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Variance




Average annual weather

Stanford, CA Washington, DC
E[high] = 68°F Elhigh] = 67°F
Ellow] = 52°F Ellow] = 51°F

-
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[s E|X] enough?
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Average annual weather

Stanford, CA Washington, DC
E[high] = 68°F E[high] = 67°F
Stanford high temps Washington high temps
0.4 - 0.4 -
68°F 67°F
~ 0.3 - ~ 0.3 -
= =
0.2 1 0.2 1
= =
AL 0.1 A AL 0.1 1
0] ——— — 0]
35 50 65 3580 90 35 50 65 7.9 80 90

Normalized histograms are approximations of PMFs.
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Variance = “spread”

Consider the following three distributions (PMFs):

0.6 0.6 0.6

04 04 04

0.2 ] 0.2 I I I 0.2

0 - [ 0 - 0 .
5 3

1 1 2 3 4 5 1

N
&

- Expectation:  E[X] = 3 for all distributions
* But the “spread” in the distributions is different!
 Variance, Var(X@) a formal quantification of “spread

”

ot hsr (2 R\)
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Variance

~
o

The variance of a random variable X with mean E|X] = u IS
Var(X) = E[(X — u)?]
\,olvt QNUTAL S%ML L”/& (Y:ZCF;”WUZ
b M
* Also written as: E[(X — E[X -
- Note: Var(X) = 0 7 gl = m -

/./1
* Other names: 2" central moment, or square of the standard deviation

Var(X) Units of X?
def standard deviation ~ SD(X) = /Var(X) Units of X &
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. _ _ 27 Variance
Variance of Stanford weather Var(X) = El(x = EIXDT] - oy

Stanford, CA
Elhigh] = 68°F

X X — w)?
57°F 124 (°F)?
Stanford high temps 71°F 9 (°F)2
04 m o o 2
e 75°F 49 (°F)
= 0.3 - 69°F 1(°F)?
Il 02
=
AL 0.1 -
Variance E[(X — p)?] = 39 (°F)?
0 - —

35 50 65 éo | 96 Standard deviation = 0.2°F
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Var(X) = E[(X — E[X])?] Variance

Comparing variance of X
Stanford, CA Washington, DC
Elhigh] = 68°F Elhigh] = 67°F
Stanford high temps Washington high temps
0.4 - 0.4 -
68°F 67°F
—~ 0.3 - —~ 0.3 -
= =
I 0.2 - I 0.2 -
= =
A, 0.1 - A, 0.1 A
0 - S 0
35 50 65 80 90 35 50 65 80 90
Var(X) = 39 (°F)? Var(X) = 248 (°F)?
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Properties of variance

Definition Var(X) = E[(X — E[X])?] Units of X2
def standard deviation SD(X) = /Var(X) Units of X
Property 1 Var(X) = E[X?] —(E[X])?

Property 2 Var(aX + b) = a*Var(X)

* Property 1 is often easier to compute than the definition
* Unlike expectation, variance is not linear
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Properties of variance

Property 1 Var(X) = E[X?] —(E[X])?

* Property 1 is often easier to compute than the definition
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Var(X) = E[(X — E[X])?] Variance

Computing variance, a proof — E[X2] —(E[X])? Of X
\J oV
Var(X) = E[(X — E[XD?] = E[(X —w?] Let E[X] =
2<x - 2p()
Px= x)

- zu — 2ux + p2)p(x)

Everyone, {2 ¥ p(x)} Z“Z xp(x) +u z p(x)

please 2 .
welcome the S ZME[X] + /1 -1

second — E'XZ: _ 2/1 -I-,Ll

moment! ] ]
— EXZ _ ,le

= E[X?] — (E[X])?
— E -X - E X Lisa Yan and Jerry Cain, C$109, 2020 Stanford University 13




. . . Var(X) = E[(X — E[X])?] Variance
Variance of a 6-sided die — E[X2] —(E[X])? Of X

Let Y = outcome of a single die roll. Recall E[Y] =7/2.
Calculate the variance of Y.

&
1. Approach #1: Def!}n;’luon 2. Approach #2: A property
=9[>
& VD f ome(\‘
vl 7V o1 722“62\212222522
Var(Y) = g(l‘i) +€(2_E) [Y2] = 2117 + 2%+ 37 + 4% + 57 + 67]
1 7\ 1 7\* =91/6
+a(3‘§)2+5(4‘z)2
tal53) 53
6 2 6 2 Var(Y) =91/6 — (7/2)?

=35/12 = 35/12
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Properties of variance

Property 2 Var(aX + b) = a*Var(X)

* Unlike expectation, variance is not linear
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Property 2: A proof

Property 2 Var(aX + b) = a*Var(X)

Proof: Var(aX + b)

= E[(aX + b)?] — (E[aX + b])? Property 1

= E[a’X? + 2abX + b?] — (aE[X] + b)? Factoring/
Li ity of

= a®E[X?] + 2abE{X] + b*— (a*(E[X])* + 2abE{X] + b?) E;npeeacrtlaiign

— E[X?] - 2 (B[X])?
= a*(E[X*] — (E[XD?)
= a*Var(X) Property 1

\IW(@W@ < o N PO ED
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Bernoulli RV
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Bernoulli Random Variable

=3 7
Consider an experiment with two outcomes: “success” and “failure.”

def A Bernoulli random variable X maps “success” to 1 and “failure” to O.
Other names: indicator random variable, boolean random variable

PMF PX=1)=p(1) =p-=7©
X~Ber(p) P(X =0)=p(0) =1—p=rl&)
Wﬁgg Expectation E|X] = p
Support: {0,1} Variance Var(X) = p(1 — p)

EDXC)=z Ol + L-p=?

Bxamples: E001= §-09 2 9=
Coin flip \I"‘((,ZQB': > — ?0, —
Random binary digit =7 (17 Remember this nice property of
Whether a disk drive crashed expectation. It will come back!
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Jacob Bernoulli

Jacob Bernoulli (1654-1705), also known as “James”, was a Swiss
mathematician

One of many mathematicians in Bernoulli family
The Bernoulli Random Variable is named for him
My academic greatl4 grandfather
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Defining Bernoulli RVs

X~Ber(p) px(1)=p
E[X]=p px(0)=1-p

Run a program

¢ Crashes w.p.p
* Worksw.p.1—p

Let X: 1 if crash

X~Ber(p)
PX=1)=p
PX=0)=1-p

Serve an ad.

* User clicks w.p. 0.2
* Ignores otherwise

Let X: 1 if clicked

X~Ber(_)
PX=1)= __
PX=0)= __

Lisa Yan and Jerry Cain, CS109, 2020

Roll two dice.

* Success: roll two 6’s
* Failure: anything else

t'l

Let X : 1 if success

X~Ber(_)

Exl=_ (&)

Stanford University 20



Defining Bernoulli RVs

X~Ber(p) px(1)=p
E[X]=p px(0)=1-p

Run a program

¢ Crashes w.p. p
* Worksw.p.1—p

Let X: 1 if crash

X~Ber(p)
PX=1)=p
PX=0)=1-p

Serve an ad.

* User clicks w.p. 0.2
* Ignores otherwise

Let X: 1 if clicked

X~Ber(0.0)
PX=1)= 92
P(X=0)= 0%

Lisa Yan and Jerry Cain, CS109, 2020

Roll two dice.

- Success: roll two 6's 'z,
* Failure: anything else

t'l

Let X : 1 if success
X~Ber(/2:)

E[X] = [

Stanford University 21
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Binomial RV




Binomial Random Variable

/‘l
7170

Consider an experiment: n independent trials of Ber(p) random variables.

def A Binomial random variab{e X is the number of successes in n trials.

.y ?QQ\LLCL%
{tﬂ J  PMF k=0,1,..,n

: - )

X~Bin(n,p) P(X = k) =p(k) = () p*(1 — p)"*
Expectation E[X] = np
Support: {0,1,...,n}  Variance Var(X) = np(1 — p)

Examples:
# heads in n coin flips
# of 1's in randomly generated length n bit string

# of disk drives crashed in 1000 computer cluster
(assuming disks crash independently)
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Reiterating notation

1. The random
variable

X ~ Bin(n, p)
3. Binomial @h param@

2. is distributed

dasS da

The parameters of a Binomial random variable:
* n: number of independent trials

* p: probability of success on each trial

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVeI‘Sity 25




Reiterating notation

X ~Bin(n,p)

If X is a binomial with parameters n and p, the PMF of X is

n
PX=k)=(,)p“(Q—-p)""~
k
\ } \ }
\ |
Probability that X Probability Mass Function for a Binomial

takes on the value k

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 26




Three coin flips X~Bin(n,p) p(k) = () p*(1 — p)"*

Three fair (“heads” with p = 0.5) coins are flipped.

X is number of heads
- X~Bin(3,0.5) nNn=3% /Q:D,&’

Compute the following event probabilities:

P(X = 0)
P(X = 1)
P(X = 2)
P(X = 3)
P(X =7) Kﬁ;—j

P(eve nt) Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 27




Three coin flips X~Bin(n,p) p(k) —( )pk(1 - p)n

Three fair (“heads” with p = 0.5) coins are flipped. L:- 50, MY
X is number of heads P
X~Bin(3,0.5) N=2,p=0U->
Compute the following event probabilgities: | x=o
P(x=0) =p(0) = (0) p°’(1-p)° =3 TTT
_ L
_ _ (3 23 %—i( [ ¢
PX=1) =p1) —(1)10 A=p)=35 Tl
PX=2) =p(2) 3) p?(1—p)t = g Extrg mat.h note:
By Binomial Theorem,
3
P(X=3) =p(3) — (3) p3(1 — p)° = % we can prove
_° . YR oPX = A:\) 1\_{1
P(X=7) =p(7) =0 i é&*a) =2 By

()P (+7)
P(eve nt) PMF Lisa Yan and Jerry Cain, C$109, 2020 - (’?‘\"?33 %Tor}lfnwefﬂty 28




Binomial Random Variable

n independent trials of Ber(p) random variables
X is the number of successes in n trials

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 29




Binomial RV is sum of Bernoulli RVs

Bernoulli
X~Ber(p)

Binomial
Y~Bin(n,p)

The sum of n independent
Bernoulli RVs

n
Y =2Xi, Xi ~Ber(p)

A )= e
BM&‘» HTTT B P Ber(p) = Bin(1, p)
12000411
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Binomial Random Variable

n independent trials of Ber(p) random variables
X is the number of successes in n trials.

Expectation E[X] = np

Proof: X = ?—X\ ) FNBUCPJ
APNE Hfﬂ SR

1=t

:i? ) E,b(ﬂv?

1=

:\/\5‘3
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Binomial Random Variable

n independent trials of Ber(p) random variables
X is the number of successes in n trials

Variance Var(X) = np(1 —p) %
We'll prove

this later in
the course

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 32




No, give me the variance proof right now

To simplify the algebra a bit,letg =1—p,sop+g= 1.

So:
u n\ & ok
E(X?) = Z 'S (k>Pl‘ q"* Definition of Binomial Distribution: p + g = 1
k>0
g n—=1\ ¢ . ] ) - n n—1
= 2 kn pq Factors of Binomial Coefficient: k =n
k=0 k-1 k k-1
a n—1
= np Z k(k l)pk'lq("_”—[k_“ Change of limit: term is zero when k — 1 = 0
k=1
=”PZ(J+1)< )P’qm’ putingj =k —1,m=n—1
j=0
m
= (Z J( )p’q”’"’ + Z ( ) ) splitting sum up into two
Jj=0 Jj=0
u m— m m-—1
= np Z m( . )p’q’" I+ Z ( )p’q’" J Factors of Binomial Coefficienl:j( ) = m( ) )
j=o N7 j=0 J Jj-1
= np((n - Dp Z < )P’ tgimhmUmh 4 2 (j) "'”) Change of limit: term is zero when j — 1 = 0
j=1 j=0
=np((n—Dpp+ ™" +(p+9") Binomial Theorem
=np((n—1p+1) asp+qg=1
= n’p* +np(1 - p) by algebra
Then:

var (X) = E (X?) = (E(X))?
= np(l —p)+ nzp2 - (np)2 Expectation of Binomial Distribution: E (X) = np

= np(1 —p)

proofwiki.org
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Our first common RVs Review

1. The random
variable X

2.

A~ Be r( ) Example: Heads in one coin flip,
p P(heads) =0.8=p
Is distributed 3. Bernoulli Eh param@

as/varies as a

E le: # head 40 fli
Y Bln(n p) xample: O.e8a spln coin flips,

P(heads) =

otherwise |dentify PMF, or
identify as a function of an
existing random variable

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 35



Check out the questions on the next slide
(Slide 37). Post any clarifications here!

B I'ea1<0 ut https://us.edstem.org/courses/2678/discussion/134630

Rooms

Breakout rooms: 5 min. Introduce yourself!

36



https://us.edstem.org/courses/2678/discussion/134630

Statistics: Expectation and variance

Let X = the outcome of a fair 4-sided
die roll. What is E[X]?

Let Y = the sum of three rolls of a fair
4-sided die. What is E[Y]?

Let Z = # of tails on 10 flips of a
biased coin (w.p. 0.4 of heads). What is E|[Z]?

Compare the variances of
B,~Ber(0.1) and B,~Ber(0.5).

&)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 37




Statistics: Expectation and variance 2%

. _ 4 Ly
1. a. Let X = the outcome of a fair 4-sided £ |x )~ 2—%? [7) /Q(Zj RS
die roll. What is E[X]? % \
h. Let Y = the sum of three rolls of a fair FL(1 == Z‘af 3 0f.

4-sided die. What is E[Y]? yasty. D ELX Yyt Xa )
- Euﬂf B4 EIK )
2. Let Z = # of tails on 10 flips of a =1.C

biased coin (w.p. 0.4 of heads). What is E[Z]? & ¥ <"l
(W.p ) 1Z] N%Wwb) Fl2en

1>
3. Compare the variances of o (‘51\ =Y (1- ~P)=0.) (Ml 0. 09 |ower vir
B;~Ber(0.1) and B,~Ber(0.5). N (g23:\0.3;2 £0.1% Lo v

v

If you can identify common RVSs, just look up statistics instead of re-deriving from definitions.
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Slide 40 has a matching question to go over

. by yourself. We’ll go over it together
Thlnk afterwards.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/134630

Think by yourself: 1 min

(b @- If)

A

39
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E[X] =np

Visualizing Binomial PMFs X~Bin(n,p)  p() = () k(1 - p)
- o 5wad
\3%& %l M%’)u A

N\
=
P(X=k)

012 3 456 7 8 910

k
C.
Match the distribution =
of X to the graph: :L
1. Bin(10,0.5) &

01 2 3 456 7 8 910
k ';3-\

—

(b If)

2. Bin(10,0.3)
3. Bin(10,0.7)
4. Bin(5,0.5)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 40



[X] = np

Visualizing Binomial PMFs X~Bin(n,p) P = (1) Pk - p)n*
N [, F> A 4
AR =
0.3 5 =
3.3 % = Ly bbb
25 012345678 910
© k
C.
Match the distribution =
of X to the graph: :L
1. Bin(10,05) A X

0123456 7 8 910
k

2. Bin(10,0.3) ¢
3. Bin(10,0.7) Y
4. Bin(5,05) B

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 41




Binomial RV is sum of Bernoulli RVs

Bernoulli
X~Ber(p)

Binomial
Y~Bin(n,p)

The sum of n independent
Bernoulli RVs

n
Y =2Xi, Xi ~Ber(p)
=1

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 42




Galton Board

O

http://web.stanford.edu/class/cs109/
demos/galton.html

0] 1 2 3 4 5
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http://web.stanford.edu/class/cs109/demos/galton.html

Slide 45 has a question to go over by

Think yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/134630

Think by yourself: 1 min

(b @ I

A

44
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Galton Board X~Bin(n,p) p(k) = (7)p*Q —p)n*

A O When a marble hits a pin, it has an equal
chance of going left or right.
Let B = the bucket index a ball drops into.
What is the-distribution of B?
n=>5 (Interpret: If B is a common
random variable, report it,
otherwise report PMF)
\ 4

(D)
o 1 =2 3 4 5 (byyogrsetf)

Lisa Yan and Jerry Cain, CS109, 2020
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Galton Board

X~Bin(n,p) pk) = () p* —p)"*

When a marble hits a pin, it has an equal
chance of going left or right.

Let B = the bucket index a ball drops into.
What is the distribution of B?

\ i B J\\LW/O\r nywt

t,=41 ° Eachpiisanindependent trial

* One decision made for leveli = 1,2,..,5
- A < Consider a Bernoulli RV with success R; if
ball went right on level i

= b Bucket index B_= # times ball went right
B=) . @~Ber(oS)

1T

B~Bin(n = 5,p = 0.5)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 46



Galton Board X~Bin(n,p) p(k) = (7)p*Q —p)n*

When a marble hits a pin, it has an equal

chance of going left or right.

Let B = the bucket index a ball drops into.

B is distributed as a Binomial RV,
B~Bin(n = 5,p = 0.5)

Calculate the probability of a ball landing in
bucket k.

P(B = 0) = (g) 0.55 ~ 0.03

P(B=1) = (i) 0.55 ~ 0.16

- | PB=2)= (g) 0.55 ~ 0.31
|

PMF of Binomial RV!

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 47




Python tutorial #2
When: Wed 9/30 3:30-4:30pm PT

Recorded? Yes
Covers: (s PS2 coding

Interlude for Gl
jokes/announcements



http://web.stanford.edu/class/cs109/handouts/python.html

Think,
then
Breakout

Rooms

Check out the questions on the next slide
(Slide 50). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/134630

By yourself: 2 min

Breakout rooms: 5 min.



https://us.edstem.org/courses/2678/discussion/134630

. . 5 _(n e
Genetics and NBA Finals X~Bin(n,p) p(o) = () p*(1 —p)"*

Each person has 2 genes per trait (e.g., eye color).
Child receives 1 gene (equally likely) from each parent
Brown is “dominant”, blue is "recessive”:

Child has brown eyes if either (or both) genes are brown

Blue eyes only if both genes are blue.
Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(exactly 3 children with brown eyes)?

The LA Lakers are going to play the Miami Heat in a
7-game series during the 20%NBA finals.
The Lakers have a probability of 58% of winning each game, independently.

A team wins the series if they win at least 4 games (we play all 7 games).

. L o -
What is P(Lakers winning) W)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 50



Genetic inheritance

Each person has 2 genes per trait (e.g., eye color).
*  Child receives 1 gene (equally likely) from each parent

*  Brown is “dominant”, blue is "recessive”:
* Child has brown eyes if either (or both) genes are brown

* Blue eyes only if both genes are blue.
* Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(exactly 3 children with brown eyes)?

Big Q: Fixed parameter or random variable?

Parameters What is common among all outcomes
of our experiment?

n=4
?Uorv\ﬂv‘\:P

Random variable What differentiates our event from | 3 8 baow» %LA Orgen
the rest of the sample space? 7&65\ 0,4, 2,2 \43

Stanford University 51




. . . %~ Bl FX [N\ k n-lc
Genetic inheritance Bl = ) (-0

Each person has 2 genes per trait (e.g., eye color).
*  Child receives 1 gene (equally likely) from each parent

*  Brown is “dominant”, blue is "recessive”:
* Child has brown eyes if either (or both) genes are brown

* Blue eyes only if both genes are blue.
* Parents each have 1 brown and 1 blue gene.

A family has 4 children. What is P(exactly 3 children with brown eyes)?

1. Define events/ 2. ldentify known 3. Solve
RVs & state goal probabilities .
\
X: # brown-eyed children, Y ()L{: 2) = [ 3 ] 0.3 Sg (0'23/3

X~Bin(4,p)
p: P(brown—-eyed child) = |- (Bwe)

Want: P(X = 3) =\ =2y=p

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul’liVeI‘Sity 52




NBA Finals

The LA Lakers are going to play the Miami Heat
in a 7-game series during the 2020 NBA finals.

The Lakers have a probability of 58% of
winning each game, independently.

A team wins the series if they win at least 4 games

(we play all 7 games).
What is P(Lakers winning)?

Define events/
RVs & state goal

X: # games Lakers win
X~Bin(7,0.58)

Want:

Big Q: Fixed parameter or random variable?
Parameters # of total games /1= 7
prob. Lakers winning a game
?c D,Sg
Random variable # of games Lakers win

Xe§0,4,2,2,4,5, 4,73

Eventbasedon RV 7(x>y)=P(x> 2)=(-P(X£2)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 53



NBA Finals

The LA Lakers are going to play the Miami Heat
in a 7-game series during the 2020 NBA finals.

The Lakers have a probability of 58% of
winning each game, independently.

A team wins the series if they win at least 4 games
(we play all 7 games).
What is P(Lakers winning)?
Solve = ¢ (X=4¥)~ T [r=s) PRz ) TP

7

7
] PX=4)= ) Px=k) =y (/)058%(0.42)7*
[ 1 rezo-yra-n=y ()

k=4

Want: P(X = 4) Cool Algebra,/Probability Fact: this is identical to the probability

of winning if we define winning = first to win 4 games
Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 54




See you next time

Freedom
NEXT EXIT
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