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Before we start

n—00 n

/1 n
The natural exponent e: lim (1 — —) = e_’1

https://en.wikipedia.org/wiki/E_(mathematical constant)

Jacob Bernoulli
while studying
compound interest
in 1683
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Algorithmic ride sharing

CAR 9

SHARING

9 jkﬁﬂmﬁ&z =2 | | PROFESSOLLE‘
7 o Q4o oo} AW g 6
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Probability of k requests from this area in the next 1 minute?

Suppose we know: On average, A = 5 requests per minute
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Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, A = 5 requests per minute

Break a minute down into 60 seconds:

O|0|1 0|1 O|0|0|0]1
1 2 3 4 5 60
At each second: X ~Bin(n = 60, p = 5/60)

Independent trial
You get a request (1) or you don’t (O).

60 c k c n—k
Let X = # of requests in minute. P(X =k) = ( k ) (@) (1 - @)

E|X]=1=5 But what if there are two requests
9 in the same second?
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Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, A = 5 requests per minute

Break a minute down into 60,000 milliseconds:

1 60,000
At each millisecond: X ~ Bin(n = 60000, p = 1/n)
Independent trial
You get a request (1) or you don’t (O).

k n—k
P(X=k) =), A (12
Let X = # of requests in minute. (X'=1) = k) n n

E[X]=2=5 @ But what if there are two
i

requests in the same
Lisa Yan and Jerry Cain, C$109, 2020 mllllsecond? Stanford University



Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, A = 5 requests per minute

Break a minute down into infinitely small buckets:

OMG so small
1 0o
For each time bucket: X ~Bin(n, p = 1/n)
Independent trial '
You get a request (1) or you don’t (O). P(X k)

Let X = # of requests in minute. hm ) (“
E[X] =A=5 owantstos e some cool/math?
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Algorithmic ride sharing
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Probability of k requests from this area in the next 1 minute?

On average, A = 5 requests per minute

pL Poisson
. _ - -2
PX=k)=21¢" distribution
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Poisson,
continued




Poisson Random Variable

Consider an experiment that lasts a fixed interval of time.

def A Poisson random variable X is the number of successes over the
experiment duration, assuming the time that each success occurs is
independent and the average # of requests over time is constant.

1 End of interval

Examples:
# earthquakes per year
# server hits per second
# of emails per day Lisa Yan and Jarry Cain, CS109, 2020 Stanford University 12




Poisson Random Variable

Consider an experiment that lasts a fixed interval of time.

def A Poisson random variable X is the number of successes over the
experiment duration, assuming the time that each success occurs is
independent and the average # of requests over time is constant.

X~Poi(4)

Support: {0,1, 2, ... }

Examples:
# earthquakes per year
# server hits per second
# of emails per day

PMF

P(X=k)=e"—

/1k

k!

Expectation E[X] = A
Variance Var(X) = 1

Lisa Yan and Jerry Cain, CS109, 2020

Yes, expectation == variance
for Poisson RV! More later.

Stanford University 13




Simeon-Denis Poisson

French mathematician (1781 - 1840)
* Published his first paper at age 18

* Professor at age 21
* Published over 300 papers
“Life is only good for two things: doing mathematics and teaching it.”

Lisa Yan and Jerry Cain, C$109, 2020 Stanford University 14



http://upload.wikimedia.org/wikipedia/commons/b/b7/Simeon_Poisson.jpg

X ~Poi(A L
Earthquakes f) g P =

There are an average of 2.79 major earthquakes in the world each year,
and major earthquakes occur independently.

What is the probability of 3 major earthquakes happening next year?
1. Define RVs 03 -

0.25 A
0.2 -

2. Solve

0.15 A

P(X =k)

0.1 -

0.05 A

O 1 2 3 4 5 6 7 8 9 10
Number of earthquakes, k

Lisa Yan and Jerry Cain, C$109, 2020 Stanford University 15




Are earthquakes really Poissonian?

Bulletin of the
Seismological Society of America

Vol. 64 October 1974 No. 5

IS THE SEQUENCE OF EARTHQUAKES IN SOUTHERN CALIFORNIA,
WITH AFTERSHOCKS REMOVED, POISSONIAN?

By J. K. GARDNER and L. KNOPOFF

ABSTRACT

Yes.

Lisa Yan and Jerry Cain, CS109, 2020 Stanford UIliVEI‘Sity 16
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Other Discrete
RVs




Grid of random variables

Number of Time until
SuUccesses SUCCeSS
One trial Ber(p)
{}
S | ln=1
evera .
trials Bm(n’ p)
Interval :
of time Poi(A) (tomorrow)

One success

Several
successes

Interval of time to
first success

Focus on understanding how and when to use RVs, not on memorizing PMFs.

Lisa Yan and Jerry Cain, CS109, 2020
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Geometric RV

Consider an experiment: independent trials of Ber(p) random variables.
def A Geometric random variable X is the # of trials until the first success.

ME (X = k) = (1)<
XNGeO(p) Expectation E[X] = %
Support: (1,2,..]  Verance  Var(x) = =F
Examples:

Flipping a coin (P(heads) = p) until first heads appears
Generate bits with P(bit = 1) = p until first 1 generated

Lisa Yan and Jerry Cain, C$109, 2020 Stanford University 19




Negative Binomial RV

Consider an experiment: independent trials of Ber(p) random variables.

def A Negative Binomial random variable X is the # of trials until
T SUCCESSES.
(fixed lecture error)

— — k k—r r
X~NegBin(r,p) P&=0=(I)a-»

r

Expectation E [X ] —

P r(1-p)
Support: {r,r + 1, ...} VEITENGE Var(X) = 7

Examples:
Flipping a coin until " heads appears
# of strings to hash into table until bucket 1 has r entries

Geo(p) = NegBin(1,p)

Lisa Yan and Jerry Cain, C$109, 2020 Stanford University 20




Grid of random variables

Number of Time until
successes success
One trial Ber(p) Geo(p)
i 1t
S | ln=1 U r=1
evera . .
rriale Bin(n,p) NegBin(r, p)
Int I :
Qf fir;]ae Poi(A) (tomorrow)

Lisa Yan and Jerry Cain, CS109, 2020

One success

Several
successes

Interval of time to
first success

Stanford University 21



Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

* Each ball has probability p = 0.1 of capturing the Pokemon.
* Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5t try?

1. Define events/

RVs & state goal
X~Bin(5,0.1)
X~Poi(0.5)
X~NegBin(5,0.1)
X~NegBin(1,0.1)
X~Geo(0.1)

F None/other
/ &

Lisa Yan and Jerry Cain, C$109, 2020 Stanford University 22

X ~some distribution
Want: P(X = 5)
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Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.

* Each ball has probability p = 0.1 of capturing the Pokemon.
* Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5t try?

1. Define events/

RVs & state goal
X~Bin(5,0.1)
X~Poi(0.5)
X~NegBin(5,0.1)
X~NegBin(1,0.1)
X~Geo(0.1)
F None/other

X ~some distribution
Want: P(X = 5)

Mmoo w >
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Catching Pokemon X~Geo(p) p(k) = (1-p)<~ip

Wild Pokemon are captured by throwing Pokeballs at them.

* Each ball has probability p = 0.1 of capturing the Pokemon.
* Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5t try?

1. Define events/ 2. Solve
RVs & state goal

X~Geo(0.1)
Want: P(X = 5)

Lisa Yan and Jerry Cain, C$109, 2020 Stanford University 24
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LIVE

Discrete RVs

The hardest part of problem-solving is
determining what is a random variable .

26




CS109 Learning Goal: Use new RVs

’ . W Borel distribution - Wikipedia X _
Let S Say you are Iearnlng abOUt (—-c & en.wikipedia.org/wiki/Bore|_distribution B ¥ Incognito @@

rV r n W rk . N & Mot logged in Talk Contributions Create account Log in
servers/networks oo

N’

You read about the M/D/1 queue: >/

Ariicle  Talk Read Edit View history | Search Wikipedia Q

Borel distribution

WIKIPEDIA
The Free Encyclopedia From Wikipedia, the free encyclopedia
Main page Thtab ::Tel :_Isttr:)hl.:.tlon |§ g d\e_.cretet Borel distribution
robability distribution, arising in contexts
/\ — ™ }u' e p i Y ) 9 Parameters e [0,1]
Featured content including branching processes and s = (1,23,
u {+] n > PR
Current o queueing theory. It is named after the ':P - d ’nll
Gl amz;le ) French mathematician Emile Borel. s ﬂ
Donate to Wikipedia n!
T ey . Wikipedia store If the number of offspring that an organism [y, 1
\"" a-].t lng SCTV]CC _ has is Poisson-distributed, and if the 1-p
quieeton average number of offspring of each Variance I
AI‘C& NDdC Lol organism is no bigger than 1, then the (1= p)3
About Wikipedia L -
B descendants of each individual will
‘@ . . . . Community portal ) ) o ) )
T h e Se rVI Ce tl m e b u S e rl O d IS Recent changes ultimately become extinct. The number of descendants that an individual ultimately has in that
Contact page situation is a random variable distributed according to a Borel distribution.

distributed as a Borel with parameter

Contents [hide]

What links here 1 Definition
7 Related changes 2 Derivation and branching process interpretation
M [] [ ezl 3 Queueing theory interpretation
Special pages 4P i
Permanent link N
Page information 5 Borel-Tanner distribution
Wikidata item 6 References
Cite this page 7 External links
Print/export

Create a book
Download as PDF
Printable version

Goal: You can recognize terminology

Definition [edt)

A discrete random variable X is said to have a Borel distribution'I?] with parameter u = [0,1] if

the probability mass function of X is given by

and understand experiment setup. o B =P = 0

Lisa Yan and Jerry Cain, CS109, 2020

forn=1,2,3 ...
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Big Q): Fixed parameter or random variable? Review

Parameter

Examples so far:
* Prob. success
e # total trials

What is common among all outcomes
of our experiment?

* # target successes
* Average rate of
success

Examples so far:

Random variable

e # of successes

What differentiates our event from _ _
 Time until success

the rest of the sample space?

(for some definition
of time)

Lisa Yan and Jerry Cain, C$109, 2020 Stanford UIliVEI‘Sity 28



Grid of random variables Review

Number of
SuUcCcesses
...in one trial Ber(p)
{}
Un=1
..In several -
trials Bin(n, p)
...in a fixed -
interval of time POI(A)

Lisa Yan and Jerry Cain, C$109, 2020 Stanford University 29




Grid of random variables Review

Time until
SUCCEeSS
Geo(p) ...until one
™ SUCCeSS
U r=1
: ...until several
NegBm (7‘, P) SuUCcesses

Interval of time until

next time! .
( ) first success

Lisa Yan and Jerry Cain, C$109, 2020 Stanford University 30




Check out the question on the next slide
(Slide 32). Post any clarifications here!

Breal<OUt https://us.edstem.org/courses/2678/discussion/134631
Rooms

Breakout rooms: 5 min. Introduce yourself!

31



https://us.edstem.org/courses/2678/discussion/134631

. . . Choose from: C. Poi(A
Kickboxing with RVs Olng(pr)o " GZ'&;)

Bin(n, p) NegBin(r,p)

How would you model the following?
# of snapchats you receive in a day

# of children until the first one with
brown eyes (same parents)

If stock went up (1) or down (O) in a day

# of probability problems you try until you
get 5 correct (if you are randomly correct)

# of years in some decade with more
than 6 Atlantic hurricanes

~
L)

—_

Lisa Yan and Jerry Cain, C$109, 2020 Stanford University 32




Kickboxing with RVs

How would you model the following?
# of snapchats you receive in a day

# of children until the first one with
brown eyes (same parents)

If stock went up (1) or down (O) in a day

# of probability problems you try until you
get 5 correct (if you are randomly correct)

# of years in some decade with more
than 6 Atlantic hurricanes

Note: These exercises are designed to build intuition; in a
problem statement, you will generally have more clues.

Lisa Yan and Jerry Cain, CS109, 2020

Choose from: Poi(4)

Ber(p) Geo(p)
Bin(n, p) NegBin(r, p)
Poi(A)

Geo(p) or E. NegBin(1,p)

Ber(p) or B. Bin(1,p)
NegBin(r = 5, p)

Bin(n = 10,p), where
p = P(= 6 hurricanes in a year)
calculated from C. Poi(A1)

Stanford University 33
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Poisson
Approximation




Poisson Random Variable

PMF K
X ~Poi(1) P(X =k) = e"lﬁ

Expectation E[X] = A .
Support: {0,1,2, ...} Variance Var(X) = 4

In CS109, a Poisson RV X~Poi(4) most often models

# of successes in a fixed interval of time, where successes are independent
A = E|X], average success/interval

Lisa Yan and Jerry Cain, C$109, 2020 Stanford University 35



X~Poi(1) L
1. Web server load Ex] =2 PR =e?—

Consider requests to a web server in 1 second.

* In the past, server load averages 2 hits/second, where hits arrive independently.
* Let X = # hits the server receives in a second.

What is P(X < 5)?

Define RVs Solve

Lisa Yan and Jerry Cain, C$109, 2020 Stanford UIliVEI‘Sity 36



Poisson Random Variable

PMF K
X ~Poi(1) P(X =k) = e"lﬁ

Expectation E[X] = A .
Support: {0,1,2, ...} Variance Var(X) = 4

In CS109, a Poisson RV X~Poi(4) most often models

Approximation of Y~Bin(n,p) where n is large and p is small.
A=E|Y]=np
Approximation works even when trials not entirely independent.

Lisa Yan and Jerry Cain, C$109, 2020 Stanford University 37




. DNA

Lisa Yan and Jerry Cain, CS109, 2020

All the movies, images,
emails and other digital
data from more than
600 smartphones
(10,000 GB) can be
stored in the faint pink
smear of DNA at the end
of this test tube.

What is the probability

that DNA storage stays
uncorrupted?

Stanford University 3s



DNA

What is the probability that DNA storage stays uncorrupted?
In DNA (and real networks), we store large strings.
Let string length be long, e.g., n ~ 10*
Probability of corruption of each base pair is very small, e.g., p = 107°
Let X = # of corruptions.

What is P(DNA storage is uncorrupted) = P(X = 0)?

Approach 1: Approach 2:
X~Bin(n = 10%,p = 107°) X~Poi(A =10%-10"° = 0.01)
P(X — k ( ) k(l )n k P(X _ k) _ —Aﬁ — —0.01O 010
B P I TR 0!
ieiay .= (107)10760(1 — 10-6)10"-0 = "
a good u
~ 0. 99049829 ~ (0.99049834 approximation!

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Unlver51ty 39



Think

Slide 41 has a question to go over by
yourself.

Post any clarifications here or in chat!

https://us.edstem.org/courses/2678/discussion/134631

Think by yourself: 1 min

(b )

40


https://us.edstem.org/courses/2678/discussion/134631

When is a Poisson approximation appropriate?

_ ) = tim (™ 1\ A n_i Under which conditions will
P(X =) = lim () 2 \tmq) = X~Bin(n, p) behave like

Nn—>00
Poi(4), where A = np?

_ n! Ak e
- ,,,1}_1}010 nk(n —k)! k! I\K Large n, large p
(1 —ﬁ) Small n, small p
ok 9 Large n, small p
. nn—-1)-nm—-k+1) (n—k)! 1A e Small n, large p
n—0o nk (n—k)! k! A\~ Other
(1-3)
| le /1k e—ﬂ,
_Al—fgonk Kl 1
/1k (byyp.gl:self)

-1

—_— — e
| | | o
. Lisa Yan and Jerry Cain, CS109, 2020 Stanford Unlver51ty 41




Poisson approximation

X~Poi(1) Y~Bin(n, p)
E[X] =2 E[Y] =np

Poisson approximates Binomial
when n is large, p is small, and
A =np is “moderate.”

Different interpretations of
“moderate”:

*n>20andp < 0.05
*n>100andp < 0.1

Poisson Is Binomial in the limit:
* A =np,wheren — co,p - 0

Lisa Yan an

0.3 -

0.25 ~

0.2 -

k)

" 0.15 -

P(X

0.1 -

0.05 A

m Bin(10,0.3)

® Bin(100,0.03)

Bin(1000,0.003)
i(3)

Was .

d Jerry Cain, CS5109, 2020

6 7 8 9 10

Stanford University 42



Poisson Random Variable

Expectation E[X] = A
Variance Var(X) = A

Time to show intuition for why
expectation == variance!

Lisa Yan and Jerry Cain, C$109, 2020 Stanford University 43




Properties of Poi(4) with the Poisson paradigm

Recall the Binomial:

Y~Bin(n,p)

Expectation E[Y] = np
variance ~ Var(Y) = np(1 — p)

Consider X~Poi(A1), where A =np (n - oo,p — 0):

X ~Poi( A Expectation E[X] = A
( ) Variance Var(X) = A

Proof:
EX]=np=1
Var(X) =np(1—-p) - A(1—-0)=1

Lisa Yan and Jerry Cain, C$109, 2020 Stanford University 44




Poisson Approximation, approximately

Poisson can still provide a good approximation of the Binomial,
even when assumptions are “mildly” violated.

You can apply the Poisson approximation when:

"Successes” in trials are not entirely independent &
e.g.. # entries in each bucket in large hash table.

Probability of “Success” in each trial varies (slightly),
like a small relative change in a very small p

e.g.: Average # requests to web server/sec may fluctuate
slightly due to load on network

We won’t explore this too much,
pbut | want you to know it exists.

Lisa Yan and Jerry Cain, C$109, 2020 Stanford University 45



Think

Slide 47 has a question to go over by
yourself.

Post any clarifications here or in chat!

https://us.edstem.org/courses/2678/discussion/134631

Think by yourself: 2 min

46
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Can these Binomial RVs be approximated?

Poisson approximates Binomial
when n is large, p is small, and

A =np is “moderate.”

Different interpretations of
“moderate”:

n > 20andp < 0.05
n > 100and p < 0.1

= k)

P(X

P(X = k)

Poisson is Binomial in the limit:
A =np,wheren - co,p -0
A

N

(')
(by yaurself)
¢~ -

0.1

0.05

0]

0.3

0.2 -

0.1

0.3
0.2
0.1

0

® Bin(100,0.5)
| | | . H”H‘ ,,,,, “‘|||
0] 10 20 30 50 60 70 80 90
m Bin(100,0.04)
||‘h|l T T T T T T T T T
0 10 20 30 40 50 60 70 80 90
| = Bin(100,0.96)
- .d‘”h
0] 10 20 30 40 50 60 70 80 90

Lisa Yan and Jerry Cain, CS109, 2020

Stanford University 47



Can these Binomial RVs be approximated?

o4 Bin(100,0.5)
. : i i »o| EBin 0.
Poisson approximates Binomial _ . K| = poits0)
when n is large, p is small,and ””H H‘“
A = np is “moderate.” &0
0O 10 20 30 40 50 60 70 80 90
Different interpretations of 0.3 1 B 1000.0%)
“moderate”: s 027 4L =poih
* n>20andp < 0.05 L |th
e 0O I T T T T T T T T T
*n>100andp < 0.1 B 0 10 20 30 40 50 60 70 80 90
- 1=np wheren - oo p —0 0.2 911" Bin(100,1-0.96)
s " = Il
0] |'I| f

O 10 20 30 40 50 ©0 70 80 90
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A Real License Plate Seen at Stanford

No, it’'s not mine...
but | kind of wish it was.

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University




Interlude for
jokes/announcements




Announcements

/Ouiz #1 \

Time frame: Wednesday 10/6 2:00pm - Friday 10/8 1:00pm PT
Covers: Up to end of Week 2 (including Lecture 6)
Anand and Sandra’s Review session: Sunday 10/4 6 - 8pm PT
Zoom link

Q’]fo and practice: https://web.stanford.edu/cIass/cle9/exams/quizzes.html/

~

Lisa’s Tea Hour  Thursdays 9:30-11am PT
Recorded? yes e Casual, any CS109 or non-CS109

Notes: posted online questions here

K / K Collaborate on jigsaw puzzle /

Lisa Yan and Jerry Cain, C$109, 2020 Stanford University 51

4 N (o

Python tutorial #2
When: today 3:30-4:30PT

ffice Hour update



https://stanford.zoom.us/j/4962796881?pwd=ZVN3R0xPeThtbnFpVUppNjBldCtYdz09
https://web.stanford.edu/class/cs109/exams/quizzes.html

LIVE

Modeling

exercise:
Hurricanes




Hurricanes

SO What IS the probability of an
;'1313"3*?

extreme weather event?

How do we model the
number of hurricanes in a
| season (year)?

= =% . 3 S
=M *
="\

1. Graph your distribution.

Lisa Yan and Jerry Cain, C$109, 2020 Stanford UIliVEI‘Sity 53
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1. Graph: Hurricanes per year since 1851

Which graph is a histogram (i.e., distribution) of frequency (# of hurricanes per year)?

A. 40 1

N W
o O

frequency
o

o

1851
1856
1861
1866
1871
1876
1881
1886
1891
1896
1901
1906
1911
1916
1921
1926
1931
1936
1941
1946
1951
1956
1961
1966
1971
1976
1981
1986
1991
1996
2001
2006
2011

®

frequency
O
H
o1

Looks kinda Poissonian!

o

o ©O

o B
!

o

0 5 10 15 20 25 30 35 40
hurricanes per year Stanford University ss




Hurricanes

‘number of hurricanes in a
season (year)?

2. Find a reasonable distribution
and compute parameters.

Lisa Yan and Jerry Cain, C$109, 2020 Stanford University 56




2. Find a distribution: Python SciPy RV methods

from scipy import stats
X = stats.poisson(8.5)

# great package
# X~ Poi(A = 8.5)

X.pmf(2) #P(X=2)

Function Description

X.pmf(k) P(X =k)

X.cdf(k) P(X <k)

X.mean() E[x] SciPy reference:
https://docs.scipy.org/doc/

Xvar() var(X) scipy/reference/generated/

X.std() SD(X) scipy.stats.poisson.html

Lisa Yan and Jerry Cain, C$109, 2020 Stanford University 57


https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.poisson.html

2. Find a distribution

I I 0.16 -
ggi’glscl)r??& things look pretty in = POi(8.5)
& 0-12 1 = Count (1851-1966)
§ 0.1 A
What is the probability of over 8 >°
15 hurricanes in a season (year) o4 A
given that the distribution doesn’t 0.02 -

change? 0 -
0 5 10 15 20 25 30 35 40

hurricanes per year

P(X > 15) =1 — P(X < 15)

15
—1-— Z P(X=k) X~Poi(]=85)
=0 You can calculate this PMF using
B your favorite programming language.

=1-0.986 = 0.014 orpythons.
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Hurricanes

‘number of hurricanes in a
season (year)?

3. Identify and explain outliers.
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3. Improbability

Since 1966, there have been 8-3 .
two years with over 30 hurricanes. o015
$ 0.08 |

What is the probability of over o

P(X >30) =1— P(X < 30)

30
=1-— ) P(X=k)

= 2.2E—-09

: . L 0.06 -
30 hurricanes in a season (year) * o4 -

given that the distribution doesn’'t 0.02 -
change? 0 -

m Poi(8.9)

u II ——— = Count (1851-1966)
00

O 5 10 15 20 25 30 35 40
hurricanes per year

X ~Poi(1 = 8.5)
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3. The distribution has changed.

0.16 -
0.12 ~
0.08 -
0.04 -

0 - -

1851 -
1966

B P0i(8.9)
Count (1851-1966)

0.16 7
0.14 -~
0.12 ~
0.10 A
0.08 A
0.06 ~
0.04 ~
0.02 ~

0.00 -
o) 5 10 15 20

Since
1966

25 30 35 40

® P0i(8.5)

® Count (1966-2015)

(= Poi(16.77)
| |1

25 30 35 40
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3. What changed?

Atmospheric CO2 (ppm)
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3. What changed?

. . |
_ e
e
:

NOAA/NASA GOES Projés

It’s not just climate change. We also have tools for better data collection.
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