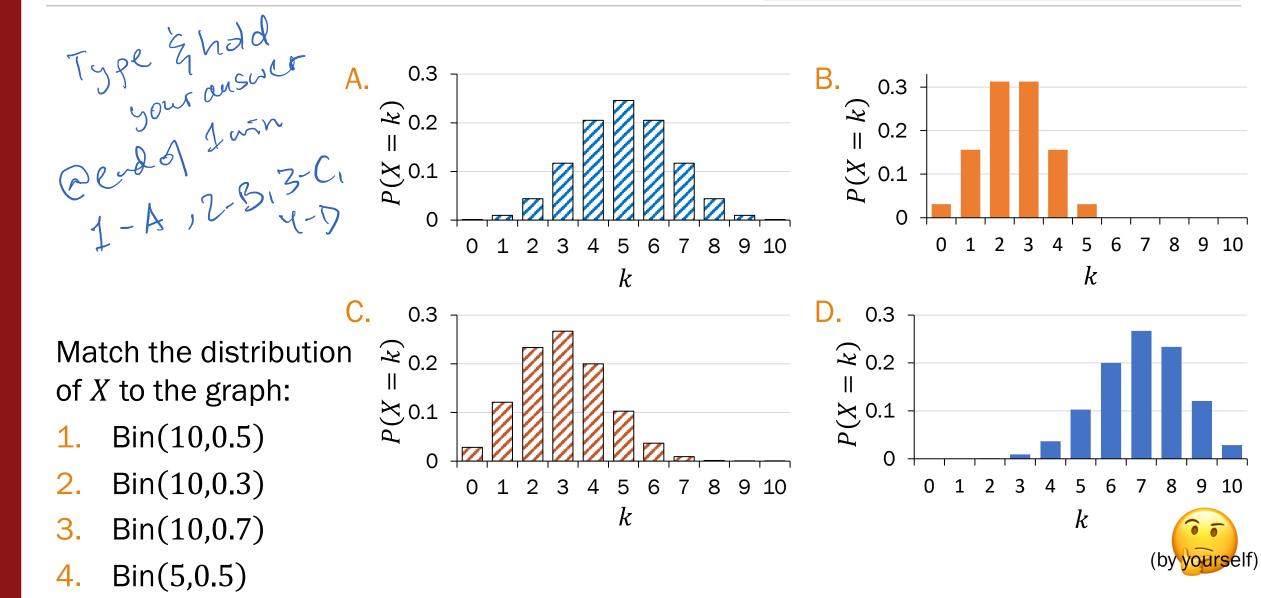
Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/134630

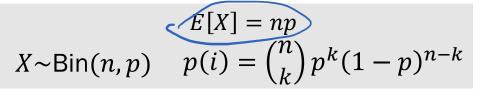
Think by yourself: 1 min

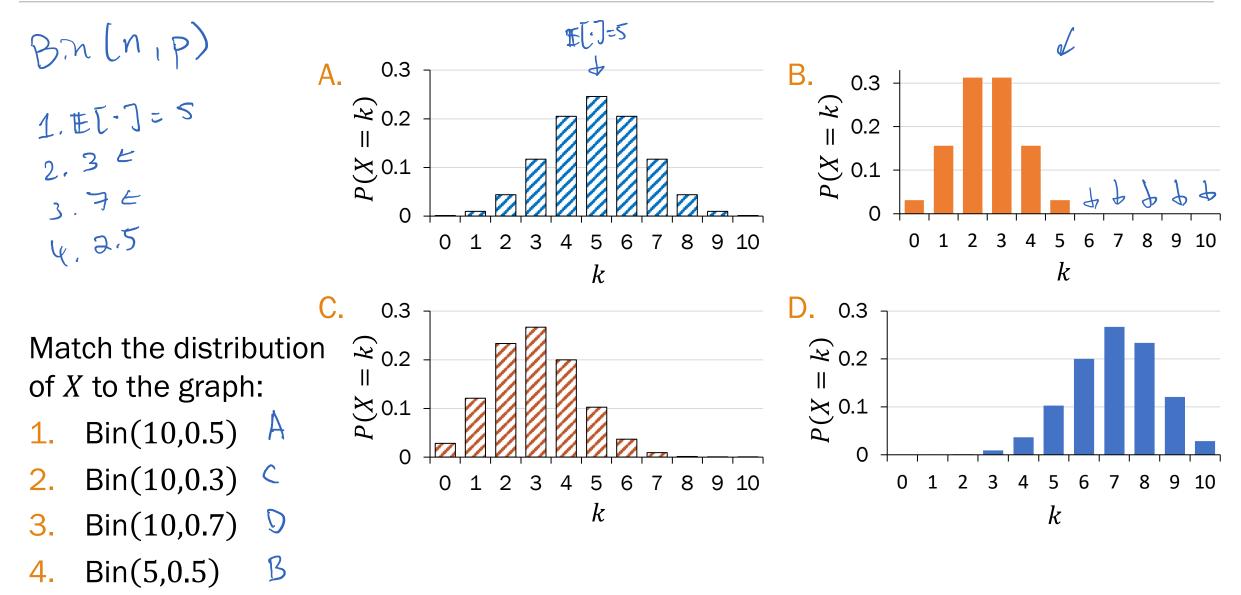
Visualizing Binomial PMFs

E[X] = np $p(i) = \binom{n}{k} p^k (1-p)^{n-k}$ $X \sim Bin(n, p)$



Visualizing Binomial PMFs





Binomial RV is sum of Bernoulli RVs

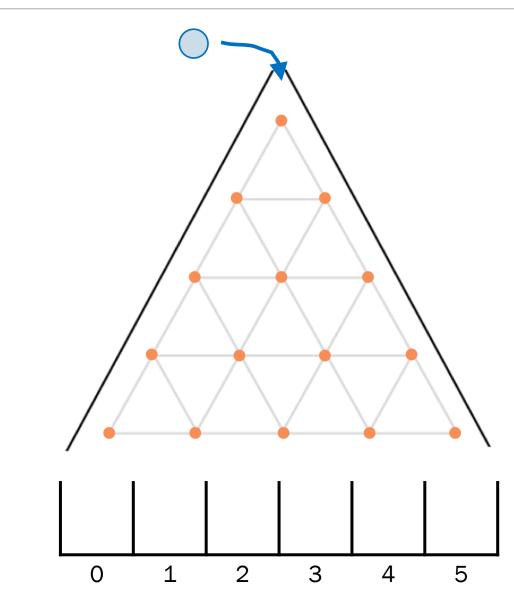
• *X*~Ber(*p*)

Binomial

- *Y*~Bin(*n*, *p*)
- The sum of *n* independent Bernoulli RVs

$$Y = \sum_{i=1}^{n} X_i, \qquad X_i \sim \text{Ber}(p)$$

Review



http://web.stanford.edu/class/cs109/ demos/galton.html

Think

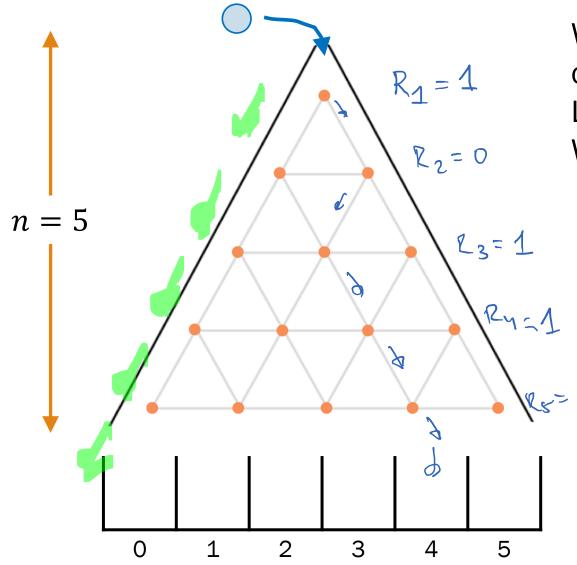
Slide 45 has a question to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/134630

Think by yourself: 1 min





When a marble hits a pin, it has an equal chance of going left or right. Let B = the bucket index a ball drops into. What is the **distribution** of B?

decision of left or right

- Each pin is an independent trial
- One decision made for level i = 1, 2, ..., 5
- Consider a Bernoulli RV with success R_i if ball went right on level i

Bucket index B = # times ball went right $B = \sum_{i=1}^{n} \mathbb{R}; \quad \mathbb{R}; \sim Ber(oS)$ $B \sim Bin(n = 5, p = 0.5)$

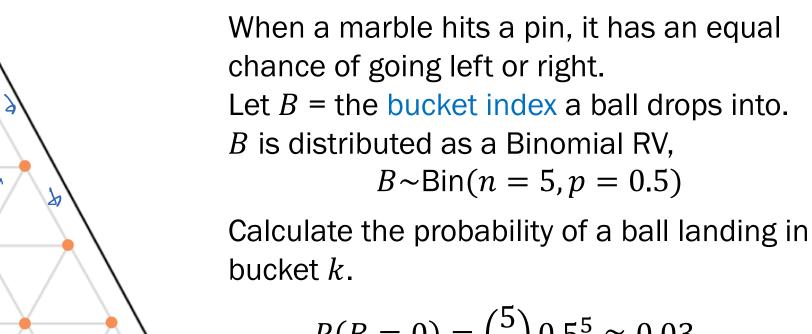
0

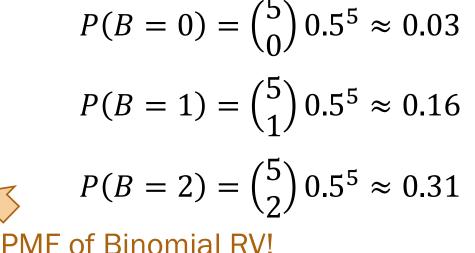
1

2

3

n = 5





Lisa Yan and Jerry Cain, CS109, 2020

5

4

Stanford University 47

Interlude for Covers: Covers: Notes: to be posted

idea

Python tutorial #2

When: Wed 9/30 3:30-4:30pm PTRecorded?YesCovers:C

Think, then Breakout Rooms

Check out the questions on the next slide (Slide 50). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/134630

By yourself: 2 min

Breakout rooms: 5 min.

Genetics and NBA Finals

- 1. Each person has 2 genes per trait (e.g., eye color).
- Child receives 1 gene (equally likely) from each parent
- Brown is "dominant", blue is "recessive":
 - Child has brown eyes if either (or both) genes are brown
 - Blue eyes only if both genes are blue.
- Parents each have 1 brown and 1 blue gene.
- A family has 4 children. What is P(exactly 3 children with brown eyes)?
- The LA Lakers are going to play the Miami Heat in a 7-game series during the 20 NBA finals.
 - The Lakers have a probability of 58% of winning each game, independently.
 - A team wins the series if they win at least 4 games (we play all 7 games).

What is P(Lakers winning)?

Genetic inheritance

Each person has 2 genes per trait (e.g., eye color).

- Child receives 1 gene (equally likely) from each parent
- Brown is "dominant", blue is "recessive":
 - Child has brown eyes if either (or both) genes are brown
 - Blue eyes only if both genes are blue.
- Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(exactly 3 children with brown eyes)?

<u>Big Q</u>: Fixed parameter or random variable?

Parameters What is common among all outcomes of our experiment?

Random variable What differentiates our event from the rest of the sample space?

n=4 P(brown)=P

Brown is "dominant", blue is "recessive":

• Child has brown eyes if either (or both) genes are brown

Each person has 2 genes per trait (e.g., eye color).

Child receives 1 gene (equally likely) from each parent

- Blue eyes only if both genes are blue.
- Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(exactly 3 children with brown eyes)?

1. Define events/
RVs & state goal2. Identify known
probabilities

X: # brown-eyed children, $X \sim Bin(4, p)$ p: P(brown-eyed child) = 1 - P(blue) $= 1 - \frac{1}{4} = \frac{3}{4} - p$ Want: P(X = 3)

Genetic inheritance

 $P(X=3) = \begin{pmatrix} 4 \\ 3 \end{pmatrix} 0.75^3 (0.25)'$

3. Solve

 $\chi \sim Bin(n, p)(k) = \binom{n}{k}p^{k}(1-p)^{n-k}$

NBA Finals

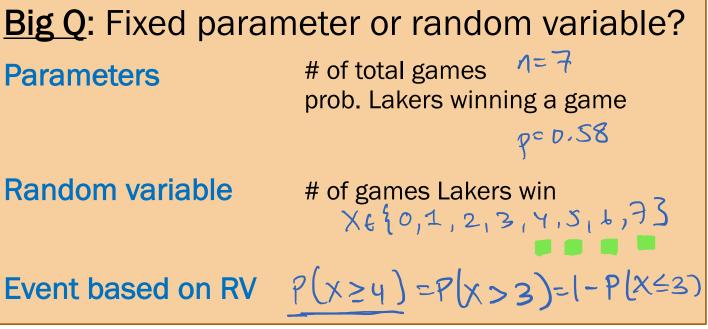
The LA Lakers are going to play the Miami Heat in a 7-game series during the 2020 NBA finals.

- The Lakers have a probability of 58% of winning each game, independently.
- A team wins the series if they win at least 4 games (we play all 7 games).

What is P(Lakers winning)?

- 1. Define events/ RVs & state goal
- X: # games Lakers win $X \sim Bin(7, 0.58)$

Want:



NBA Finals

The LA Lakers are going to play the Miami Heat in a 7-game series during the 2020 NBA finals.

- The Lakers have a probability of 58% of winning each game, independently.
- A team wins the series if they win at least 4 games (we play all 7 games).

What is P(Lakers winning)?

1. Define events/
RVs & state goal2. Solv

X: # games Lakers winX~Bin(7, 0.58)

Want: $P(X \ge 4)$

Ve =
$$P(X=4) + P(X=3) + P(\lambda=6) + P(X=7)$$

$$P(X \ge 4) = \sum_{k=4}^{\prime} P(X = k) = \sum_{k=4}^{\prime} {\binom{7}{k}} 0.58^k (0.42)^{7-k}$$

Cool Algebra/Probability Fact: this is identical to the probability of winning if we define winning = first to win 4 games

Lisa Yan and Jerry Cain, CS109, 2020

Stanford University 54

See you next time

Lisa Yan and Jerry Cain, CS109, 2020