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12a_independent_rvs

Independent
Discrete RVs




Independent discrete RVs

Recall the definition of independent P(EF) = P(E)P(F)
events £ and F:

Two discrete random variables X and Y are independent if:

for all x, y:
PX=x,Y=y)=PX=x)P(Y =vy)
Differer;g?:zggg; pxy(x,y) = px(X)py (¥)
Intuitively: knowing value of X tells us nothing about

the distribution of Y (and vice versa)
If two variables are not independent, they are called dependent.
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Dice (after all this time, still our friends)

Let: D, and D, be the outcomes of two rolls
S = D{ + D,, the sum of two rolls

Each roll of a 6-sided die is an independent trial.
Random variables D; and D, are independent.

Are events (D; = 1) and
(S = 7) independent?

Are events (D; = 1) and
(S = 5) independent?

Are random variables D; and S independent?
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Dice (after all this time, still our friends)

Let: D, and D, be the outcomes of two rolls
S = D{ + D,, the sum of two rolls

Each roll of a 6-sided die is an independent trial.
Random variables D; and D, are independent.

Are events (D; = 1) and
(S = 7) independent?

Are events (D; = 1) and X
(S = 5) independent?

Are random variables D; and S independent? X

All events (X = x,Y = y) must be independent for X, Y to be independent RVs.
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What about continuous random variables?

Continuous random variables can also be independent! We’ll see this later.

Today’s goal:
How can we model sums of discrete random variables?

Big motivation: Model total successes observed over
multiple experiments
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12b_sum_binomial

Sums of
independent
Binomial RVs




Sum of independent Binomials

X~Bin(nq, p)
Y ~Bin(ny, p) X +Y ~Bin(ny + ny, p)
X,Y independent

Intuition:

Each trial in X and Y is independent and has same success probability p

Define Z =# successes in n; + n, independent trials, each with success
probability p. Z~Bin(n; + n,,p),andalsoZ =X +Y

Holds in general case:

n n

. , If only it
X~8in(r, p) D Xi~Bn() nip) WL
X; independentfori =1,...,n — =1 simple...

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University o



12c_discrete_conv

Convolution:
Sum of
independent
Poisson RVs




Convolution: Sum of independent random variables

For any discrete random variables X and Y

P(X+Y=n)=ZP(X=k,Y=n—k)
K

In particular, for independent discrete random variables X and Y

P(X+Y=n)=ZP(X=k)P(Y=n—k)
k

the convolution of py and py
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Insight into convolution

For independent discrete random variables X and Y

PX+Y=n)= 2 PX =k)P(Y =n—k) the convolution
T of pxy and py
Suppose X and Y are independent, both with support {0, 1, ..., n, ... }:

X
0 1 2 n n+1

V:eventwhere X +Y =n

0 v Each event has probability:
PX=kY=n—-k)

-2
. v, v = P(X = k)P(Y =n — k)
" (because X, Y are independent)
"1 v P(X +Y =n) = sum of
n+

mutually exclusive events
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Sum of 10 dice rolls (fun preview)

The distribution of a sum of
10 dice rolls is a convolution
| 10 PMFs.
__________ ||I||||| |‘|IIII|.--------- L ks ki d N | PP
10 20 30 40 50 60 OOKS KiINnda Normal...7 ¢«

(more on this in Week 7)
X1 +X2 + "‘+X10 =n
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Sum of independent Poissons

X~Poi(4,),Y~Poi(4,) :
X(,)II/ inldependerllt i X+Y NPOI(Al + AZ)

Proof (just for reference):

_ _ _ — o X and Y independent,
P(X+Y =n)= Z P(X = K)P(Y = 1 — k) X and 1 in
n k n—k n k yn—k
— z e~ )l_e —; A2 — o~ A1+23) z 1 A2 PMF of Poisson RVs
k! (n—k)! k!(n—k)!
k=0 k_
e —(A1+45) e~ (A1+13) Binomial Thenorem:
k yn—-k _ n
- z k! (n ot A A2 n! (g +42) (a+Db)" = z (7) akbn*
L J k=0

e PO+ 22)
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General sum of independent Poissons

Holds in general case:

n n
Xl""POi(/li) Z . z

X; independent fori =1, ...,n X;~Poi( ) 4;)
=1 i=1
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Quiz #1 is D-O-N-E done!
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Independent discrete RVs Review

Two discrete random variables X and Y are independent if:

for all x, y:
PX=x,Y=y)=PX=x)P(Y =vy)

pxy(x,y) = px()py(y)

Important: Joint PMF must decompose into
product of marginal PMFs for ALL values of X
and Y for X,Y to be independent RVs.

The sum of 2 dice and
the outcome of 15t die
are dependent RVs.
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Think

Slide 21 has a question to go over by
yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/141413

Think by yourself: 2 min


https://us.edstem.org/courses/2678/discussion/141413

Coin flips

Flip a coin with probability p of “heads” a total of n + m times.

Let X = number of heads in first n flips. X~Bin(n, p)
Y = number of heads in next m flips. Y~Bin(m, p)
/ = total number of heads in n + m flips.

Are X and Z independent?
Are X and Y independent?

(bi&)‘/:@.ﬁélf)
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Coin flips

Flip a coin with probability p of “heads” a total of n + m times.

Let X = number of heads in first n flips. X~Bin(n, p)
Y = number of heads in next m flips. Y ~Bin(m, p)
/Z = total number of heads in n + m flips.

Are X and Z independent? X Counterexample: What if Z = 07

Are X and Y independent?
{ # of mutually exclusive | (n) (m)
first n ﬂipS have x heads ) outcomes in event  \x/\y

and next m flips have y heads P(each outcome)
=p (A =p)"p?A —p)"7

P(X=x,Y=y)=P(

= (Z) p*(1—p)*=* (7;1) pY(1—p)™™?

This probability (found through

=P(X =x)P(Y =) counting) is the product of the
marginal PMFs.
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Sum of independent Poissons

X~Poi(1,), Y ~Poi(1,) X +Y ~Poi(A + 1,)

X,Y independent

n servers with independent number of requests/minute
Server i’s requests each minute can be modeled as X;~Poi(4;)

What is the probability that the total number of web requests received at all
servers in the next minute exceeds 107
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Breakout
Rooms

Slide 25 has two questions to go over in
groups.

ODD breakout rooms: Try question 1
EVEN breakout rooms: Try question 2

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/141413

Breakout rooms: 5 min. Introduce yourself!

=
o0

pa—

24


https://us.edstem.org/courses/2678/discussion/141413

Independent questions

Let X~Bin(30,0.01) and Y~Bin(50,0.02) be independent RVs.
How do we compute P(X + Y = 2) using a Poisson approximation?
How do we compute P(X + Y = 2) exactly?

Let N = # of requests to a web server per day. Suppose N~Poi(1).
Each request independently comes from a human (prob. p), or bot (1 — p).
Let X be # of human requests/day, and Y be # of bot requests/day.

Are X and Y independent? What are their marginal PMFs?

=)
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Approximating the sum of independent Binomial RVs

Let X~Bin(30,0.01) and Y~Bin(50, 0.02) be independent RVs.

How do we compute P(X + Y = 2) using a Poisson approximation?

How do we compute P(X + Y = 2) exactly?
2

PX+Y=2)= ) PX=Kk)P(Y =2—k)

30 K 30—k ( 50 2-k(y @50~ (2—Kk) A
(7) 0:01(0.99)%07k (77 )0.02270.98 ~ 0.2327

2

k=0
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Web server requests

Let N = # of requests to a web server per day. Suppose N~Poi(1).

Each request independently comes from a human (prob. p), or bot (1 — p).
Let X be # of human requests/day, and Y be # of bot requests/day.

Are X and Y independent? What are their marginal PMFs?

PX=nY=m)= PX=nY=m|N=n+m)P(N=n+m) Law of Total
+P(X =nY=m|N#n+m)P(N #n+ m) Probability

PX=n|[N=n+m)P(Y =m|X =n,N=n+m)P(N =n+m) Chain Rule
An+m

_ n+m _2 Given N = n + m indep. trials,
= ( n )Pn(l -p" -1 "€ (n+m)! XIN=n+m~Bin(n+m,p)
m m
_ (n + m)' 8_/1 (Ap)n(}{(l — p)) _ G_Ap (Ap)n . e_/l(l_p) (A(l _ p))
n!'m! (n +m)! n! m!

_ _ Yes, X and Y are
P(X =n)P(Y =m) where X ~Poi(4p), Y ~Poi(A(1 - p)) independent!
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Announcements

. )
Quiz #1
Grades/solutions:
Next week/
Problem Set 3 ) (08109 Contest )
Due: Monday 10/16 1pm Make up any part(s) of your grade
\Covers: Up to and including Lecture 11/ \Details Next Weekj
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Interesting probability news

Column: Did Astros beat the Dodgers by ”...new analyses of the Astros’

cheating? The numbers say no 2017 season by baseball’s corps
of unofficial statisticians —
"sabermetricians," to the sport —
indicate that the Astros didn’t
gain anything from their cheating;

in fact, it may have hurt them.”

https://www.latimes.com/business/story/2020-02-
27 /astros-cheating-analysis

https://www.theguardian.com/sport/2020/jan/17/h
ouston-astros-sign-stealing-cheating-scandal
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Independence of multiple random variables

Recall independence of forr=1,.. n:
nevents £, E,, ..., Ey: for every subset E4, E,, ..., E,:
P(Ey, Ey, ..., Er) = P(E1)P(E;) - P(E;)

We have independence of n discrete random variables X4, X5, ..., X, if
for all x{, x5, ..., Xpy:

n
P(Xl — xl,XZ — xZ, ""XTl — xn) — HP(Xl — xl)
i=1
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Independence is symmetric

Well, yeah....

If X and Y are independent random variables, then Captain ]
X is independent of Y, and Y is independent of X Obvious Vel

‘.l
Let N be the number of times you roll 2 dice repeatedly until a 4 is rolled
(the player wins), or a 7 is rolled (the player loses).

Let X be the value (4 or 7) of the final throw.

Is N independent of X7 P(N =n|X=7)=P(N =n)?
P(N =n|X =4) = P(N = n)?

Is X independent of N? P(X =4|N =n) =P(X = 4)? (yes, easier
PX=7|IN=n)=PX =7)? to intuit)

Redux: Independence is not always intuitive, but it is always symmetric.
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Statistics on Two
RVs




Expectation and Covariance

In real life, we often have many RVs interacting at once.
We’'ve seen some simpler cases (e.g., sum of independent Poissons).
Computing joint PMFs in general is hard!
But often you don’t need to model joint RVs completely.

Instead, we’ll focus next on reporting statistics of multiple RVs:
Expectation: sum of RV expectations == expectation of RV sums
Covariance: measure of how two RVs vary with each other (coming soon)
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Properties of Expectation, extended to two RVs

1. Linearity:

ElaX + bY + c]| = aE|X]| + bE[Y] + ¢

2. Expectation of a sum = sum of expectation:

E[X+Y]|=E|X]+E|Y]

3. Unconscious statistician:

Elg(X,Y)] = z z 9, y)pxy(x,y)
X Yy

Lisa

Yan and Jerry Cain, CS109, 2020

- (we’ve seen this;
we’ll prove this next)

True for both independent
and dependent random
variables!
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Proof of expectation of a sum of RVs EIX+Y] = EIX] + E[Y]

E[X+Y] EZ(X + V)pxy (X, y) ;%T(Ui) =X+Y

zzxpxy(x ) +22ypxy(x y)
= z xz pxy(x,y) + z }’2 Pxy(x,y)
X y y X

= Z xpy(x) + z ypy (y) Marginal PMFs for X and Y
y

X

Linearity of summations
(cont. case: linearity of integrals)

= E[X] + E[Y]
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Expectations of common RVs: Binomial

X~BIin (Tl, p) E[X] = np #.of successFS in n independent trials
with probability of success p

Recall: Bin(1,p) = Ber(p)

n
X = le
=1

Let X; = ith trial is heads

X;~Ber(p),E[X;]=p E[X]=E

=§:E[Xi] =Zn:29=np

=1 =1

n
2.
i=1
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