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Today’s the Big Day

JOIN MWU GAMES BROWSE THESAU

SINCE 1828 the big day

DICTIONARY

the big day noun phrase

Definition of the big day

: the day that something important happens
/I Today s the big day.
also : the day someone is to be married
/1 So, when's the big day?
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Normal Random Variable

def An Normal random variable X is defined as follows:

2 /9 2
PDF f(x) = o~ (x—w)?/20
2
X~N (4, 0?) _ o=
Support: (—o,00)  EXPectation  EX]| = u
Variance Var(X) = 7

Other names: Gaussian random variable o5 .-

mean _ 041
variance — 0.3 4

X~N(w0%)

1 2 3

oSwamuitu vmversity 5

-3 -2 -1
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Carl Friedrich Gauss

Carl Friedrich Gauss (1777-1855) was a remarkably influential
German mathematician.

April 1777 — 23 February 1855) was a German mathematician and physicist who made significant
contributions to many fields, including algebra, analysis, astronomy, differential geometry, electrostatics,
geodesy, geophysics, magnetic fields, matrix theory, mechanics, number theory, optics and statistics.

Sometimes referred to as the Princeps mathematicorum!'') (Latin for "the foremost of mathematicians") and
"the greatest mathematician since antiquity”, Gauss had an exceptional influence in many fields of
mathematics and science, and is ranked among history's most influential mathematicians.?!

Did not invent Normal distribution but rather popularized it

Lisa Yan and Jerry Cain, CS109,
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Why the Normal?

Common for natural phenomena:
height, weight, etc.

*  Most noise Iin the world is Normal

* Often results from the sum of many
random variables

That’s what they
*  Sample means are distributed normally want you to believe...
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Why the Normal?

Actually log-normal

Just an assumption

Only if equally weighted

(okay this one is true, we’ll see

*  Sample means are distributed normally this in 3 weeks)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul’liVeI‘Sity 8




Okay, so why the Normal?

Part of CS109 learning goals:
* Translate a problem statement into a random variable

In other words: model real life situations with probability distributions

How do you model student heights?
* Suppose you have data from one classroom.

0.25 ¢ |
0.2 r AN Fits perfectly!
/ $ ]
0.15 + I But what about in
0.1 t / ‘. ., another classroom?
0.05 t ,f SN
0] . L i

O .. 44 48 52 56 60 64 .. 90
value
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Okay, so why the Normal?

Part of CS109 learning goals:
Translate a problem statement into a random variable

In other words: model real life situations with probability distributions

How do you model student heights?
Suppose you have data from one classroom.

Occam’s Razor:

0.25 -
0.2 + =  Same mean/var “Non sunt multiplicanda
) / \ '] '] 'l ”
0.15 )/ * e Generalizes well entia sine necessitate.
0.1 ¢ /I \\ Entities should not be multiplied
0.05 +t / \ without necessity.
7/ \
O = — T 1 | | 1 \|=-'r_l_ . ) )
O . 44 48 52 56 60 64 .. 90 A Gaussian maximizes entropy for a
value given mean and variance.
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Why the Normal?

Actually log-nor- |
uS°©
asﬂ \-O /.-llptiOn
xS S
a\)se \,& Only if equally weighted
G
be (okay this one is true, we'll see

Sample mew s are distributed normally this in 3 weeks)

| encourage you to stay critical of how
to model real-world phenomena.
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Anatomy of a beautiful equation

Let X~V (u, 02).

The PDF of X is defined as:
) symmetric
1 (.X' — [i) around u
- 2
f(x) = e 20
</ variance ¢?
d 27T exponential

normalizing constant 05 - p
0.4 - T
|
0

T
- - f'l 2
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Campus bikes

You spend some minutes, X, traveling
between classes.

* Average time spent: u© = 4 minutes
- Variance of time spent: % = 2 minutes?

Suppose X is normally distributed. What is the
probability you spend = 6 minutes traveling?

X~N(u=40°%=2)

o ® 1  _(x-w?
P(X = 6) =f f(x)dx=f e 20% dx © dY
6 6 OV2T |
Loving, not scary

(call me if you analytically solve this) ...except this time
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Computing probabilities with Normal RVs

For a Normal RV X~ (u, 62), its CDF has no closed form.

5 . Cannot be
x 1 — (y_é‘) . solved
P(X <x)=F(x)= » O'\/Ee 202 dy analytically

However, we can solve for probabilities numerically using a function ®:

need to know some
properties of Normal RVs.

X — U To get here, we'll first
F(x) = & ( - )

A function that has been
solved for numerically

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul’liVeI‘Sity 14
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Properties of Normal RVs

Let X~V (u, %) with CDF P(X < x) = F(x).

Linear transformations of Normal RVs are also Normal RVSs.

If Y = aX + b, then Y~N (au + b, a’c?).

The PDF of a Normal RV is symmetric about the mean pu.

Flu—x)=1—-—F(u+ x)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 16




Linear transformations of Normal RVs

Let X~V (u, %) with CDF P(X < x) = F(x).
Linear transformations of X are also Normal.

IfY = aX + b, then Y~N(au + b, a’c?)

Proof:
E|lY] =ElaX + b] = aE[X]+ b =au+ b Linearity of Expectation

Var(Y) = Var(aX + b) = a*Var(X) = a?c? Var(aX + b) = a*Var(X)

Y is also Normal Proof in Ross,
10t ed (Section 5.4)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 17




Symmetry of Normal RVs

Let X~V (u, %) with CDF P(X < x) = F(x).
The PDF of a Normal RV is symmetric about the mean .

Flu—x)=1—-—F(u+ x)

f(x)

o x

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 18




Using symmetry of the Normal RV Flp=x)=1=F(u+x)

Let Z~(0,1) with CDF P(Z < z) = F(2). . 2

f(2)

Suppose we only knew numeric values
for F(z) and F(y), for some z,y = 0.

How do we compute the following probabilities? k=0 ‘
P(Z < 2) = F(2) F(z)
P(Z < z) 1—-F(2)
P(Z = z) F(z) - F(y)
P(Z < —2z)
P(Z > —Z) oKy

P(y <Z<2) &/

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 19




Using symmetry of the Normal RV Flp=x)=1=F(u+x)

Let Z~N(0,1) with CDF P(Z < z) = F(2). —z +z

f(2)

Suppose we only knew numeric values
for F(z) and F(y), forsome z,y = 0.

=0  z
How do we compute the following probabilities? 3
P(Z < z) — F(2) F(z)
P(Z < z) = F(2) 1—-F(2)
P(Z = z) =1 - F(2) F(z) = F(y)

< — =1 —
P(Z _ Z) 1 F(Z) Symmetry is particularly useful when
P(Z =z —z) = F(z) computing probabilities of zero-mean
Ply<Z<2z) =F(z) — F(y) Normal RVs.

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 20
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Computing probabilities with Normal RVs

Let X~V (u, 02).

To compute the CDF, P(X < x) = F(x):
We cannot analytically solve the integral (it has no closed form)
...but we can solve numerically using a function &:

F(x)=c1>(x;“)

CDF of the
Standard Normal, Z

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 22




Standard Normal RV, Z

The Standard Normal random variable Z is defined as follows:

Expectation E[Z] =u=0 " 3eho weon

ZNN(O; 1) Variance Var(Z) = g2 =1 "wr .

J anAC

Note: not a new distribution; just
a special case of the Normal

Other names: Unit Normal

CDF of Z defined as: P(Z Z) — CI)(Z)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 23



® has been numerically computed

Standard Normal Table
An entry in the table is the area under the curve to the left of z, P(Z < z) = O(z).

P(Z < 1.31) = ®(1.31)

0.5 -
1 E) B 0 i 2 3 0.4 B Z — 1-31

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.3 -
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.2

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 N Sl CI)

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 O 0.1 (Z)
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 )

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0 |
0.6 0.7257 0.7291 0.7324 0.7357 0.7380 0.7422 0.7454 0.7486 -3 -2 -1 0 1 2 3

N
N
—/

o O O

0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7793
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 Z

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 _0.8869 0.8888 0.8906 0.8925 0.8943 0.8962 0.8980 0.8997 0.9015
13 09032 [0.9049] 0.9066 09082 09099 09115 09131 09147 09162 09177 | Standard Normal Table only has

14 09192 09207 09222 09236 09251 09265 09279 09292 09306 0.9319 habilities @ ; ~ 0
15 09332 09345 09357 09370 09382 09394 09406 09418 09420 09441 | Probabilities ®(z) for z = 0.

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 24




History fact: Standard Normal Table

TABLES The first Standard Normal Table was
computed by Christian Kramp, French
AU CALCUL DES REFRACTIONS astronomer (1/60-1820), in Analyse
APPROGHANTES DE L'HORIZON. des Réfractions Astronomiques et
TABLE PREMIERE. Terrestres, 1799
Intégrales de e='" dt, depuis une valeurso ) V& Used a Taylor series expansion to the
quelcongue de t jusqu'a t mf nie, S@ third power
— e e~ >t OH
' Intégrale. D:ff. prem. | Diff. IL. | Diff. I1I. integral from x = 0.03 to infinity of e*{-x"2}
0,00 | 0,88622692 | 999968 20f | 199
0,01 0,8 62 2724 999767 400 | 199 ffo Extended Keyboard * Upload
0.02 ) 999367 599 | 200
0,03 9y8768 | 799 | 199

0,04 997 969 998 197 Definite integral:
0,05 08"5626803 996971 | 1195 | 199

0,06 | 0,82629882 | 995776 | 1394 | 196

o0 2
] e dx = 0.856236
0.03
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Probabilities for a general Normal RV

Let X~V (u, 0%). To compute the CDF P(X < x) = F(x),
we use @, the CDF for the Standard Normal Z~N (0, 1):

F(x)=c1>(x;“)

Proof:
F(x) =P(X <x) Definition of CDF
X—Uu x—u
=P(X—,u£x—u)=P( - < - ) Algebra + g > 0
—p (Z < X ﬂ) . X;“ = iX — g is a linear transform of X.
o - This is distributed as ¥ (-p — £, 62) =W (0,1)
_ (P H + In other words, 2= = Z~"(0,1)with CDF @,
o o

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 26



Probabilities for a general Normal RV

Let X~V (u, 0%). To compute the CDF P(X < x) = F(x),
we use @, the CDF for the Standard Normal Z~N (0, 1):

F(x)=c1>(x;“)

1. Computez = (x — u)/o.
2. Look up ®@(z) in Standard Normal table.

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 27




Campus bikes

You spend some minutes, X, traveling between classes.

* Average time spent: u = 4 minutes
- Variance of time spent: 0% = 2 minutes?

Suppose X is normally distributed. What is the probability “
you spend = 6 minutes traveling?

X~N(u=40%=2)

G =32
1. Compute z = S ;“) y 2. Look up ®(z) in table
&
_ 1 _cp(ﬂ) ~1 — 09207
V2 = 0.0793

~1 —P(1.41
( ) Stanford University 28
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Is there an easier way? (yes)

Let X~N (u,0%). Whatis P(X < x) = F(x)?

* Use Python
from scipy import stats SciPy reference:
X = stats.norm(mu , std) https://docs.scipy.org/doc/scipy/refere
X.cdf(x) nce/generated/scipy.stats.norm.html

* Use website tool

CS109 Lectures ~ Problem Sets ~ Section ~ Handouts/Demos ~ We bSIte too I .
- https://web.stanford.edu/class/cs109
CalCUIatOr UIative DenS Python for Probability /ha ndOUtS/norma|CDF'htm|
4 Python Session Slides
mu: Standard Normal Table
4 Density Function (CDF) for

Normal CDF Calculator
std: tn the "Standard Narmal'

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul’liVeI‘Sity 29



https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html
https://web.stanford.edu/class/cs109/handouts/normalCDF.html

(live)
10: The Normal
(Gaussian) Distribution
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The Normal (Gaussian) Random Variable Review

Let X~V (u, 02).

The PDF of X is defined as:
) symmetric
1 (.X' — [i) around u
- 2
f(x) = e 20
</ variance g*
d 27T exponential

normalizing constant 05 - p
0.4 - T
|
0

T
- - f'l 2
Lisa Yan and Jerry Cain, CS109, 2020 X Stanford Ul’llVCI‘Slty 31




Think

Slide 33 has a question to go over by
yourself.

Type and wait: 1: A, 2: B, .

Post any clarifications here or in chat!

https://us.edstem.org/courses/2678/discussion/141411

Think by yourself: 2 min

(b @ )

A

32


https://us.edstem.org/courses/2678/discussion/141411

Normal Random Variable

mean variance

X~N(u, %)

Match PDF to distribution:

1
0.9 - . A.
1. NM(0,1) os - N a
0.7 - A C.
2. N(—2,0.5) 0.6 - Lo |
® 0.5 - (. o
~ 04 - -
3. N(0,5) 03 ) \
0.2 - 47 IR )
e \ ...........
4. I (0,0.2) 0L et I N &
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Normal Random Variable

mean variance

X~N(u, %)

Match PDF to distribution:

1. M(0,1)
0. N(=2,0.5)
2
3. n(0,5)
4. I(0,0.2)

Lisa

1 -
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

o)

(4

.
L)
L]
°
°
L]
L]
°
L]
L]
o'..
[ aad
°®
eo®
XA

Yan and Jerry Cain,



Computing probabilities with Normal RVs: Old school

Standard Normal Table *

Note: An entry in the table is the area under the curve to the left of z. P(Z < 7) = ®(2)

3 2 1 0 1 2 3

Z 0.00 001 0.02 003 0.04 0.05 0.06 0.07 0.08 0.09
0.0 | 0.5000 | 05040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 [ 0.5239 [ 05279 | 05319 | 05359
0.1 |0 5 | 05714 | 05753
02 |o: (I)( ) f - g t 1] 06103 [ 06141
03 | 0. Z) T0r non-negative z 3 | 0.6480 | 06517
04 [ 0.6554 | 06591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879
0.5 | 0.6915 | 06950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 [ 07157 | 07190 | 07224
0.6 | 0725707291 | 07324 | 07357 [ 0.7389 | 0.7422 | 0.7454 [ 07486 | 07517 | 07549

n -

*particularly useful when we have closed book exams with no calculator
**we have open book exams with calculators this quarter

Knowing how to use a Standard Normal Table will
still be useful in our understanding of Normal RVs.

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul’liVeI‘Sity 35




Computing probabilities with Normal RVs

Let X~N (u,0%). Whatis P(X < x) = F(x)?

Rewrite in terms of standard normal CDF & by computing z =

Linear transforms of Normals are Normal:

F(x)=CI)(x_'u)

0]

7 =

(X—u)
o)

Then, look up in a Standard Normal Table, where z = 0.

Symmetry of Normal PDFs implies:
b(—2z)=1— d(2)

Lisa Yan and Jerry Cain, CS109, 2020

(x—

o

u)

, where Z~ N (0,1)

Standard Normal Table

Note: An entry in the table is the area under the curve to the left of

Z 0.00 001 0
0.0 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.}
0.1 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.f

Stantord U
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Get your Gaussian On

Let X~N(u = 3,0% = 16). Std deviation g = 4. + If X~N(u,02), then

1. P(X > 0) Fx) = ()
*  Symmetry of the PDF of
Normal RV implies
d(—z)=1— D(2)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 37




BreakOUt Slide 39 has two questions to go over in
Rooms groups.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/141411

Breakout rooms: 5 mins

38
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Get your Gaussian On

Let X~N(u = 3,0% = 16).
Note standard deviation g = 4.

How would you write each of the below
probabilities as a function of the
standard normal CDF, ®7?

(we just did this)
P2<X<5)
P(|X — 3| > 6)

Yan and Jerry Cain, CS109, 2020

If X~ (u,0%), then
F(x) = @ (ﬂ)

o
Symmetry of the PDF of
Normal RV implies

d(—z)=1— D(2)

~
o

&)

Stanford University 39



Get your Gaussian On

Let X~N(u = 3,0% = 16). Std deviation g = 4. + If X~N(u,02), then
F(x) = @ (x‘—“)

o

2. P(2<X<5) *  Symmetry of the PDF of
' Normal RV implies

d(—z)=1— D(2)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 40




Get your Gaussian On

Let X~N (u = 3,0% = 16). Std deviation ¢ = 4. If X~ (u, 02), then
F(x) = @ (ﬂ)

o

Symmetry of the PDF of

Normal RV implies
P(|X —3| > 6) d(—x) =1 — O(x)

(x—u)
0}

PX<-3)+P(X>9)
=F(-3)+(1-F(9))

-0 (=) +(1-2 ()

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 41
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Get your Gaussian On

Let X~N(u = 3,0% = 16). Std deviation g = 4. + If X~N(u,02), then
F(x) = @ (x‘—“)

o

Symmetry of the PDF of
Normal RV implies

3. P(JX—-3] > 6) d(—x) =1— P(x)
Look up ®(z) in table

Y ()
+(1-00)

~ (0.1337

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 42




Interlude for
jokes/announcements




Announcements

/Applv to Section Lead! \

The application for section leading is now open! Section leaders hired this quarter will start in
Winter 2021. The only requirement is that you complete CS106B/X (or equivalent) by the end of
this quarter; you don’t have to be majoring in CS! We’'re currently accepting applications for
students that have already taken CS106B/X (or equivalent), and the application will be due
Thursday, October 8th at 11:59pm PT. If you’re currently in CS106B, the application will open
Friday, October 9th and will be due on Friday, October 23rd at 11:59pm PT. You can apply

at cs198.stanford.edu. Feel free to email us at cs198@cs.stanford.edu if you have any questions.

\We hope to read your application soon! /

4 N )
Problem Set 3 Friday’s concept check (#12)
Covers: Lecture 11 (Wed 10/7) Extra credit + feedback on Nooks v

\Due: next Friday 1pm/ \Zoom y

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 44
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BreakOUt Slide 46 has two questions to go over in
Rooms groups.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/141411

Breakout rooms: 5 mins

45
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Noisy Wires

Send a voltage of 2V or —2 Von 0.5 9 | =05
wire (to denote 1 and O, respectively). ~ g-;‘ 1
X = voltage sent (2 or —2) = e,
Y = noise% Y~N(0,1) ™ g'i ‘ ol i ey
R = X + Y voltage received. P P, X NG
Decode: 1 ifR>0.5 5 4 3 2 10 1 2 3 45
0 otherwise. R=r

What is P(decoding error | original bitis 1)?
l.e., we sent 1, but we decoded as 07?

What is P(decoding error | original bit is 0)?

These probabilities are unequal. Why might this be useful?

Lisa Yan and Jerry Cain, CS109, 2020
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Noisy Wires

Send a voltage of 2V or —2 Von 0.5 9 | =05
wire (to denote 1 and O, respectively). ~ g-;‘ 1
X = voltage sent (2 or —2) = e,
Y = noise% Y~N(0,1) ™ g'i ‘ ol i ey
R = X + Y voltage received. P . CO
Decode: 1 ifR>0.5 5 4 3 2 10 1 2 3 45
0 otherwise. R=r

What is P(decoding error | original bitis 1)?
l.e., we sent 1, but we decoded as 07?

P(R<05|X=2)=P(R2+Y<05)=P(Y <—-15) YisStandard Normal
— ®(=1.5) = 1 — ®(1.5) ~ 0.0668

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 47




Noisy Wires

Send a voltage of 2V or —2 Von 0.5 9 | =05
wire (to denote 1 and O, respectively). ~ 04 -

X = voltage sent (2 or —2) = 03 Y

Y = noise, Y~N(0,1) = g'i P TSI

R = X + Y voltage received. P . CO
Decode: 1 ifR>0.5 5 4 3 210 1 2 3 4 5

0 otherwise. R=r
0.0668

What is P(decoding error | original bit is 0)?

P(R>05|X=-2)=P(-2+Y >05)=P(Y =>2.5) = 0.0062
Asymetric decoding probability: We would like to avoid
mistaking a O for 1. Errors the other way are tolerable.

Stanford University 48



Challenge:
Sampling with
the Normal RV




ELO ratings

Basketball == Stats
Skill
- & o o' ' YN
inat; IR & \ ==,
Determination

What is the probability that the Warriors win?
How do you model zero-sum games?

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVCI‘Sity 50




ELO ratings

Each team has an ELO score S,
calculated based on their
past performance.

Each game, a team has
ability A~ (S, 200%).
The team with the higher
sampled ability wins.

What is the probability
that Warriors win
this game?

Want: P(Warriors win) = P(Ay, > 4p)

Lisa Yan and Jerry Cain, CS109, 202C

Warriors Ay, ~N' (S = 1657,200%)
0.0025 -
0.002
0.0015
0.001
0.0005

o) |
1000 1500

u=1657

2000 2500

Opponents Ao~N (S = 1470,200%)
0.0025 -
0.002 1
0.0015 -
0.001 A
0.0005 -

O I I I |
1000 1500 2000 2500




ELO ratings

. ~ — 2

Want: P(Warriors win) = P(4y, > Ap) nggg'ors Aw~N (S = 1657,200°)
: ' | =1657

from scipy import stats 0.002 A # .
WARRIORS_ELO = 1657 0.0015 | |
OPPONENT_ELO = 1470 0.001 | |
STDEV = 200 | :
NTRIALS = 10000 0.0005 |

O I | I |
nsuccess = 0 1000 1500 2000 2500
for i in range(NTRIALS): Opponents A,~N'(S = 1470, 2002)

w = stats.norm.rvs(WARRIORS_ELO, STDEV) goo5 -

opp = stats.norm.rvs(OPPONENT_ELO, STDEV 0.007
if w > opp: '

nSuccess += 1 0.0015 4

print("Warriors sampled win fraction", 0.001 -

float(nSuccess) / NTRIALS) 0.0005 -

0 A

~ (.7488, calculated by sampling 1000 15'00 zoloo 25'00
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[s there a better way?

P(Ay > Ap)

* This is a probability of an event
Involving two continuous random variables!

* We’ll solve this problem analytically in two weeks’ time.

Big goal for next time: Events involving two discrete random variables.
Stay tuned!
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