12: Independent RVs

Lisa Yan and Jerry Cain October 9, 2020

Quick slide reference

- 3 Independent discrete RVs 12a_independent_rvs
- 8 Sums of Independent Binomial RVs 12b_sum_binomial
- 10 Convolution: Sum of independent Poisson RVs 12c_discrete_conv
- 17 Exercises

LIVE

Lisa Yan and Jerry Cain, CS109, 2020

12a_independent_rvs

3

Independent Discrete RVs

Independent discrete RVs

Recall the definition of independent events *E* and *F*:

$$P(EF) = P(E)P(F)$$

Two discrete random variables *X* and *Y* are **independent** if:

Different notation, same idea:

for all
$$x, y$$
:
 $P(X = x, Y = y) = P(X = x)P(Y = y)$

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$

- Intuitively: knowing value of X tells us nothing about the distribution of Y (and vice versa)
- If two variables are not independent, they are called dependent.

Lisa Yan and Jerry Cain, CS109, 2020

Dice (after all this time, still our friends)

- Let: D_1 and D_2 be the outcomes of two rolls $S = D_1 + D_2$, the sum of two rolls
- Each roll of a 6-sided die is an independent trial.
- Random variables D_1 and D_2 are independent.
- 1. Are events $(D_1 = 1)$ and (S = 7) independent?
- 2. Are events $(D_1 = 1)$ and (S = 5) independent?
- **3.** Are random variables D_1 and S independent?

Lisa Yan and Jerry Cain, CS109, 2020

Dice (after all this time, still our friends)

- Let: D_1 and D_2 be the outcomes of two rolls $S = D_1 + D_2$, the sum of two rolls
- Each roll of a 6-sided die is an independent trial.
- Random variables D_1 and D_2 are independent.
- **1.** Are events $(D_1 = 1)$ and \checkmark (S = 7) independent?
- 2. Are events $(D_1 = 1)$ and (S = 5) independent?
- **3.** Are random variables D_1 and S independent?

All events (X = x, Y = y) must be independent for X, Y to be independent RVs.

Lisa Yan and Jerry Cain, CS109, 2020

Х

What about continuous random variables?

Continuous random variables can also be independent! We'll see this later.

Today's goal:

How can we model <u>sums</u> of discrete random variables?

Big motivation: Model total successes observed over multiple experiments

Lisa Yan and Jerry Cain, CS109, 2020

12b_sum_binomial

Sums of independent Binomial RVs

Sum of independent Binomials

 $X \sim Bin(n_1, p)$ $Y \sim Bin(n_2, p)$ X, Y independent

$$X + Y \sim \operatorname{Bin}(n_1 + n_2, p)$$

Intuition:

- Each trial in X and Y is independent and has same success probability p
- Define Z = # successes in $n_1 + n_2$ independent trials, each with success probability $p. Z \sim Bin(n_1 + n_2, p)$, and also Z = X + Y

Holds in general case: $X_i \sim Bin(n_i, p)$ X_i independent for i = 1, ..., n $X_i \sim Bin(\sum_{i=1}^n n_i, p)$ Lisa Yan and Jerry Cain, CS109, 2020 $\sum_{i=1}^n X_i \sim Bin(\sum_{i=1}^n n_i, p)$

If only it were always so simple... Stanford University 9

12c_discrete_conv

Convolution: Sum of independent Poisson RVs

Convolution: Sum of independent random variables

For any discrete random variables *X* and *Y*:

$$P(X + Y = n) = \sum_{k} P(X = k, Y = n - k)$$

In particular, for independent discrete random variables *X* and *Y*:

$$P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)$$

the convolution of p_X and p_Y

Lisa Yan and Jerry Cain, CS109, 2020

Insight into convolution

For independent discrete random variables *X* and *Y*:

$$P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)$$

the convolution of p_X and p_Y

Suppose *X* and *Y* are independent, both with support {0, 1, ..., *n*, ... }:

✓: event where X + Y = nEach event has probability: P(X = k, Y = n - k)= P(X = k)P(Y = n - k)(because *X*, *Y* are independent) P(X + Y = n) = sum ofmutually exclusive events Stanford University 12

Sum of 2 dice rolls

The distribution of a sum of $\underline{2}$ dice rolls is a convolution of $\underline{2}$ PMFs.

Example: P(X + Y = 4) = P(X = 1)P(Y = 3) + P(X = 2)P(Y = 2)+ P(X = 3)P(Y = 1)

Lisa Yan and Jerry Cain, CS109, 2020

Sum of 10 dice rolls (fun preview)

....

The distribution of a sum of 10 dice rolls is a convolution <u>10</u> PMFs.

:: •

Looks kinda Normal...??? (more on this in Week 7)

Lisa Yan and Jerry Cain, CS109, 2020

Sum of independent Poissons

 $X \sim \text{Poi}(\lambda_1), Y \sim \text{Poi}(\lambda_2)$ X, Y independent

$$X + Y \sim \operatorname{Poi}(\lambda_1 + \lambda_2)$$

15

Proof (just for reference):

$$P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)$$

$$= \sum_{k=0}^{n} e^{-\lambda_{1}} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{2}} \frac{\lambda_{2}^{n-k}}{(n-k)!} = e^{-(\lambda_{1}+\lambda_{2})} \sum_{k=0}^{n} \frac{\lambda_{1}^{k} \lambda_{2}^{n-k}}{k! (n-k)!}$$

$$= \frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!} \sum_{k=0}^{n} \frac{n!}{k! (n-k)!} \lambda_{1}^{k} \lambda_{2}^{n-k} = \frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!} (\lambda_{1} + \lambda_{2})^{n}$$

$$= \frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!} \sum_{k=0}^{n} \frac{n!}{k! (n-k)!} \lambda_{1}^{k} \lambda_{2}^{n-k} = \frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!} (\lambda_{1} + \lambda_{2})^{n}$$

$$= \frac{Poi(\lambda_{1} + \lambda_{2})}{n!} \sum_{k=0}^{n} \frac{n!}{k! (n-k)!} \lambda_{1}^{k} \lambda_{2}^{n-k} = \frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!} (\lambda_{1} + \lambda_{2})^{n}$$

$$= \frac{Poi(\lambda_{1} + \lambda_{2})}{n!} \sum_{k=0}^{n} \frac{n!}{k! (n-k)!} \lambda_{1}^{k} \lambda_{2}^{n-k} = \frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!} (\lambda_{1} + \lambda_{2})^{n}$$

$$= \frac{Poi(\lambda_{1} + \lambda_{2})}{n!} \sum_{k=0}^{n} \frac{n!}{k!} (\lambda_{1}^{k} + \lambda_{2})^{n}$$

$$= \frac{Poi(\lambda_{1} + \lambda_{2})}{n!} \sum_{k=0}^{n} \frac{n!}{k!} (\lambda_{1}^{k} + \lambda_{2})^{n}$$

$$= \frac{Poi(\lambda_{1} + \lambda_{2})}{n!} \sum_{k=0}^{n} \frac{n!}{k!} (\lambda_{1}^{k} + \lambda_{2})^{n}$$

$$= \frac{Poi(\lambda_{1} + \lambda_{2})}{n!} \sum_{k=0}^{n} \frac{n!}{k!} \sum_{k=0}^{n} \frac{n!}{$$

General sum of independent Poissons

Holds in general case:

$$X_i \sim \text{Poi}(\lambda_i)$$

 X_i independent for $i = 1, ..., n$

$$\sum_{i=1}^{n} X_i \sim \operatorname{Poi}(\sum_{i=1}^{n} \lambda_i)$$

Lisa Yan and Jerry Cain, CS109, 2020

(live) 12: Independent RVs

Lisa Yan and Jerry Cain October 9, 2020

Quiz #1 is D-O-N-E done!

Lisa Yan and Jerry Cain, CS109, 2020

Independent discrete RVs

Review

Two discrete random variables *X* and *Y* are **independent** if:

for all x, y: P(X = x, Y = y) = P(X = x)P(Y = y) $p_{X,Y}(x, y) = p_X(x)p_Y(y)$

The sum of 2 dice and the outcome of 1^{st} die are **dependent RVs**. **Important**: Joint PMF must decompose into product of marginal PMFs for ALL values of *X* and *Y* for *X*, *Y* to be independent RVs.

Lisa Yan and Jerry Cain, CS109, 2020

Think

Slide 21 has a question to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/141413

Think by yourself: 2 min

20

Coin flips

Flip a coin with probability p of "heads" a total of n + m times.

- Let X = number of heads in first *n* flips. $X \sim Bin(n, p)$
 - Y = number of heads in next m flips. $Y \sim Bin(m, p)$
 - Z =total number of heads in n + m flips.
- 1. Are *X* and *Z* independent?
- 2. Are X and Y independent?

Lisa Yan and Jerry Cain, CS109, 2020

Coin flips

Lisa Yan and Jerry Cain, CS109, 2020

Sum of independent Poissons

 $X \sim \text{Poi}(\lambda_1), Y \sim \text{Poi}(\lambda_2)$ X, Y independent

 $X + Y \sim \text{Poi}(\lambda_1 + \lambda_2)$

- *n* servers with independent number of requests/minute
- Server *i*'s requests each minute can be modeled as $X_i \sim \text{Poi}(\lambda_i)$

What is the probability that the total number of web requests received at all servers in the next minute exceeds 10?

Lisa Yan and Jerry Cain, CS109, 2020

Breakout Rooms

Slide 25 has two questions to go over in groups.

ODD breakout rooms: Try question 1 EVEN breakout rooms: Try question 2

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/141413

Breakout rooms: 5 min. Introduce yourself!

Independent questions

- 1. Let $X \sim Bin(30, 0.01)$ and $Y \sim Bin(50, 0.02)$ be independent RVs.
 - How do we compute P(X + Y = 2) using a Poisson approximation?
 - How do we compute P(X + Y = 2) exactly?
- 2. Let N = # of requests to a web server per day. Suppose $N \sim \text{Poi}(\lambda)$.
 - Each request independently comes from a human (prob. p), or bot (1 p).
 - Let X be # of human requests/day, and Y be # of bot requests/day.

Are X and Y independent? What are their marginal PMFs?

Lisa Yan and Jerry Cain, CS109, 2020

1. Approximating the sum of independent Binomial RVs

Let $X \sim Bin(30, 0.01)$ and $Y \sim Bin(50, 0.02)$ be independent RVs.

• How do we compute P(X + Y = 2) using a Poisson approximation?

• How do we compute
$$P(X + Y = 2)$$
 exactly?
 $P(X + Y = 2) = \sum_{k=0}^{2} P(X = k)P(Y = 2 - k)$
 $= \sum_{k=0}^{2} {\binom{30}{k}} 0.01^{k} (0.99)^{30-k} {\binom{50}{2-k}} 0.02^{2-k} 0.98^{50-(2-k)} \approx 0.2327$
Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 26

2. Web server requests

Let N = # of requests to a web server per day. Suppose $N \sim Poi(\lambda)$.

- Each request independently comes from a human (prob. p), or bot (1 p).
- Let *X* be *#* of human requests/day, and *Y* be *#* of bot requests/day.

Are X and Y independent? What are their marginal PMFs?

$$P(X = n, Y = m) = P(X = n, Y = m | N = n + m)P(N = n + m)$$

$$+P(X = n, Y = m | N \neq n + m)P(N \neq n + m)$$
Law of Total
Probability
Probability

$$= P(X = n | N = n + m)P(Y = m | X = n, N = n + m)P(N = n + m)$$
 Chain Rule

$$= {\binom{n+m}{n}} p^n (1-p)^m \cdot 1 \cdot e^{-\lambda} \frac{\lambda^{n+m}}{(n+m)!} \quad \text{Given } N = n+m \text{ indep. trials,} \\ X|N = n+m\sim\text{Bin}(n+m,p) \\ = \frac{(n+m)!}{n!m!} e^{-\lambda} \frac{(\lambda p)^n (\lambda (1-p))^m}{(n+m)!} = e^{-\lambda p} \frac{(\lambda p)^n}{n!} \cdot e^{-\lambda (1-p)} \frac{(\lambda (1-p))^m}{m!} \\ = P(X = n)P(Y = m) \quad \text{where } X \sim \text{Poi}(\lambda p), Y \sim \text{Poi}(\lambda (1-p)) \quad \text{Yes, } X \text{ and } Y \text{ are independent!} \\ \end{cases}$$

Lisa Yan and Jerry Cain, CS109, 2020

Interlude for announcements

Announcements

<u>Quiz #1</u>

Grades/solutions: Next week

Problem Set 3

Due:Monday 10/16 1pmCovers:Up to and including Lecture 11

CS109 Contest

Make up any part(s) of your grade Details Next week

Lisa Yan and Jerry Cain, CS109, 2020

Interesting probability news

Column: Did Astros beat the Dodgers by cheating? The numbers say no

"...new analyses of the Astros' 2017 season by baseball's corps of unofficial statisticians — "<u>sabermetricians</u>," to the sport indicate that the Astros didn't gain anything from their cheating; in fact, it may have hurt them."

https://www.latimes.com/business/story/2020-02-27/astros-cheating-analysis

https://www.theguardian.com/sport/2020/jan/17/h ouston-astros-sign-stealing-cheating-scandal

Lisa Yan and Jerry Cain, CS109, 2020

Independence of multiple random variables

Recall independence of n events E_1, E_2, \dots, E_n :

for r = 1, ..., n: for every subset $E_1, E_2, ..., E_r$: $P(E_1, E_2, ..., E_r) = P(E_1)P(E_2) \cdots P(E_r)$

We have independence of *n* discrete random variables $X_1, X_2, ..., X_n$ if for all $x_1, x_2, ..., x_n$:

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \prod_{i=1}^n P(X_i = x_i)$$

Lisa Yan and Jerry Cain, CS109, 2020

Independence is symmetric

If X and Y are independent random variables, then X is independent of Y, and Y is independent of X

Let *N* be the number of times you roll 2 dice repeatedly until a 4 is rolled (the player wins), or a 7 is rolled (the player loses).

Let *X* be the value (4 or 7) of the final throw.

 Is N independent of X? 	P(N = n X = 7) = P(N = n)? P(N = n X = 4) = P(N = n)?	
 Is X independent of N? 	P(X = 4 N = n) = P(X = 4)? P(X = 7 N = n) = P(X = 7)?	(yes, easier to intuit)

Redux: Independence is not always intuitive, but it is always symmetric.

Lisa Yan and Jerry Cain, CS109, 2020

Statistics on Two RVs

Expectation and Covariance

In real life, we often have many RVs interacting at once.

- We've seen some simpler cases (e.g., sum of independent Poissons).
- Computing joint PMFs in general is hard!
- But often you don't need to model joint RVs completely.

Instead, we'll focus next on reporting statistics of multiple RVs:

- **Expectation:** sum of RV expectations == expectation of RV sums
- Covariance: measure of how two RVs vary with each other (coming soon)

Properties of Expectation, extended to two RVs

E[aX + bY + c] = aE[X] + bE[Y] + c

2. Expectation of a sum = sum of expectation: E[X + Y] = E[X] + E[Y]

3. Unconscious statistician:

1. Linearity:

$$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$$

Lisa Yan and Jerry Cain, CS109, 2020

True for both independent and dependent random variables!

Proof of expectation of a sum of RVs

$$E[X + Y] = \sum_{x} \sum_{y} (x + y)p_{X,Y}(x, y)$$

$$= \sum_{x} \sum_{y} xp_{X,Y}(x, y) + \sum_{x} \sum_{y} yp_{X,Y}(x, y)$$

$$= \sum_{x} x \sum_{y} p_{X,Y}(x, y) + \sum_{y} y \sum_{x} p_{X,Y}(x, y)$$

$$= \sum_{x} x \sum_{y} p_{X,Y}(x, y) + \sum_{y} y \sum_{x} p_{X,Y}(x, y)$$

$$= \sum_{x} x p_{X}(x) + \sum_{y} yp_{Y}(y)$$

$$= E[X] + E[Y]$$

$$E[X] + E[Y]$$

Expectations of common RVs: Binomial

Review

 $X \sim Bin(n, p) \quad E[X] = np$

of successes in n independent trials with probability of success p

Recall: Bin(1, p) = Ber(p)

$$X = \sum_{i=1}^{n} X_i$$

Let $X_i = i$ th trial is heads $X_i \sim \text{Ber}(p), E[X_i] = p$ $E[X] = E\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n E[X_i] = \sum_{i=1}^n p = np$

Lisa Yan and Jerry Cain, CS109, 2020