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Before we start

The natural exponent 𝑒:

https://en.wikipedia.org/wiki/E_(mathematical_constant)

4

lim
𝑛→∞

1 −
𝜆

𝑛

𝑛

= 𝑒−𝜆

Jacob Bernoulli

while studying 

compound interest 

in 1683

https://en.wikipedia.org/wiki/E_(mathematical_constant)
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Algorithmic ride sharing

5

🙋♀️

🙋♀️

🙋♂️

🙋♂️
🙋♂️

Probability of 𝑘 requests from this area in the next 1 minute?

On average, 𝜆 = 5 requests per minuteSuppose we know:



Lisa Yan and Jerry Cain, CS109, 2020

Algorithmic ride sharing, approximately

At each second:
• Independent trial

• You get a request (1) or you don’t (0).

Let 𝑋 = # of requests in minute.

𝐸 𝑋 = 𝜆 = 5

6

Probability of 𝑘 requests from this area in the next 1 minute?

On average, 𝜆 = 5 requests per minute

0 0 1 0 1 … 0 0 0 0 1

1 2 3 4 5 60

𝑋 ~ Bin 𝑛 = 60, 𝑝 = 5/60

Break a minute down into 60 seconds:

𝑃 𝑋 = 𝑘 =
60
𝑘

5

60

𝑘

1 −
5

60

𝑛−𝑘

But what if there are two requests 
in the same second?🤔
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Algorithmic ride sharing, approximately

At each millisecond:
• Independent trial

• You get a request (1) or you don’t (0).

Let 𝑋 = # of requests in minute.

𝐸 𝑋 = 𝜆 = 5

7

Probability of 𝑘 requests from this area in the next 1 minute?

On average, 𝜆 = 5 requests per minute

Break a minute down into 60,000 milliseconds:

𝑃 𝑋 = 𝑘 =
𝑛
𝑘

𝜆

𝑛

𝑘

1 −
𝜆

𝑛

𝑛−𝑘

…

1 60,000

𝑋 ~ Bin 𝑛 = 60000, 𝑝 = 𝜆/𝑛

But what if there are two
requests in the same 
millisecond?

🤔
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Algorithmic ride sharing, approximately

For each time bucket:
• Independent trial

• You get a request (1) or you don’t (0).

Let 𝑋 = # of requests in minute.

𝐸 𝑋 = 𝜆 = 5

8

Probability of 𝑘 requests from this area in the next 1 minute?

On average, 𝜆 = 5 requests per minute

Break a minute down into infinitely small buckets:

𝑃 𝑋 = 𝑘

= lim
𝑛→∞

𝑛
𝑘

𝜆

𝑛

𝑘

1 −
𝜆

𝑛

𝑛−𝑘

Who wants to see some cool math?

OMG so small

1 ∞

𝑋 ~ Bin 𝑛, 𝑝 = 𝜆/𝑛
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Binomial in the limit

9

𝑃 𝑋 = 𝑘

= lim
𝑛→∞

𝑛
𝑘

𝜆

𝑛

𝑘

1 −
𝜆

𝑛

𝑛−𝑘 = lim
𝑛→∞

𝑛!

𝑘!(𝑛 − 𝑘)!

𝜆𝑘

𝑛𝑘

1 −
l
𝑛

𝑛

1 −
l
𝑛

𝑘

lim
𝑛→∞

1 −
𝜆

𝑛

𝑛

= 𝑒−𝜆

= lim
𝑛→∞

𝑛!

𝑛𝑘(𝑛 − 𝑘)!

𝜆𝑘

𝑘!

1 −
l
𝑛

𝑛

1 −
l
𝑛

𝑘

= lim
𝑛→∞

𝑛!

𝑛𝑘(𝑛 − 𝑘)!

𝜆𝑘

𝑘!

𝑒−𝜆

1 −
l
𝑛

𝑘

= lim
𝑛→∞

𝑛 𝑛 − 1 ⋯ 𝑛 − 𝑘 + 1

𝑛𝑘
𝑛 − 𝑘 !

𝑛 − 𝑘 !

𝜆𝑘

𝑘!

𝑒−𝜆

1 −
l
𝑛

𝑘

= lim
𝑛→∞

𝑛𝑘

𝑛𝑘
𝜆𝑘

𝑘!

𝑒−𝜆

1
=
𝜆𝑘

𝑘!
𝑒−𝜆
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Algorithmic ride sharing

10

🙋♀️

🙋♀️

🙋♂️

🙋♂️
🙋♂️

Probability of 𝑘 requests from this area in the next 1 minute?

On average, 𝜆 = 5 requests per minute

𝑃 𝑋 = 𝑘 =
𝜆𝑘

𝑘!
𝑒−𝜆

Poisson 
distribution



Poisson, 
continued

11

08b_poisson_ii
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Consider an experiment that lasts a fixed interval of time.

def A Poisson random variable 𝑋 is the number of successes over the 
experiment duration, assuming the time that each success occurs is
independent and the average # of requests over time is constant.

Examples:
• # earthquakes per year

• # server hits per second

• # of emails per day

Poisson Random Variable

12

…

1 End of interval

the time that each success occurs is
independent
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Consider an experiment that lasts a fixed interval of time.

def A Poisson random variable 𝑋 is the number of successes over the 
experiment duration, assuming the time that each success occurs is
independent and the average # of requests over time is constant.

Examples:
• # earthquakes per year

• # server hits per second

• # of emails per day

Yes, expectation == variance 

for Poisson RV! More later.

Poisson Random Variable

13

𝑃 𝑋 = 𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!𝑋~Poi(𝜆)

Support: {0,1, 2, … }

PMF

𝐸 𝑋 = 𝜆
Var 𝑋 = 𝜆Variance

Expectation
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Simeon-Denis Poisson

French mathematician (1781 – 1840)

• Published his first paper at age 18

• Professor at age 21

• Published over 300 papers

“Life is only good for two things: doing mathematics and teaching it.”

14

http://upload.wikimedia.org/wikipedia/commons/b/b7/Simeon_Poisson.jpg
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Earthquakes

There are an average of 2.79 major earthquakes in the world each year, 
and major earthquakes occur independently.

What is the probability of 3 major earthquakes happening next year?

15

𝑝 𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!

1. Define RVs

2. Solve

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10

𝑃
(𝑋

=
 𝑘

)

Number of earthquakes, 𝑘

𝑋~Poi(𝜆)

𝐸 𝑋 = 𝜆
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Are earthquakes really Poissonian?

16



Other Discrete 
RVs

17

08c_other_discrete



Lisa Yan and Jerry Cain, CS109, 2020

Grid of random variables

18

Number of 

successes

Ber(𝑝)One trial

Several

trials

Interval

of time

Bin(𝑛, 𝑝)

Poi(𝜆) (tomorrow)

One success

Several

successes

Interval of time to

first success

Time until 

success

𝑛 = 1

Focus on understanding how and when to use RVs, not on memorizing PMFs.
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Consider an experiment: independent trials of Ber(𝑝) random variables.

def A Geometric random variable 𝑋 is the # of trials until the first success.

Examples:
• Flipping a coin (𝑃 heads = 𝑝) until first heads appears

• Generate bits with 𝑃 bit = 1 = 𝑝 until first 1 generated

Geometric RV

19

𝑃 𝑋 = 𝑘 = 1 − 𝑝 𝑘−1𝑝
𝑋~Geo(𝑝)

Support: {1, 2, … }

PMF

𝐸 𝑋 =
1

𝑝

Var 𝑋 =
1−𝑝

𝑝2
Variance

Expectation
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Consider an experiment: independent trials of Ber(𝑝) random variables.

def A Negative Binomial random variable 𝑋 is the # of trials until 
𝑟 successes.

Examples:
• Flipping a coin until 𝑟𝑡ℎ heads appears

• # of strings to hash into table until bucket 1 has 𝑟 entries

Negative Binomial RV

20

𝑃 𝑋 = 𝑘 =
𝑘 − 1
𝑟 − 1

1 − 𝑝 𝑘−𝑟𝑝𝑟𝑋~NegBin(𝑟, 𝑝)

Support: {𝑟, 𝑟 + 1,… }

PMF

𝐸 𝑋 =
𝑟

𝑝

Var 𝑋 =
𝑟 1−𝑝

𝑝2
Variance

Expectation

(fixed lecture error)

Geo 𝑝 = NegBin(1, 𝑝)



Lisa Yan and Jerry Cain, CS109, 2020

Grid of random variables

21

Number of 

successes

Ber(𝑝)One trial

Several

trials

Interval

of time

Bin(𝑛, 𝑝)

Poi(𝜆)

Geo(𝑝)

NegBin(𝑟, 𝑝)

(tomorrow)

One success

Several

successes

Interval of time to

first success

Time until 

success

𝑛 = 1 𝑟 = 1
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Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

• Each ball has probability p = 0.1 of capturing the Pokemon.

• Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

22

1. Define events/ 
RVs & state goal

A. 𝑋~Bin 5, 0.1
B. 𝑋~Poi 0.5
C. 𝑋~NegBin 5, 0.1
D. 𝑋~NegBin 1, 0.1
E. 𝑋~Geo 0.1
F. None/other

2. Solve

𝑋~some distribution

Want: 𝑃 𝑋 = 5

🤔
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Wild Pokemon are captured by throwing Pokeballs at them.

• Each ball has probability p = 0.1 of capturing the Pokemon.

• Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

A. 𝑋~Bin 5, 0.1
B. 𝑋~Poi 0.5
C. 𝑋~NegBin 5, 0.1
D. 𝑋~NegBin 1, 0.1
E. 𝑋~Geo 0.1
F. None/other

Catching Pokemon

23

1. Define events/ 
RVs & state goal

2. Solve

𝑋~some distribution

Want: 𝑃 𝑋 = 5
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2. Solve

Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

• Each ball has probability p = 0.1 of capturing the Pokemon.

• Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

24

1. Define events/ 
RVs & state goal

2. Solve

𝑋~Geo 0.1

Want: 𝑃 𝑋 = 5

𝑋~Geo(𝑝) 𝑝 𝑘 = 1 − 𝑝 𝑘−1𝑝



(live)
08: Poisson and More
Lisa Yan and Jerry Cain
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Discrete RVs

26

LIVE

The hardest part of problem-solving is 

determining what is a random variable .
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CS109 Learning Goal: Use new RVs

Let’s say you are learning about 
servers/networks.

You read about the M/D/1 queue:

“The service time busy period is 
distributed as a Borel with parameter
𝜇 = 0.2.”

Goal: You can recognize terminology 
and understand experiment setup.

27
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Big Q: Fixed parameter or random variable?

28

Parameter What is common among all outcomes 
of our experiment?

Examples so far:

• # of successes

• Time until success 

(for some definition 

of time)

Random variable What differentiates our event from 
the rest of the sample space?

Examples so far:

• Prob. success

• # total trials

• # target successes

• Average rate of 

success

Review
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Grid of random variables

29

Number of 

successes

Ber(𝑝)…in one trial

..in several

trials

…in a fixed

interval of time

Bin(𝑛, 𝑝)

Poi(𝜆)

Geo(𝑝)

NegBin(𝑟, 𝑝)

(next time!)

…until one

success

…until several

successes

Interval of time until

first success

Time until 

success

𝑛 = 1 𝑟 = 1

Review
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Grid of random variables

30

Number of 

successes

Ber(𝑝)…in one trial

…in several

trials

…in a fixed

interval of time

Bin(𝑛, 𝑝)

Poi(𝜆)

Geo(𝑝)

NegBin(𝑟, 𝑝)

(next time!)

…until one

success

…until several

successes

Interval of time until

first success

Time until 

success

𝑛 = 1 𝑟 = 1

Review



Breakout 
Rooms

Check out the question on the next slide 
(Slide 32). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/134631

Breakout rooms: 5 min. Introduce yourself!

31

https://us.edstem.org/courses/2678/discussion/134631
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Kickboxing with RVs

How would you model the following?

1. # of snapchats you receive in a day

2. # of children until the first one with
brown eyes (same parents)

3. If stock went up (1) or down (0) in a day

4. # of probability problems you try until you 
get 5 correct (if you are randomly correct)

5. # of years in some decade with more 
than 6 Atlantic hurricanes

32

Choose from:

A. Ber 𝑝
B. Bin 𝑛, 𝑝

C. Poi 𝜆
D. Geo 𝑝
E. NegBin 𝑟, 𝑝
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Kickboxing with RVs

How would you model the following?

1. # of snapchats you receive in a day

2. # of children until the first one with
brown eyes (same parents)

3. If stock went up (1) or down (0) in a day

4. # of probability problems you try until you 
get 5 correct (if you are randomly correct)

5. # of years in some decade with more 
than 6 Atlantic hurricanes

33

E. NegBin 𝑟 = 5, 𝑝

Choose from:

A. Ber 𝑝
B. Bin 𝑛, 𝑝

A. Ber 𝑝 or B. Bin 1, 𝑝

D. Geo 𝑝 or E. NegBin 1, 𝑝

C. Poi 𝜆

B. Bin 𝑛 = 10, 𝑝 , where 

𝑝 = 𝑃 ≥ 6 hurricanes in a year

calculated from C. Poi 𝜆

C. Poi 𝜆
D. Geo 𝑝
E. NegBin 𝑟, 𝑝

Note: These exercises are designed to build intuition; in a 

problem statement, you will generally have more clues.



Poisson 
Approximation

34

08b_poisson_approximation
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Poisson Random Variable

In CS109, a Poisson RV 𝑋~Poi(𝜆) most often models

1. # of successes in a fixed interval of time, where successes are independent

𝜆 = 𝐸[𝑋], average success/interval

35

𝑃 𝑋 = 𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!𝑋~Poi(𝜆)

Support: {0,1, 2, … }

PMF

𝐸 𝑋 = 𝜆
Var 𝑋 = 𝜆Variance

Expectation

Review
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1. Web server load

Consider requests to a web server in 1 second.
• In the past, server load averages 2 hits/second, where hits arrive independently.

• Let 𝑋 = # hits the server receives in a second.

What is 𝑃 𝑋 < 5 ?

36

𝑋~Poi(𝜆)
𝑝 𝑘 = 𝑒−𝜆

𝜆𝑘

𝑘!

Define RVs Solve

𝐸 𝑋 = 𝜆
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Poisson Random Variable

In CS109, a Poisson RV 𝑋~Poi(𝜆) most often models

1. # of successes in a fixed interval of time, where successes are independent

𝜆 = 𝐸[𝑋], average success/interval

2. Approximation of 𝑌~Bin(𝑛, 𝑝) where 𝑛 is large and 𝑝 is small.
𝜆 = 𝐸 𝑌 = 𝑛𝑝

Approximation works even when trials not entirely independent. 

37

𝑃 𝑋 = 𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!𝑋~Poi(𝜆)

Support: {0,1, 2, … }

PMF

𝐸 𝑋 = 𝜆
Var 𝑋 = 𝜆Variance

Expectation
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2. DNA

38

All the movies, images, 

emails and other digital 

data from more than 

600 smartphones 

(10,000 GB) can be 

stored in the faint pink 

smear of DNA at the end 

of this test tube.

What is the probability 

that DNA storage stays 

uncorrupted? 
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2. DNA

What is the probability that DNA storage stays uncorrupted?
• In DNA (and real networks), we store large strings.
• Let string length be long, e.g., 𝑛 ≈ 104

• Probability of corruption of each base pair is very small, e.g., 𝑝 = 10−6

• Let 𝑋 = # of corruptions.

What is P(DNA storage is uncorrupted) = 𝑃 𝑋 = 0 ?

39

1. Approach 1:

𝑋~Bin 𝑛 = 104, 𝑝 = 10−6

𝑃 𝑋 = 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

= 104

0
10−6⋅0 1 − 10−6 104−0

≈ 0.99049829

2. Approach 2:

𝑋~Poi 𝜆 = 104 ⋅ 10−6 = 0.01

𝑃 𝑋 = 𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!
= 𝑒−0.01

0.010

0!

= 𝑒−0.01

≈ 0.99049834

unwieldy!
a good 

approximation!



Think
Slide 41 has a question to go over by 
yourself.

Post any clarifications here or in chat!

https://us.edstem.org/courses/2678/discussion/134631

Think by yourself: 1 min

40

(by yourself)

https://us.edstem.org/courses/2678/discussion/134631
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When is a Poisson approximation appropriate?

41

𝑃 𝑋 = 𝑘 = lim
𝑛→∞

𝑛
𝑘

𝜆

𝑛

𝑘

1 −
𝜆

𝑛

𝑛−𝑘

= lim
𝑛→∞

𝑛!

𝑛𝑘(𝑛 − 𝑘)!

𝜆𝑘

𝑘!

𝑒−𝜆

1 −
l
𝑛

𝑘

= lim
𝑛→∞

𝑛 𝑛 − 1 ⋯ 𝑛 − 𝑘 + 1

𝑛𝑘
𝑛 − 𝑘 !

𝑛 − 𝑘 !

𝜆𝑘

𝑘!

𝑒−𝜆

1 −
l
𝑛

𝑘

= lim
𝑛→∞

𝑛𝑘

𝑛𝑘
𝜆𝑘

𝑘!

𝑒−𝜆

1

=
𝜆𝑘

𝑘!
𝑒−𝜆

= ⋯
Under which conditions will 

𝑋~Bin(𝑛, 𝑝) behave like 

Poi(𝜆), where 𝜆 = 𝑛𝑝?

A. Large 𝑛, large 𝑝
B. Small 𝑛, small 𝑝
C. Large 𝑛, small 𝑝
D. Small 𝑛, large 𝑝
E. Other

(by yourself)
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Poisson approximation

Poisson approximates Binomial 
when 𝑛 is large, 𝑝 is small, and 
𝜆 = 𝑛𝑝 is “moderate.”

Different interpretations of 
“moderate”:

• 𝑛 > 20 and 𝑝 < 0.05

• 𝑛 > 100 and 𝑝 < 0.1

Poisson is Binomial in the limit:

• 𝜆 = 𝑛𝑝, where 𝑛 → ∞, 𝑝 → 0

42

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10

𝑃
(𝑋

=
 𝑘

)

𝑋 = 𝑘

Bin(10,0.3)

Bin(100,0.03)

Bin(1000,0.003)

Poi(3)

𝑋~Poi(𝜆)

𝐸 𝑋 = 𝜆

𝑌~Bin(𝑛, 𝑝)

𝐸 𝑌 = 𝑛𝑝
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Consider an experiment that lasts a fixed interval of time.

def A Poisson random variable 𝑋 is the number of occurrences over the 
experiment duration.

Examples:
• # earthquakes per year

• # server hits per second

• # of emails per day

Time to show intuition for why 

expectation == variance!

Poisson Random Variable

43

𝑃 𝑋 = 𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!𝑋~Poi(𝜆)

Support: {0,1, 2, … } Variance

Expectation

PMF

𝐸 𝑋 = 𝜆
Var 𝑋 = 𝜆



Lisa Yan and Jerry Cain, CS109, 2020

Properties of Poi(𝜆) with the Poisson paradigm

Recall the Binomial:

Consider 𝑋~Poi(𝜆), where 𝜆 = 𝑛𝑝 (𝑛 → ∞, 𝑝 → 0):

Proof:

𝐸 𝑋 = 𝑛𝑝 = 𝜆
Var 𝑋 = 𝑛𝑝 1 − 𝑝 → 𝜆 1 − 0 = 𝜆

44

𝑌~Bin(𝑛, 𝑝)
Variance

Expectation 𝐸 𝑌 = 𝑛𝑝
Var 𝑌 = 𝑛𝑝(1 − 𝑝)

Expectation 𝐸 𝑋 = 𝜆
Var 𝑋 = 𝜆

𝑋~Poi(𝜆)
Variance
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Poisson Approximation, approximately

Poisson can still provide a good approximation of the Binomial,
even when assumptions are “mildly” violated.

You can apply the Poisson approximation when:

• ”Successes” in trials are not entirely independent
e.g.: # entries in each bucket in large hash table.

• Probability of “Success” in each trial varies (slightly),
like a small relative change in a very small p
e.g.: Average # requests to web server/sec may fluctuate

slightly due to load on network

45

We won’t explore this too much, 

but I want you to know it exists.



Think
Slide 47 has a question to go over by 
yourself.

Post any clarifications here or in chat!

https://us.edstem.org/courses/2678/discussion/134631

Think by yourself: 2 min

46

(by yourself)

https://us.edstem.org/courses/2678/discussion/134631
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Can these Binomial RVs be approximated?

47

Poisson approximates Binomial 
when 𝑛 is large, 𝑝 is small, and 
𝜆 = 𝑛𝑝 is “moderate.”

Different interpretations of 
“moderate”:

• 𝑛 > 20 and 𝑝 < 0.05

• 𝑛 > 100 and 𝑝 < 0.1

Poisson is Binomial in the limit:

• 𝜆 = 𝑛𝑝, where 𝑛 → ∞, 𝑝 → 0

(by yourself)
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Can these Binomial RVs be approximated?

48
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Poisson approximates Binomial 
when 𝑛 is large, 𝑝 is small, and 
𝜆 = 𝑛𝑝 is “moderate.”

Different interpretations of 
“moderate”:

• 𝑛 > 20 and 𝑝 < 0.05

• 𝑛 > 100 and 𝑝 < 0.1

Poisson is Binomial in the limit:

• 𝜆 = 𝑛𝑝, where 𝑛 → ∞, 𝑝 → 0
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A Real License Plate Seen at Stanford

No, it’s not mine… 
but I kind of wish it was.



Interlude for 
jokes/announcements

50
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Announcements

51

Quiz #1

Time frame: Wednesday 10/6 2:00pm – Friday 10/8 1:00pm PT

Covers: Up to end of Week 2 (including Lecture 6)

Anand and Sandra’s Review session: Sunday 10/4 6 – 8pm PT

Zoom link

Info and practice: https://web.stanford.edu/class/cs109/exams/quizzes.html

Python tutorial #2

When: today 3:30-4:30PT

Recorded? yes

Notes: posted online

Office Hour update

Lisa’s Tea Hour Thursdays 9:30-11am PT

• Casual, any CS109 or non-CS109 

questions here

• Collaborate on jigsaw puzzle

https://stanford.zoom.us/j/4962796881?pwd=ZVN3R0xPeThtbnFpVUppNjBldCtYdz09
https://web.stanford.edu/class/cs109/exams/quizzes.html


Modeling 
exercise: 
Hurricanes

52

LIVE
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1. Graph your distribution.

Hurricanes

What is the probability of an 
extreme weather event?

How do we model the 
number of hurricanes in a 
season (year)?

53
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1. Graph: Hurricanes per year since 1851
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Which graph is a histogram (i.e., distribution) of frequency (# of hurricanes per year)?
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1. Graph: Hurricanes per year since 1851
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Which graph is a histogram (i.e., distribution) of frequency (# of hurricanes per year)?
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2. Find a reasonable distribution 

and compute parameters.

Hurricanes

How do we model the 
number of hurricanes in a 
season (year)?

56



Lisa Yan and Jerry Cain, CS109, 2020

2. Find a distribution: Python SciPy RV methods

from scipy import stats # great package
X = stats.poisson(8.5) # X ~ Poi(λ = 8.5)
X.pmf(2) # P(X = 2)

57

Function Description

X.pmf(k) 𝑃 𝑋 = 𝑘

X.cdf(k) 𝑃 𝑋 ≤ 𝑘

X.mean() 𝐸 𝑋

X.var() Var 𝑋

X.std() SD 𝑋

SciPy reference:

https://docs.scipy.org/doc/

scipy/reference/generated/

scipy.stats.poisson.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.poisson.html
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2. Find a distribution

Until 1966, things look pretty 
Poisson.

What is the probability of over
15 hurricanes in a season (year) 
given that the distribution doesn’t 
change?

58

𝑃 𝑋 > 15 = 1 − 𝑃(𝑋 ≤ 15)

= 1 −

𝑘=0

15

𝑃 𝑋 = 𝑘

= 1 − 0.986 = 0.014

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 3 6 9 12 15 18 21 24 27 30 33 36 39

Poi(8.5)

Count (1851-1966)

0       5         10      15       20      25     30     35      40

fr
e

q
u

e
n

c
y

hurricanes per year

You can calculate this PMF using

your favorite programming language.

Or Python3.

𝑋~Poi(𝜆 = 8.5)
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Hurricanes

How do we model the 
number of hurricanes in a 
season (year)?

59

3. Identify and explain outliers.
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3. Improbability

Since 1966, there have been
two years with over 30 hurricanes.

What is the probability of over
30 hurricanes in a season (year) 
given that the distribution doesn’t 
change?

60

𝑃 𝑋 > 30 = 1 − 𝑃(𝑋 ≤ 30)

= 1 −

𝑘=0

30

𝑃 𝑋 = 𝑘

= 2.2E − 09

𝑋~Poi(𝜆 = 8.5)



Lisa Yan and Jerry Cain, CS109, 2020

3. The distribution has changed.

61
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3. What changed?

62

A
n

n
u

al
 a

n
o

m
al

y 
re

la
ti

ve
 t

o
 1

9
6

1
-1

9
9

0
 (

C
)



Lisa Yan and Jerry Cain, CS109, 2020

3. What changed?

63

It’s not just climate change. We also have tools for better data collection.


