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Not all values are discrete

4

import numpy as np
np.random.random() ?
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0 … 44 52 60 … 90

𝑥
0 … 44 52 60 … 9044 … 52 56 60

People heights

You are volunteering at the local elementary school.
• To choose a t-shirt for your new buddy Jordan, you need to know their height.

1. What is the probability that your
buddy is 54.0923857234 inches tall?

2. What is the probability that your buddy is between 52–56 inches tall?
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Integrals

6

Integral = area under a curve Loving, not scary
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Continuous RV definition

A random variable 𝑋 is continuous if there is a probability density function
𝑓 𝑥 ≥ 0 such that for −∞ < 𝑥 < ∞:

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓(𝑥) 𝑑𝑥

Integrating a PDF must always yield valid probabilities,
and therefore the PDF must also satisfy

න
−∞

∞

𝑓(𝑥) 𝑑𝑥 = 𝑃 −∞ < 𝑋 < ∞ = 1

Also written as: 𝑓𝑋(𝑥)

7
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0 … 44 52 60 … 90

Today’s main takeaway, #1

Integrate 𝑓(𝑥) to get 
probabilities.

8

𝑥

𝑓 𝑥 : prob/inch

4 inches

𝑃 52 ≤ 𝑋 ≤ 56 = න
52

56

𝑓(𝑥) 𝑑𝑥PDF Units: probability per units of 𝑋
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Discrete random variable 𝑋

Probability mass function (PMF):

𝑝 𝑥

To get probability:

𝑃 𝑋 = 𝑥 = 𝑝 𝑥

Continuous random variable 𝑋

Probability density function (PDF):

𝑓 𝑥

To get probability:

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

9

PMF vs PDF

Both are measures of how likely 𝑋 is to take on a value.
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Computing probability

10

𝑓 𝑥 = ቐ
1

2
𝑥 if 0 ≤ 𝑥 ≤ 2

0 otherwise

Let 𝑋 be a continuous RV with PDF:

What is 𝑃 𝑋 ≥ 1 ?

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓(𝑥) 𝑑𝑥
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Computing probability

11

𝑓 𝑥 = ቐ
1

2
𝑥 if 0 ≤ 𝑥 ≤ 2

0 otherwise

Let 𝑋 be a continuous RV with PDF:

What is 𝑃 𝑋 ≥ 1 ?

Strategy 1: Integrate Strategy 2: Know triangles

𝑃 1 ≤ 𝑋 < ∞ = න
1

∞

𝑓 𝑥 𝑑𝑥 = න
1

2 1

2
𝑥𝑑𝑥

=
1

2

1

2
𝑥2 ቚ

1

2
=
1

2
2 −

1

2
=
3

4

1 −
1

2

1

2
=
3

4

Wait…is this even legal?

𝑃 0 ≤ 𝑋 < 1 = 0׬
1
𝑓 𝑥 𝑑𝑥 ? ?

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓(𝑥) 𝑑𝑥



Lisa Yan and Jerry Cain, CS109, 2020

Today’s main takeaway, #2

For a continuous random 
variable 𝑋 with PDF 𝑓 𝑥 ,

𝑃 𝑋 = 𝑐 = 𝑐׬
𝑐
𝑓 𝑥 𝑑𝑥 = 0.

12

0 … 44 52 60 … 90

𝑥

Contrast with PMF in discrete case: 𝑃 𝑋 = 𝑐 = 𝑝 𝑐

𝑓 𝑥 : prob/inch
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𝑥3𝑥2

PDF Properties

13

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓(𝑥) 𝑑𝑥

For a continuous RV 𝑋 with PDF 𝑓,

𝑥

𝑓 𝑥

support: set of 𝑥
where 𝑓 𝑥 > 0

𝑥1

True/False:

1. 𝑃 𝑋 = 𝑐 = 0

2. 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑃 𝑎 < 𝑋 < 𝑏 = 𝑃 𝑎 ≤ 𝑋 < 𝑏 = 𝑃 𝑎 < 𝑋 ≤ 𝑏

3. 𝑓(𝑥) is a probability

4. In the graphed PDF above,
𝑃 𝑥1 ≤ 𝑋 ≤ 𝑥2 > 𝑃 𝑥2 ≤ 𝑋 ≤ 𝑥3
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𝑥3𝑥2

PDF Properties

14

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓(𝑥) 𝑑𝑥

For a continuous RV 𝑋 with PDF 𝑓,

❌

Interval width 𝑑𝑥 → 0

𝑥

𝑓 𝑥

support: set of 𝑥
where 𝑓 𝑥 > 0

𝑥1

Compare area under the curve 𝑓

True/False:

1. 𝑃 𝑋 = 𝑐 = 0

2. 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑃 𝑎 < 𝑋 < 𝑏 = 𝑃 𝑎 ≤ 𝑋 < 𝑏 = 𝑃 𝑎 < 𝑋 ≤ 𝑏

3. 𝑓(𝑥) is a probability

4. In the graphed PDF above,
𝑃 𝑥1 ≤ 𝑋 ≤ 𝑥2 > 𝑃 𝑥2 ≤ 𝑋 ≤ 𝑥3

⭐️



Uniform RV

15

09b_uniform



Lisa Yan and Jerry Cain, CS109, 2020

def An Uniform random variable 𝑋 is defined as follows:

Uniform Random Variable

16

𝑓 𝑥 = ቐ

1

𝛽 − 𝛼
if 𝛼 ≤ 𝑥 ≤ 𝛽

0 otherwise𝑋~Uni(𝛼, 𝛽)

Support: 𝛼, 𝛽
(sometimes defined 

over 𝛼, 𝛽 ) Variance

Expectation

PDF

𝐸 𝑋 =
𝛼 + 𝛽

2

Var 𝑋 =
𝛽 − 𝛼 2

12

𝛼 𝛽
𝑥

𝑓 𝑥

1

𝛽 − 𝛼
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Quick check

17

What is 
1

𝛽−𝛼
if the following graphs are PDFs of Uniform RVs 𝑋?

0 25

𝑥

𝑓 𝑥

?

1. 2. 3.

1

𝑥

𝑓 𝑥

?

3/2

𝛼 𝛽
𝑥

𝑓 𝑥

1

𝛽 − 𝛼

−5 5

𝑥

𝑓 𝑥

?

If 𝑋~Uni(𝛼, 𝛽), the PDF of 𝑋 is:

𝑓 𝑥 = ቐ
1

𝛽−𝛼
if 𝛼 ≤ 𝑥 ≤ 𝛽

0 otherwise
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−5 5

𝑥

𝑓 𝑥

?

1

𝑥

𝑓 𝑥

?

3/2

Quick check

18

?
?

1. 2. 3.

2

1

10

0 25

𝑥

𝑓 𝑥

?
1

25

𝛼 𝛽
𝑥

𝑓 𝑥

1

𝛽 − 𝛼

What is 
1

𝛽−𝛼
if the following graphs are PDFs of Uniform RVs 𝑋?

If 𝑋~Uni(𝛼, 𝛽), the PDF of 𝑋 is:

𝑓 𝑥 = ቐ
1

𝛽−𝛼
if 𝛼 ≤ 𝑥 ≤ 𝛽

0 otherwise
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Expectation and Variance

Discrete RV 𝑋

19

𝐸 𝑋 =෍

𝑥

𝑥 𝑝 𝑥

𝐸 𝑔(𝑋) =෍

𝑥

𝑔(𝑥) 𝑝 𝑥

𝐸 𝑋 = න
−∞

∞

𝑥𝑓 𝑥 𝑑𝑥

𝐸 𝑔(𝑋) = න
−∞

∞

𝑔 𝑥 𝑓 𝑥 𝑑𝑥

Continuous RV 𝑋

Both continuous and discrete RVs

𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏

Var(𝑋) = 𝐸 (𝑋 − 𝐸[𝑋])2 = 𝐸 𝑋2 − (𝐸[𝑋])2

Var(𝑎𝑋 + 𝑏) = 𝑎2Var(𝑋)

Linearity of 

Expectation

Properties of 

variance

TL;DR: σ𝑥=𝑎
𝑏 𝑎׬⇒

𝑏
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Uniform RV expectation

20

න
−∞

∞

𝑥 ⋅ 𝑓 𝑥 𝑑𝑥

=
1

𝛽 − 𝛼
⋅ ቤ
1

2
𝑥2

𝛼

𝛽

=
1

𝛽 − 𝛼
⋅
1

2
𝛽2 − 𝛼2

=
1

2
⋅
𝛽 + 𝛼 𝛽 − 𝛼

𝛽 − 𝛼

𝐸 𝑋 =

=
𝛼 + 𝛽
2

Interpretation:

Average the start & end

𝛼 𝛽
𝑥

𝑓 𝑥

1

𝛽 − 𝛼

= න
𝛼

𝛽

𝑥 ⋅
1

𝛽 − 𝛼
𝑑𝑥
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def An Uniform random variable 𝑋 is defined as follows:

Uniform Random Variable

21

𝑓 𝑥 = ቐ

1

𝛽 − 𝛼
if 𝛼 ≤ 𝑥 ≤ 𝛽

0 otherwise𝑋~Uni(𝛼, 𝛽)

Support: 𝛼, 𝛽
(sometimes defined 

over 𝛼, 𝛽 ) Variance

Expectation

PDF

𝐸 𝑋 =
𝛼 + 𝛽

2

Var 𝑋 =
𝛽 − 𝛼 2

12

On your own time

Just now

𝛼 𝛽
𝑥

𝑓 𝑥

1

𝛽 − 𝛼



Exponential RV

22

09c_exponential
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Grid of random variables

23

Number of 

successes

Ber(𝑝)One trial

Several

trials

Interval

of time

Bin(𝑛, 𝑝)

Poi(𝜆)

Geo(𝑝)

NegBin(𝑟, 𝑝)

One success

Several

successes

Interval of time to

first success

Time until 

success

𝑛 = 1 𝑟 = 1

?Exp(𝜆)



Lisa Yan and Jerry Cain, CS109, 2020

Consider an experiment that lasts a duration of time until success occurs.

def An Exponential random variable 𝑋 is the amount of time until success.

Examples:
• Time until next earthquake

• Time for request to reach web server

• Time until end of cell phone contract

Exponential Random Variable

24

𝑓 𝑥 = ቊ𝜆𝑒
−𝜆𝑥 if 𝑥 ≥ 0

0 otherwise𝑋~Exp(𝜆)

Support: 0,∞

Variance

Expectation

PDF

𝐸 𝑋 =
1

𝜆

Var 𝑋 =
1

𝜆2

(in extra slides)

(on your own)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

𝑓 𝑥

𝑥
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Interpreting Exp(𝜆)

def An Exponential random variable 𝑋 is the amount of time until success.

25

𝑋~Exp(𝜆) Expectation 𝐸 𝑋 =
1

𝜆

Based on the expectation 𝐸 𝑋 , what are the units of 𝜆?
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Interpreting Exp(𝜆)

def An Exponential random variable 𝑋 is the amount of time until success.

26

Based on the expectation 𝐸 𝑋 , what are the units of 𝜆?

𝑋~Exp(𝜆) Expectation 𝐸 𝑋 =
1

𝜆

e.g., average # of successes per second For both Poisson and Exponential RVs,

𝜆 = # successes/time.
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Earthquakes

27

1906 Earthquake 

Magnitude 7.8
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Earthquakes

Major earthquakes (magnitude 8.0+) occur once every 500 years.*

1. What is the probability of a major earthquake in the next 30 years?

28

𝑋~Exp(𝜆)
𝑓 𝑥 = 𝜆𝑒−𝜆𝑥 if 𝑥 ≥ 0

*In California, according to historical data from USGS, 2015

𝐸 𝑋 = 1/𝜆

We know on average:

0.002
earthquakes

year

500
years

earthquake

1
earthquakes

500 years
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Earthquakes

Major earthquakes (magnitude 8.0+) occur once every 500 years.*

1. What is the probability of a major earthquake in the next 30 years?

29

Define events/ 
RVs & state goal

Solve

𝑋: when next

earthquake happens

𝑋 ~Exp 𝜆 = 0.002

Want: 𝑃 𝑋 < 30

year−1𝜆:

𝑋~Exp(𝜆)
𝑓 𝑥 = 𝜆𝑒−𝜆𝑥 if 𝑥 ≥ 0

׬ 𝑒𝑐𝑥𝑑𝑥 =
1

𝑐
𝑒𝑐𝑥

Recall

= 1/500

𝐸 𝑋 = 1/𝜆

*In California, according to historical data from USGS, 2015
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Earthquakes

Major earthquakes (magnitude 8.0+) occur once every 500 years.*

1. What is the probability of a major earthquake in the next 30 years?

2. What is the standard deviation of years until the next earthquake?

30

Define events/ 
RVs & state goal

𝑋: when next

earthquake happens

𝑋 ~Exp 𝜆 = 0.002

Want: 𝑃 𝑋 < 30

year−1𝜆:

Solve

𝑋~Exp(𝜆)
𝑓 𝑥 = 𝜆𝑒−𝜆𝑥 if 𝑥 ≥ 0

𝐸 𝑋 = 1/𝜆

*In California, according to historical data from USGS, 2015
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0 … 44 52 60 … 90

4 inches

Today’s main takeaway, #1

Integrate 𝑓(𝑥) to get 
probabilities.

32

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓(𝑥) 𝑑𝑥

𝑓 𝑥 : prob/inch

Review

𝑥
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0 … 44 52 60 … 90

Today’s main takeaway, #2

For a continuous random 
variable 𝑋 with PDF 𝑓 𝑥 ,

𝑃 𝑋 = 𝑐 = 𝑐׬
𝑐
𝑓 𝑥 𝑑𝑥 = 0.

33

𝑥

Implication: 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑃 𝑎 < 𝑋 < 𝑏

Review



Think
Slide 35 has a matching question to go over 
in Zoom polling. We’ll go over it together 
afterwards.

Post any clarifications here or in chat!

https://us.edstem.org/courses/2678/discussion/134633

Think by yourself: 1.5 min

34

(by yourself)

https://us.edstem.org/courses/2678/discussion/134633
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Determining valid PDFs

Which of the following functions are valid PDFs?

35

𝑓 𝑥

𝑥
𝑥1 𝑥2

න
−∞

∞

𝑓 𝑥 𝑑𝑥 = 0.5
𝑔 𝑥

𝑥
𝑥3 𝑥4

න
−∞

∞

𝑔 𝑥 𝑑𝑥 = 1

ℎ 𝑥

𝑥
0.5 1

1

2 න
−∞

∞

ℎ 𝑥 𝑑𝑥 = 1
𝑤 𝑥

𝑥
𝑥5 𝑥6

0

න
−∞

∞

𝑤 𝑥 𝑑𝑥 = 1

1. 2.

3. 4.

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓(𝑥) 𝑑𝑥

(by yourself)
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Determining valid PDFs

Which of the following functions are valid PDFs?

36

𝑓 𝑥

𝑥
𝑥1 𝑥2

න
−∞

∞

𝑓 𝑥 𝑑𝑥 = 0.5
𝑔 𝑥

𝑥
𝑥3 𝑥4

න
−∞

∞

𝑔 𝑥 𝑑𝑥 = 1

ℎ 𝑥

𝑥
0.5 1

1

2 න
−∞

∞

ℎ 𝑥 𝑑𝑥 = 1
𝑤 𝑥

𝑥
𝑥5 𝑥6

0

න
−∞

∞

𝑤 𝑥 𝑑𝑥 = 1

1. 2.

3. 4.

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓(𝑥) 𝑑𝑥



Breakout 
Rooms

Check out the question on the next slide 
(Slide 38). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/134633

Breakout rooms: 4 min. Introduce yourself!

37

https://us.edstem.org/courses/2678/discussion/134633
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Riding the Marguerite Bus

You want to get on the Marguerite bus.
• The bus stops at the Gates building at 15-minute intervals 

(2:00, 2:15, etc.).
• You arrive at the stop uniformly between 2:00-2:30pm.

P(you wait < 5 minutes for bus)?

38
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Riding the Marguerite Bus

You want to get on the Marguerite bus.
• The bus stops at the Gates building at 15-minute intervals 

(2:00, 2:15, etc.).
• You arrive at the stop uniformly between 2:00-2:30pm.

P(you wait < 5 minutes for bus)?

39

0 15 30

wait < 5 min

1. Define events/ 
RVs & state goal

2. Solve

𝑋: time passenger 

arrives after 2:00

𝑋~Uni(0,30)

𝑓
𝑥

𝑥



Interlude for jokes

40
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Cumulative Distribution Function (CDF)

41

Review

For a random variable 𝑋, the cumulative distribution function (CDF) is 
defined as

𝐹 𝑎 = 𝐹𝑋 𝑎 = 𝑃 𝑋 ≤ 𝑎 ,where −∞ < 𝑎 < ∞

For a discrete RV 𝑋, the CDF is:

𝐹 𝑎 = 𝑃 𝑋 ≤ 𝑎 = ෍

all 𝑥≤𝑎

𝑝(𝑥)
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For a random variable 𝑋, the cumulative distribution function (CDF) is 
defined as

𝐹 𝑎 = 𝐹𝑋 𝑎 = 𝑃 𝑋 ≤ 𝑎 ,where −∞ < 𝑎 < ∞

For a discrete RV 𝑋, the CDF is:

𝐹 𝑎 = 𝑃 𝑋 ≤ 𝑎 = ෍

all 𝑥≤𝑎

𝑝(𝑥)

For a continuous RV 𝑋, the CDF is:

𝐹 𝑎 = 𝑃 𝑋 ≤ 𝑎 = න
−∞

𝑎

𝑓 𝑥 𝑑𝑥

Cumulative Distribution Function (CDF)

42

CDF is a probability, 

though PDF is not.

If you learn to use 

CDFs, you can avoid 

integrating the PDF.

𝑓 𝑥

𝑥
𝑎

𝐹 𝑎



Think
Slide 46 has a matching question to go over 
by yourself. We’ll go over it together 
afterwards.

Post any clarifications here or in chat!

https://us.edstem.org/courses/2678/discussion/134633

Think by yourself: 1.5 min

43

(by yourself)

https://us.edstem.org/courses/2678/discussion/134633
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Using the CDF for continuous RVs

For a continuous random variable 𝑋 with PDF 𝑓(𝑥), the CDF of 𝑋 is

𝐹 𝑎 = 𝑃 𝑋 ≤ 𝑎 = න
−∞

𝑎

𝑓 𝑥 𝑑𝑥

44

Matching (choices are used 0/1/2 times)

A. 𝐹 𝑎

B. 1 − 𝐹(𝑎)

C. 𝐹 𝑎 − 𝐹(𝑏)

D. 𝐹 𝑏 − 𝐹(𝑎)

1. 𝑃 𝑋 < 𝑎

2. 𝑃 𝑋 > 𝑎

3. 𝑃 𝑋 ≥ 𝑎

4. 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏

(by yourself)
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Using the CDF for continuous RVs

For a continuous random variable 𝑋 with PDF 𝑓(𝑥), the CDF of 𝑋 is

𝐹 𝑎 = 𝑃 𝑋 ≤ 𝑎 = න
−∞

𝑎

𝑓 𝑥 𝑑𝑥
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A. 𝐹 𝑎

B. 1 − 𝐹(𝑎)

C. 𝐹 𝑎 − 𝐹(𝑏)

D. 𝐹 𝑏 − 𝐹(𝑎)

Matching (choices are used 0/1/2 times)

(next slide)

1. 𝑃 𝑋 < 𝑎

2. 𝑃 𝑋 > 𝑎

3. 𝑃 𝑋 ≥ 𝑎

4. 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏
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Using the CDF for continuous RVs

For a continuous random variable 𝑋 with PDF 𝑓(𝑥), the CDF of 𝑋 is

𝐹 𝑎 = 𝑃 𝑋 ≤ 𝑎 = න
−∞

𝑎

𝑓 𝑥 𝑑𝑥

46

4. 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝐹 𝑏 − 𝐹(𝑎)

𝐹 𝑏 − 𝐹 𝑎 = න
−

𝑏

𝑓 𝑥 𝑑𝑥 − න
−

𝑎

𝑓 𝑥 𝑑𝑥

= න
−

𝑎

𝑓 𝑥 𝑑𝑥 +න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 −න
−

𝑎

𝑓 𝑥 𝑑𝑥

= න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

𝑓 𝑥

𝑥
𝑎 𝑏

𝐹 𝑏

Proof:

𝐹 𝑎

− =
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0 … 44 52 60 … 90

4 inches

Addendum to today’s main takeaway, #1

Integrate 𝑓(𝑥) to get 
probabilities.*

47

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓(𝑥) 𝑑𝑥

𝑓 𝑥 : prob/inch

𝑥

*If you have 𝐹 𝑎 , you already have 

probabilities, since 𝐹 𝑎 = ∞−׬
𝑎

𝑓 𝑥 𝑑𝑥



Lisa Yan and Jerry Cain, CS109, 2020

CDF of an Exponential RV

Proof:

𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥 = න
𝑦=−∞

𝑥

𝑓 𝑦 𝑑𝑦 = න
𝑦=0

𝑥

𝜆𝑒−𝜆𝑦𝑑𝑦

= ቤ𝜆
1

−𝜆
𝑒−𝜆𝑦

0

𝑥

= −1 𝑒−𝜆𝑥 − 𝑒−𝜆0

= 1 − 𝑒−𝜆𝑥

48

𝑋~Exp(𝜆) 𝐹 𝑥 = 1 − 𝑒−𝜆𝑥 if 𝑥 ≥ 0

׬ 𝑒𝑐𝑥𝑑𝑥 =
1

𝑐
𝑒𝑐𝑥

Recall

𝑋~Exp(𝜆) 𝑓 𝑥 = 𝜆𝑒−𝜆𝑥 if 𝑥 ≥ 0
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PDF/CDF 𝑋~Exp(𝜆 = 1)
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𝐹 𝑥

𝑓 𝑥

𝑥

𝑥

න
0

2

𝜆𝑒−𝜆𝑥𝑑𝑥 ≈ 0.86

1 − 𝑒−2𝜆 ≈ 0.86

𝑥

𝐹 𝑥

𝑥

1 − 𝐹 2 = 𝑒−2𝜆 ≈ 0.14

𝑓 𝑥

න
2

∞

𝜆𝑒−𝜆𝑥𝑑𝑥 ≈ 0.14

𝑃 𝑋 ≤ 2 𝑃 𝑋 > 2

𝑓 𝑥 = 𝜆𝑒−𝜆𝑥

𝐹 𝑥 = 1 − 𝑒−𝜆𝑥
𝑋~Exp(𝜆)

𝑥 ≥ 0:



Breakout 
Rooms

Check out the question on the next slide 
(Slide 52). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/134633

Breakout rooms: 3 min.

50

https://us.edstem.org/courses/2678/discussion/134633
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Earthquakes

51

Major earthquakes (magnitude 8.0+) occur independently on average 
once every 500 years.*

What is the probability of zero major earthquakes next year?

*In California, according to historical data form USGS, 2015
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Earthquakes

Major earthquakes (magnitude 8.0+) occur independently on average
once every 500 years.*

What is the probability of zero major earthquakes next year?

52

Strategy 1: Exponential RV

Define events/RVs & state goal

Solve

𝑇: when first earthquake happens

𝑇 ~Exp(𝜆 = 0.002)

Want: 𝑃 𝑇 > 1 = 1 − 𝐹(1)

𝑃 𝑇 > 1 = 1 − 1 − 𝑒−𝜆⋅1 = 𝑒−𝜆

*In California, according to historical data form USGS, 2015
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Earthquakes

Major earthquakes (magnitude 8.0+) occur independently on average
once every 500 years.*

What is the probability of zero major earthquakes next year?

53

Strategy 1: Exponential RV Strategy 2: Poisson RV

𝑌~Poi(𝜆) 𝑝 𝑘 = 𝑒−𝜆
𝜆𝑘

𝑘!

Define events/RVs & state goal

Solve

𝑇: when first earthquake happens

𝑇 ~Exp(𝜆 = 0.002)

Want: 𝑃 𝑇 > 1 = 1 − 𝐹(1)

𝑃 𝑇 > 1 = 1 − 1 − 𝑒−𝜆⋅1 = 𝑒−𝜆

*In California, according to historical data form USGS, 2015

𝑁: # earthquakes next year

𝑁 ~Poi(𝜆 = 0.002)

Want: 𝑃 𝑁 = 0

Define events/RVs & state goal

Solve

𝑃 𝑁 = 0 =
𝜆0𝑒−𝜆

0!
= 𝑒−𝜆 ≈ 0.998

earthquakes

year
𝜆:

Read more in Ross!
(section 9.1)



Happy Friday
54



Extra

55

09e_extra
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Expectation of the Exponential

56

න𝑥𝜆𝑒−𝜆𝑥𝑑𝑥 = න𝑢 ∙ 𝑑𝑣

𝑢 = 𝑥 𝑑𝑣 = 𝜆𝑒−𝜆𝑥𝑑𝑥

𝑑𝑢 = 𝑑𝑥 𝑣 = −𝑒−𝜆𝑥

𝐸 𝑋 = න
−∞

∞

𝑥𝑓 𝑥 𝑑𝑥 = න
0

∞

𝑥𝜆𝑒−𝜆𝑥𝑑𝑥

න𝑢 ∙ 𝑑𝑣 = 𝑢 ∙ 𝑣 − න𝑣 ∙ 𝑑𝑢

−𝑥𝑒−𝜆𝑥 − 𝑒−𝜆𝑥𝑑𝑥−׬

= ቚ−𝑥𝑒−𝜆𝑥
0

∞
+න

0

∞

𝑒−𝜆𝑥𝑑𝑥

= ቚ−𝑥𝑒−𝜆𝑥
0

∞
−
1

λ
ቚ𝑒−𝜆𝑥
0

∞

= 0 − 0 + 0 −
−1

𝜆

=
1

𝜆

Proof:

𝑋~Exp(𝜆) Expectation 𝐸 𝑋 =
1

𝜆

Integration by parts

𝑋~Exp(𝜆) 𝑓 𝑥 = 𝜆𝑒−𝜆𝑥 if 𝑥 ≥ 0

−𝑥𝑒−𝜆𝑥 − 𝑒−𝜆𝑥𝑑𝑥−׬
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Website visits

Suppose a visitor to your website leaves after 𝑋 minutes.
• On average, visitors leave the site after 5 minutes.
• The length of stay, 𝑋, is exponentially distributed.

1. 𝑃 𝑋 > 10 ?

2. 𝑃 10 < 𝑋 < 20 ?

57

𝑋~Exp(𝜆)
𝐸 𝑋 = 1/𝜆

𝐹 𝑥 = 1 − 𝑒−𝜆𝑥
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Website visits

Suppose a visitor to your website leaves after 𝑋 minutes.
• On average, visitors leave the site after 5 minutes.
• The length of stay, 𝑋, is exponentially distributed.

1. 𝑃 𝑋 > 10 ?

2. 𝑃 10 < 𝑋 < 20 ?
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𝑋~Exp(𝜆)
𝐸 𝑋 = 1/𝜆

𝑋: when visitor leaves

𝑋 ~Exp(𝜆 = 1/5 = 0.2)

𝐹 𝑥 = 1 − 𝑒−𝜆𝑥

𝑃 𝑋 > 10 = 1 − 𝐹(10)

= 1 − 1 − 𝑒− 10/5 = 𝑒−2 ≈ 0.1353

Define Solve

Solve

𝑃 10 < 𝑋 < 20 = 𝐹 20 − 𝐹(10)

= 1 − 𝑒−4 − 1 − 𝑒−2 ≈ 0.1170
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Replacing your laptop

Let 𝑋 = # hours of use until your laptop dies.
• 𝑋 is distributed as an Exponential RV, where

• On average, laptops die after 5000 hours of use.

• You use your laptop 5 hours a day.

What is 𝑃 your laptop lasts 4 years ?

59

𝑋~Exp(𝜆)
𝐸 𝑋 = 1/𝜆

𝐹 𝑥 = 1 − 𝑒−𝜆𝑥
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Replacing your laptop

Let 𝑋 = # hours of use until your laptop dies.
• 𝑋 is distributed as an Exponential RV, where

• On average, laptops die after 5000 hours of use.

• You use your laptop 5 hours a day.

What is 𝑃 your laptop lasts 4 years ?

60

𝑋: # hours until

laptop death

𝑋 ~Exp(𝜆 = 1/5000)

𝑃 𝑋 > 7300 = 1 − 𝐹(7300)

Define Solve

Want: 𝑃 𝑋 > 5 ⋅ 365 ⋅ 4

𝑋~Exp(𝜆)
𝐸 𝑋 = 1/𝜆

𝐹 𝑥 = 1 − 𝑒−𝜆𝑥

= 1 − 1 − 𝑒− 7300/5000 = 𝑒−1.46 ≈ 0.2322

Better plan ahead if you’re co-terming!

• 5-year plan:

• 6-year plan:

𝑃 𝑋 > 9125 = 𝑒−1.825 ≈ 0.1612

𝑃 𝑋 > 10950 = 𝑒−2.19 ≈ 0.1119


