12: Independent RVs

Lisa Yan and Jerry Cain October 9, 2020

Quick slide reference

Independent discrete RVs 12a_independent_rvs 3 Sums of Independent Binomial RVs 12b_sum_binomial 8 Convolution: Sum of independent Poisson RVs 12c_discrete_conv 10 **Exercises** LIVE 17

Lisa Yan and Jerry Cain, CS109, 2020

12a_independent_rvs

Independent Discrete RVs

Independent discrete RVs

Recall the definition of independent events E and E:

$$P(EF) = P(E)P(F)$$

Two discrete random variables X and Y are independent if:

for all
$$x, y$$
:

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$

Different notation. same idea:

- knowing value of X tells us nothing about Intuitively: the distribution of *Y* (and vice versa)
- If two variables are not independent, they are called dependent.

Dice (after all this time, still our friends)

 D_1 and D_2 be the outcomes of two rolls Let: $S = D_1 + D_2$, the sum of two rolls

- Each roll of a 6-sided die is an independent trial.
- Random variables D_1 and D_2 are independent.
- 1. Are events $(D_1 = 1)$ and (S = 7) independent?
- 2. Are events $(D_1 = 1)$ and (S = 5) independent?
- 3. Are random variables D_1 and S independent?

Dice (after all this time, still our friends)

 D_1 and D_2 be the outcomes of two rolls Let: $S = D_1 + D_2$, the sum of two rolls

- Each roll of a 6-sided die is an independent trial.
- Random variables D_1 and D_2 are independent.
- 1. Are events $(D_1 = 1)$ and (S = 7) independent?
- 2. Are events $(D_1 = 1)$ and \times (S = 5) independent?
- 3. Are random variables D_1 and S independent?

All events (X = x, Y = y) must be independent for X, Y to be independent RVs.

What about continuous random variables?

Continuous random variables can also be independent! We'll see this later.

Today's goal:

How can we model **sums** of discrete random variables?

Big motivation: Model total successes observed over

multiple experiments

Sums of independent Binomial RVs

Sum of independent Binomials

$$X \sim \text{Bin}(n_1, p)$$

 $Y \sim \text{Bin}(n_2, p)$
 $X + Y \sim \text{Bin}(n_1 + n_2, p)$
 $X, Y \text{ independent}$

Intuition:

- Each trial in *X* and *Y* is independent and has same success probability *p*
- Define Z=# successes in n_1+n_2 independent trials, each with success probability $p. Z \sim Bin(n_1 + n_2, p)$, and also Z = X + Y

Holds in general case:

$$X_i \sim \text{Bin}(n_i, p)$$

 X_i independent for $i = 1, ..., n$

$$\sum_{i=1}^{n} X_i \sim \text{Bin}(\sum_{i=1}^{n} n_i, p)$$

If only it were always so simple...

12c_discrete_conv

Convolution: Sum of independent Poisson RVs

Convolution: Sum of independent random variables

For any discrete random variables *X* and *Y*:

$$P(X + Y = n) = \sum_{k} P(X = k, Y = n - k)$$

In particular, for independent discrete random variables X and Y:

$$P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)$$

the convolution of p_X and p_Y

Insight into convolution

For independent discrete random variables *X* and *Y*:

$$P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)$$

the convolution of p_X and p_Y

Suppose *X* and *Y* are independent, both with support $\{0, 1, ..., n, ...\}$:

					X			
		0	1	2		n	n+1	
	0					V		
					•••			
	n-2			V				
Y	n-1		V					
	n	V						
	n+1							

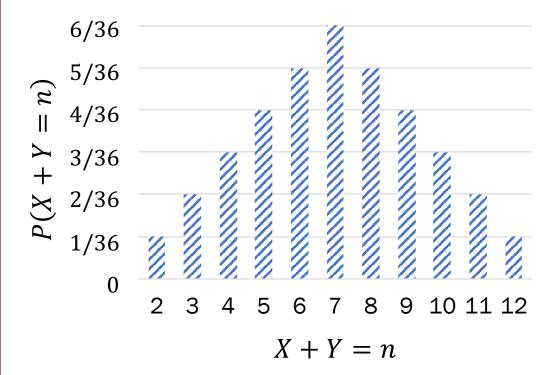
- \checkmark : event where X + Y = n
- Each event has probability:

$$P(X = k, Y = n - k)$$

$$= P(X = k)P(Y = n - k)$$
(because X, Y are independent)

• P(X + Y = n) = sum ofmutually exclusive events

Sum of 2 dice rolls



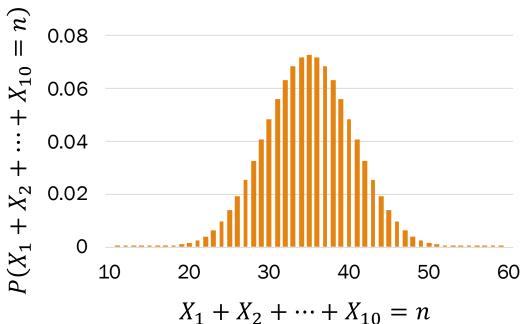
The distribution of a sum of 2 dice rolls is a convolution of 2 PMFs.

Example:

$$P(X + Y = 4) =$$

 $P(X = 1)P(Y = 3)$
 $+ P(X = 2)P(Y = 2)$
 $+ P(X = 3)P(Y = 1)$

Sum of 10 dice rolls (fun preview)



The distribution of a sum of 10 dice rolls is a convolution <u>10</u> PMFs.

> Looks kinda Normal...??? (more on this in Week 7)

Sum of independent Poissons

$$X \sim \text{Poi}(\lambda_1), Y \sim \text{Poi}(\lambda_2)$$

 $X \sim \text{Poi}(\lambda_1), Y \sim \text{Poi}(\lambda_2)$
 $X \sim \text{Poi}(\lambda_1), Y \sim \text{Poi}(\lambda_2)$
 $X \sim \text{Poi}(\lambda_1), Y \sim \text{Poi}(\lambda_2)$

Proof (just for reference):

$$P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)$$

$$= \sum_{k=0}^{n} e^{-\lambda_{1}} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{2}} \frac{\lambda_{2}^{n-k}}{(n-k)!} = e^{-(\lambda_{1}+\lambda_{2})} \sum_{k=0}^{n} \frac{\lambda_{1}^{k} \lambda_{2}^{n-k}}{k! (n-k)!}$$

$$= \frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!} \sum_{k=0}^{n} \frac{n!}{k! (n-k)!} \lambda_{1}^{k} \lambda_{2}^{n-k} = \frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!} (\lambda_{1} + \lambda_{2})^{n}$$
Poi $(\lambda_{1} + \lambda_{2})$

X and Y independent, convolution

PMF of Poisson RVs

Binomial Theorem:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

General sum of independent Poissons

Holds in general case:

$$X_i {\sim} \mathsf{Poi}(\lambda_i) \\ X_i \text{ independent for } i = 1, \dots, n$$

$$\sum_{i=1}^{n} X_i \sim \text{Poi}(\sum_{i=1}^{n} \lambda_i)$$

Lisa Yan and Jerry Cain, CS109, 2020

(live) 12: Independent RVs

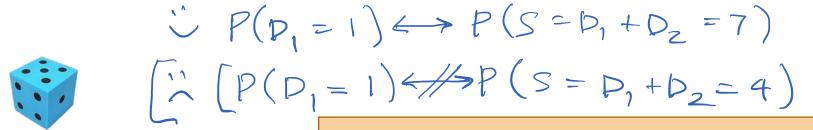
Lisa Yan and Jerry Cain October 9, 2020

Quiz #1 is D-O-N-E done!

Two discrete random variables X and Y are independent if:

for all
$$x, y$$
:
$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

$$p_{X,Y}(x, y) = p_X(x)p_Y(y)$$



The sum of 2 dice and the outcome of 1st die are dependent RVs.

Important: Joint PMF must decompose into product of marginal PMFs for ALL values of X and Y for X, Y to be independent RVs.

Think

Slide 21 has a question to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/141413

Think by yourself: 2 min

Coin flips

Flip a coin with probability p of "heads" a total of n+m times.

 $X = \text{number of heads in first } n \text{ flips. } X \sim \text{Bin}(n, p)$ Let

 $Y = \text{number of heads in next } m \text{ flips. } Y \sim \text{Bin}(m, p)$

Z = total number of heads in n + m flips.

- 1. Are X and Z independent?
- 2. Are X and Y independent?

Coin flips

Flip a coin with probability p of "heads" a total of n+m times.

X = number of heads in first n flips. $X \sim \text{Bin}(n,p)$ Let

Y = number of heads in next m flips. $Y \sim \text{Bin}(m, p)$

Z = total number of heads in n + m flips.

1. Are X and Z independent?

Counterexample: What if Z=0?

2. Are X and Y independent?

= P(X = x)P(Y = y)

first n flips have x heads P(X=x,Y=y)=Pand next m flips have y heads y # of mutually exclusive outcomes in event P(each outcome)

This probability (found through counting) is the product of the marginal PMFs.

Sum of independent Poissons

$$X \leftarrow \text{Poi}(\lambda_1), Y \sim \text{Poi}(\lambda_2)$$
 $X \leftarrow Y \leftarrow \text{Poi}(\lambda_1), Y \sim \text{Poi}(\lambda_2)$
 $X \leftarrow Y \leftarrow \text{Poi}(\lambda_1 + \lambda_2)$
 $X \leftarrow Y \leftarrow \text{Poi}(\lambda_1 + \lambda_2)$

- n servers with independent number of requests/minute
- Server i's requests each minute can be modeled as $X_i \sim Poi(\lambda_i)$

What is the probability that the total number of web requests received at all servers in the next minute exceeds 10?

$$\frac{P(X > 10)}{Y}$$

$$X = X_1 + X_2 + X_3 + \dots + X_n$$

$$Poi(X) = Poi(X_1 + \lambda_2 + \dots + \lambda_n)$$

Breakout Rooms

Slide 25 has two questions to go over in groups.

ODD breakout rooms: Try question 1 EVEN breakout rooms: Try question 2

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/141413

Breakout rooms: 5 min. Introduce yourself!

Independent questions

- 1. Let $X \sim \text{Bin}(30, 0.01)$ and $Y \sim \text{Bin}(50, 0.02)$ be independent RVs.
 - How do we compute P(X + Y = 2) using a Poisson approximation?
 - How do we compute P(X + Y = 2) exactly?
- 2. Let N = # of requests to a web server per day. Suppose $N \sim \text{Poi}(\lambda)$.
- Each request independently comes from a human (prob. p), or bot (1-p).
- Let X be # of human requests/day, and Y be # of bot requests/day.

Are X and Y independent? What are their marginal PMFs?

1. Approximating the sum of independent Binomial RVs

Let $X \sim \text{Bin}(30,0.01)$ and $Y \sim \text{Bin}(50,0.02)$ be independent RVs.

• How do we compute P(X + Y = 2) using a Poisson approximation?

$$\begin{array}{l} \text{Y:} \quad \lambda_{A} = 30.4, \text{ o} 1 = 0.3 \\ \text{Y:} \quad \lambda_{B} = 50 \times .02 = 1.0 \\ \text{Bin} \left(80, 1.44 \right) \\ \text{O on the limit of the points of the po$$

2. Web server requests

Let N = # of requests to a web server per day. Suppose $N \sim Poi(\lambda)$.

- Each request independently comes from a human (prob. p), or bot (1 p)
- Let X be # of human requests/day, and Y be # of bot requests/day.

Are X and Y independent? What are their marginal PMFs?

$$P(X = n, Y = m) = P(X = n, Y = m | N = n + m) P(N = n + m)$$

$$+P(X = n, Y = m | N \neq n + m) P(N \neq n + m)$$

$$= P(X = n | N = n + m) P(Y = m) X = n, N = n + m) P(N = n + m)$$

$$= (n + m) P(1 + p) P(N = n + m)$$

$$= (n + m) P(1 + p) P(N = n + m)$$

$$= (n + m) P(N = n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n + m)$$

$$= (n + m) P(N = n)$$

$$= (n + m) P(N =$$

Interlude for announcements

Announcements

Quiz #1

Grades/solutions:

Next week

Problem Set 3

Monday 10/16 1pm Due:

Covers: Up to and including Lecture 11

CS109 Contest

Make up any part(s) of your grade **Details** Next week

Interesting probability news

Column: Did Astros beat the Dodgers by cheating? The numbers say no

"...new analyses of the Astros' 2017 season by baseball's corps of unofficial statisticians — "sabermetricians," to the sport indicate that the Astros didn't gain anything from their cheating; in fact, it may have hurt them."

https://www.latimes.com/business/story/2020-02-27/astros-cheating-analysis

https://www.theguardian.com/sport/2020/jan/17/ houston-astros-sign-stealing-cheating-scandal

Independence of multiple random variables

Recall independence of n events E_1, E_2, \dots, E_n :

for
$$r=1,\ldots,n$$
: for every subset E_1,E_2,\ldots,E_r :
$$P(E_1,E_2,\ldots,E_r)=P(E_1)P(E_2)\cdots P(E_r)$$

We have independence of n discrete random variables $X_1, X_2, ..., X_n$ if for all $x_1, x_2, ..., x_n$:

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n) = \prod_{i=1}^{n} P(X_i = x_i)$$

Independence is symmetric

If X and Y are independent random variables, then X is independent of Y, and Y is independent of X

Let N be the number of times you roll 2 dice repeatedly until a 4 is rolled (the player wins), or a 7 is rolled (the player loses).

Let X be the value (4 or 7) of the final throw.

• Is *N* independent of *X*?
$$P(N = n | X = 7) = P(N = n)$$
? $P(N = n | X = 4) = P(N = n)$?

• Is
$$X$$
 independent of N ?
$$P(X=4|N=n) = P(X=4)?$$
 (yes, easier
$$P(X=7|N=n) = P(X=7)?$$
 to intuit)

Redux: Independence is not always intuitive, but it is always symmetric.

Statistics on Two RVs

Expectation and Covariance

In real life, we often have many RVs interacting at once.

- We've seen some simpler cases (e.g., sum of independent Poissons).
- Computing joint PMFs in general is hard!
- But often you don't need to model joint RVs completely.

Instead, we'll focus next on reporting statistics of multiple RVs:

- **Expectation**: sum of RV expectations == expectation of RV sums
- **Covariance:** measure of how two RVs vary with each other (coming soon)

Properties of Expectation, extended to two RVs

1. Linearity:

$$E[aX + bY + c] = aE[X] + bE[Y] + c$$

Expectation of a sum = sum of expectation:

$$E[X + Y] = E[X] + E[Y]$$

(we've seen this: we'll prove this next)

Unconscious statistician:

$$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$$

True for both independent and dependent random variables!

Proof of expectation of a sum of RVs

E[X + Y] = E[X] + E[Y]

$$E[X + Y] = \sum_{x} \sum_{y} (x + y) p_{X,Y}(x, y)$$

$$= \sum_{x} \sum_{y} x p_{X,Y}(x, y) + \sum_{x} \sum_{y} y p_{X,Y}(x, y)$$

$$= \sum_{x} x \sum_{y} p_{X,Y}(x, y) + \sum_{y} y \sum_{x} p_{X,Y}(x, y)$$

$$= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)$$

= E[X] + E[Y]

LOTUS,
$$g(X,Y) = X + Y$$

Linearity of summations (cont. case: linearity of integrals)

Marginal PMFs for X and Y

Expectations of common RVs: Binomial

Review

$$X \sim Bin(n, p)$$
 $E[X] = np$

of successes in n independent trials with probability of success p

Recall: Bin(1, p) = Ber(p)

$$X = \sum_{i=1}^{n} X_i$$

Let
$$X_i = i$$
th trial is heads $X_i \sim \text{Ber}(p), E[X_i] = p$

Let
$$X_i = i$$
th trial is heads $X_i \sim \text{Ber}(p)$, $E[X_i] = p$
$$E[X] = E\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n E[X_i] = \sum_{i=1}^n p = np$$