13: Statistics of Multiple RVs

Lisa Yan and Jerry Cain October 12, 2020

Quick slide reference

3	Expectation of Common RVs	13a_expectation_sum
8	Coupon Collecting Problems	13b_coupon_collecting
14	Covariance	13c_covariance
20	Independence and Variance	13d_variance_sum
27	Exercises	LIVE
48	Correlation	LIVE

Lisa Yan and Jerry Cain, CS109, 2020

13a_expectation_sum

3

Expectation of Common RVs

Linearity of Expectation is useful

Expectation is a linear mathematical operation. If $X = \sum_{i=1}^{n} X_i$:

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

- Even if you don't know the **distribution** of X (e.g., because the joint • distribution of (X_1, \ldots, X_n) is unknown), you can still compute expectation of X!!
- Problem-solving key: Define X_i such that

$$X = \sum_{i=1}^{n} X_i$$

Lisa Yan and Jerry Cain, CS109, 2020

Most common use cases: *E*[*X_i*] easy to calculate

- Or sum of dependent RVs

Stanford University 4

Expectations of common RVs: Binomial

Review

 $X \sim Bin(n, p) \quad E[X] = np$

of successes in n independent trials with probability of success p

Recall: Bin(1, p) = Ber(p)

$$X = \sum_{i=1}^{n} X_i$$

Let $X_i = i$ th trial is heads $X_i \sim \text{Ber}(p), E[X_i] = p$ $E[X] = E\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n E[X_i] = \sum_{i=1}^n p = np$

Lisa Yan and Jerry Cain, CS109, 2020

Expectations of common RVs: Negative Binomial

$$Y \sim \text{NegBin}(r, p) \quad E[Y] = \frac{r}{p}$$

of independent trials with probability of success p until r successes

Recall: NegBin(1, p) = Geo(p)

$$Y = \sum_{i=1}^{?} Y_i$$

1. How should we define Y_i ?

2. How many terms are in our summation?

Lisa Yan and Jerry Cain, CS109, 2020

Expectations of common RVs: Negative Binomial

$$Y \sim \text{NegBin}(r, p) \quad E[Y] = \frac{r}{p}$$

Recall: NegBin(1, p) = Geo(p)

$$Y = \sum_{i=1}^{?} Y_i$$

Let $Y_i = \#$ trials to get *i*th success (after (*i*-1)th success) $Y_i \sim \text{Geo}(p), E[Y_i] = \frac{1}{p}$ $E[Y] = E\left[\sum_{i=1}^r Y_i\right] = \sum_{i=1}^r E[Y_i] = \sum_{i=1}^r \frac{1}{p} = \frac{r}{p}$

Lisa Yan and Jerry Cain, CS109, 2020

Stanford University 7

of independent trials with probability

of success p until r successes

13b_coupon_collecting

Coupon Collecting Problems

Linearity of Expectation is useful

Expectation is a linear mathematical operation. If $X = \sum_{i=1}^{n} X_i$:

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

- Even if you don't know the distribution of X (e.g., because the joint distribution of $(X_1, ..., X_n)$ is unknown), you can still compute expectation of the sum!!
- Problem-solving key:
 Define X_i such that

$$X = \sum_{i=1}^{n} X_i$$

Most common use cases:

• $E[X_i]$ easy to calculate

Or sum of dependent RVs

Lisa Yan and Jerry Cain, CS109, 2020

Coupon collecting problems: Server requests

The coupon collector's problem in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons
- For each box you buy, you "collect" a coupon of type *i*.
- 1. How many coupons do you expect after buying *n* boxes of cereal?

<u>Servers</u> requests k servers request to server i

What is the expected number of utilized servers after *n* requests?

- * 52% of Amazon profits
- ** more profitable than Amazon's North America commerce operations
 source

Lisa Yan and Jerry Cain, CS109, 2020

Computer cluster utilization

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

Consider a computer cluster with *k* servers. We send *n* requests.

- Requests independently go to server i with probability p_i
- Let X = # servers that receive ≥ 1 request.

What is E[X]?

Lisa Yan and Jerry Cain, CS109, 2020

Computer cluster utilization

$$E\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} E[X_{i}]$$

Consider a computer cluster with k servers. We send n requests.

- Requests independently go to server *i* with probability p_i •
- Let X = # servers that receive ≥ 1 request. •

What is E[X]?

1. Define additional random variables.

2. Solve.

Let:
$$A_i$$
 = event that server i
receives ≥ 1 request
 X_i = indicator for A_i

$$P(A_i) = 1 - P(\text{no requests to } i)$$

= 1 - (1 - p_i)ⁿ

Note: A_i are dependent!

$$E[X_i] = P(A_i) = 1 - (1 - p_i)^n$$

$$E[X] = E\left[\sum_{i=1}^k X_i\right] = \sum_{i=1}^k E[X_i] = \sum_{i=1}^k (1 - (1 - p_i)^n)$$

$$= \sum_{i=1}^k 1 - \sum_{i=1}^k (1 - p_i)^n = k - \sum_{i=1}^k (1 - p_i)^n$$
a Yan and Jerry Cain, CS109, 2020
Stanford University 12

Lisa Yan and Jerry Cain, CS109, 2020

Coupon collecting problems: Hash tables

The **coupon collector's problem** in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons
- For each box you buy, you "collect" a coupon of type *i*.
- 1. How many coupons do you expect after buying *n* boxes of cereal?
- 2. How many boxes do you expect to buy until you have one of each coupon?

<u>Servers</u>	<u>Hash Tables</u>
requests	strings
k servers	k buckets
request to	hashed to
server i	bucket <i>i</i>

What is the expected number of utilized servers after *n* requests?

What is the expected number of strings to hash until each bucket has ≥ 1 string?

Stay tuned for live lecture!

Lisa Yan and Jerry Cain, CS109, 2020

13c_covariance

Covariance

Statistics of sums of RVs

For any random variables *X* and *Y*,

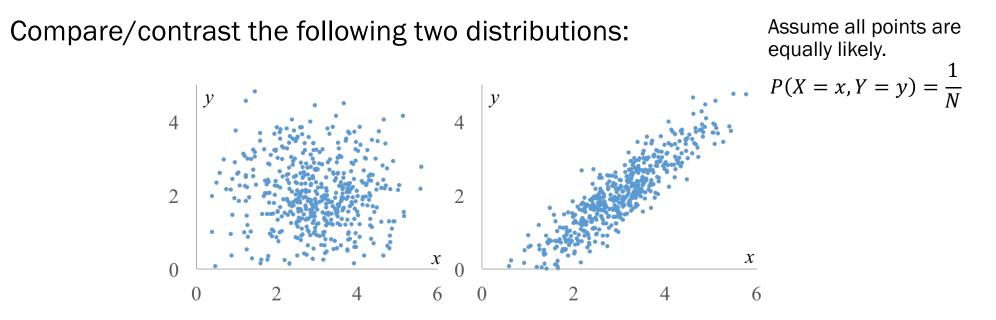
$$E[X + Y] = E[X] + E[Y]$$

$$Var(X + Y) = ?$$

But first... a new statistic!

Lisa Yan and Jerry Cain, CS109, 2020

Spot the difference



Both distributions have the same E[X], E[Y], Var(X), and Var(Y)

Difference: how the two variables vary with each other.

Lisa Yan and Jerry Cain, CS109, 2020

Covariance

The **covariance** of two variables *X* and *Y* is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Proof of second part:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$

$$= E[XY - XE[Y] - E[X]Y + E[X]E[Y]]$$

$$= E[XY] - E[XE[Y]] - E[E[X]Y] + E[E[X]E[Y]]$$

$$= E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y]$$

$$= E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y]$$

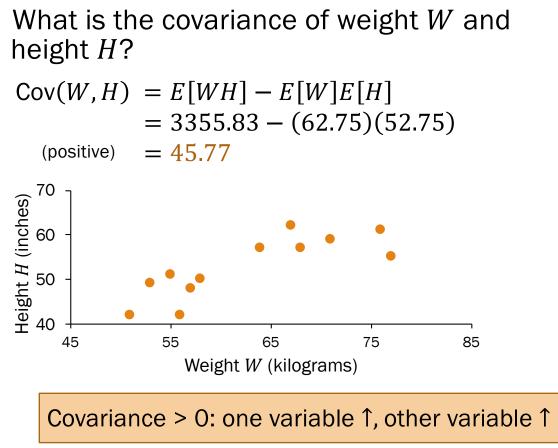
$$= E[XY] - E[X]E[Y]$$
(linearity of expectation)
(E[X], E[Y] are scalars)
(E[X], E[Y] are scalars)

Lisa Yan and Jerry Cain, CS109, 2020

Covarying humans

Cov(X,Y) = E[(X - E[X])(Y - E[Y])]= E[XY] - E[X]E[Y]

Weight (kg)	Height (in)	W · H
64	57	3648
71	59	4189
53	49	2597
67	62	4154
55	51	2805
58	50	2900
77	55	4235
57	48	2736
56	42	2352
51	42	2142
76	61	4636
68	57	3876
E[W] = 62.75	E[H] = 52.75	E[WH] = 3355.83



Lisa Yan and Jerry Cain, CS109, 2020

Properties of Covariance

The **covariance** of two variables *X* and *Y* is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Properties:

- 1. Cov(X, Y) = Cov(Y, X)
- 2. $Var(X) = E[X^2] (E[X])^2 = Cov(X, X)$
- 3. Covariance of sums = sum of all pairwise covariances (proof left to you) $Cov(X_1 + X_2, Y_1 + Y_2) = Cov(X_1, Y_1) + Cov(X_2, Y_1) + Cov(X_1, Y_2) + Cov(X_2, Y_2)$
- 4. Non-linearity

(to be discussed in live lecture)

Lisa Yan and Jerry Cain, CS109, 2020

13d_variance_sum

Variance of sums of RVs

Statistics of sums of RVs

For any random variables *X* and *Y*,

$$E[X + Y] = E[X] + E[Y]$$

Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)

Lisa Yan and Jerry Cain, CS109, 2020

Variance of general sum of RVs

For any random variables *X* and *Y*,

$$Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$$

Proof:

$$Var(X + Y) = Cov(X + Y, X + Y)$$

$$= Cov(X, X) + Cov(X, Y) + Cov(Y, X) + Cov(Y, Y)$$

$$Var(X) = Cov(X, X)$$

$$covariance of$$

$$all pairs$$

$$= Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$$
Symmetry of covariance +
$$Cov(X, X) = Var(X)$$

More generally:

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right) \quad (\text{proof in extra slides})$$

Lisa Yan and Jerry Cain, CS109, 2020

Statistics of sums of RVs

For any random variables *X* and *Y*,

$$E[X + Y] = E[X] + E[Y]$$

Var(X + Y) = Var(X) + 2 · Cov(X, Y) + Var(Y)

For independent X and Y, E[XY] = E[X]E[Y] (Len

(Lemma: proof in extra slides)

Var(X + Y) = Var(X) + Var(Y)

Lisa Yan and Jerry Cain, CS109, 2020

Variance of sum of independent RVs

For independent *X* and *Y*,

$$Var(X + Y) = Var(X) + Var(Y)$$

Proof:

1. Cov(X, Y) = E[XY] - E[X]E[Y]= E[X]E[Y] - E[X]E[Y]= 0

def. of covariance

X and Y are independent

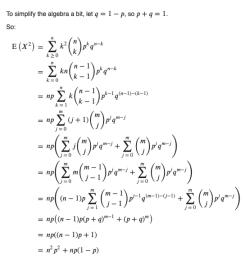
2. $Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$ = Var(X) + Var(Y)

Lisa Yan and Jerry Cain, CS109, 2020

NOT bidirectional: Cov(X, Y) = 0 does NOT imply independence of X and Y!

Proving Variance of the Binomial

 $X \sim Bin(n,p)$ Var(X) = np(1-p)



Factors of Binomial Coefficient: $\binom{n}{k} = n\binom{n-1}{k-1}$

Change of limit: term is zero when k - 1 = 0

Definition of Binomial Distribution: p + q = 1

putting j = k - 1, m = n - 1

splitting sum up into two

Factors of Binomial Coefficient:
$$j\binom{m}{j} = m\binom{m-1}{j-1}$$

Change of limit: term is zero when j - 1 = 0

```
Binomial Theorem
```

as p + q = 1by algebra

Then:

as required.

 $\operatorname{var}(X) = E(X^2) - (E(X))^2$

= np(1-p)

 $= np(1-p) + n^2p^2 - (np)^2$ Expectation of Binomial Distribution: E (X) = np

proofwiki.org

Lisa Yan and Jerry Cain, CS109, 2020

Let's instead prove this using independence and variance!

Proving Variance of the Binomial

 $X \sim Bin(n, p)$ Var(X) = np(1-p)

Let
$$X = \sum_{i=1}^{n} X_i$$

Let $X_i = i$ th trial is heads $X_i \sim \text{Ber}(p)$ $Var(X_i) = p(1-p)$

> X_i are independent (by definition)

$$Var(X) = Var\left(\sum_{i=1}^{n} X_{i}\right)$$
$$= \sum_{i=1}^{n} Var(X_{i})$$
$$= \sum_{i=1}^{n} p(1-p)$$

. n

 X_i are independent, therefore variance of sum = sum of variance

Variance of Bernoulli

Lisa Yan and Jerry Cain, CS109, 2020

= np(1-p)

13: Statistics of Multiple RVs

Lisa Yan and Jerry Cain October 12, 2020

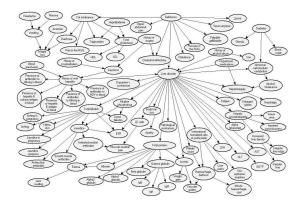
Where are we now? A roadmap of CS109

Last week: Joint distributions

distribution $p_{X,Y}(x,y)$

Today: Statistics of multiple RVs! Var(X + Y)E[X + Y]Cov(X, Y) $\rho(X, Y)$

Friday: Modeling with Bayesian Networks



Wednesday: Conditional distributions $p_{X|Y}(x|y)$ E[X|Y]

Stanford University 28

Lisa Yan and Jerry Cain, CS109, 2020

Don't we already know linearity of expectation?

Review

Expectation is a linear mathematical operation. If $X = \sum_{i=1}^{n} X_i$: $E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$

We covered this back in Lecture 6 (when we first learned expectation)!

- Proved binomial: sum of 1s or 0s
- Hat check (section): sum of 1s or 0s
- We ignored (in)dependence of events.

Why are we learning this again?

- Well, now we can prove it!
- We can now ignore any random variables dependencies!
- Our approach is still the same!

exclamation point jackpot

Lisa Yan and Jerry Cain, CS109, 2020

Proof of expectation of a sum of RVs

$$E[X + Y] = \sum_{x} \sum_{y} (x + y)p_{X,Y}(x, y)$$

$$= \sum_{x} \sum_{y} xp_{X,Y}(x, y) + \sum_{x} \sum_{y} yp_{X,Y}(x, y)$$

$$= \sum_{x} x \sum_{y} p_{X,Y}(x, y) + \sum_{y} y \sum_{x} p_{X,Y}(x, y)$$

$$= \sum_{x} x \sum_{y} p_{X,Y}(x, y) + \sum_{y} y \sum_{x} p_{X,Y}(x, y)$$

$$= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)$$

$$= E[X] + E[Y]$$

$$Marginal PMFs for X and Y$$

Lisa Yan and Jerry Cain, CS109, 2020

Coupon collecting problems: Hash tables

The **coupon collector's problem** in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons
- For each box you buy, you "collect" a coupon of type *i*.
- 1. How many coupons do you expect after buying *n* boxes of cereal?
- 2. How many boxes do you expect to buy until you have one of each coupon?

<u>Servers</u>	<u>Hash Tables</u>
requests	strings
k servers	k buckets
request to	hashed to
server i	bucket <i>i</i>

What is the expected number of utilized servers after *n* requests?

What is the expected number of strings to hash until each bucket has ≥ 1 string?

Breakout Rooms

Check out the properties on the next slide (Slide 33). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146231

Breakout rooms: 4 min. Introduce yourself!

Hash Tables

$$E\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} E[X_{i}]$$

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently). •
- Let Y = # strings to ha •

What is E[Y]?

1. Define additional random variables.

ash until each bucket
$$\geq 1$$
 string.
 $Y_0 = l$
 $Y_1 = \frac{k}{k-1}$
How should we define Y_i such that $Y = \sum_i Y_i$?

2. Solve.

Stanford University 33

Lisa Yan and Jerry Cain, CS109, 2020

Hash Tables

$$E\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} E[X_{i}]$$

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently). •
- Let Y = # strings to hash until each bucket ≥ 1 string. •

What is E[Y]?

1. Define additional random variables.

Let: $Y_i = \#$ of trials to get success after *i*-th success

• Success: hash string to previously empty bucket

• If *i* non-empty buckets:
$$P(\text{success}) = \frac{\kappa - i}{k}$$

2. Solve.

$$P(Y_{i} = n) = \left(\frac{i}{k}\right)^{n-1} \left(\frac{k-i}{k}\right) \qquad \qquad i = 0$$

Equivalently, $Y_{i} \sim \text{Geo}\left(p = \frac{k-i}{k}\right) \qquad \qquad E[Y_{i}] = \frac{1}{p} = \frac{k}{k-i}$

Lisa Yan and Jerry Cain, CS109, 2020

Stamoru University

Hash Tables

$$E\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} E[X_{i}]$$

Stanford University 35

Consider a hash table with *k* buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let Y = # strings to hash until each bucket ≥ 1 string.

What is E[Y]?

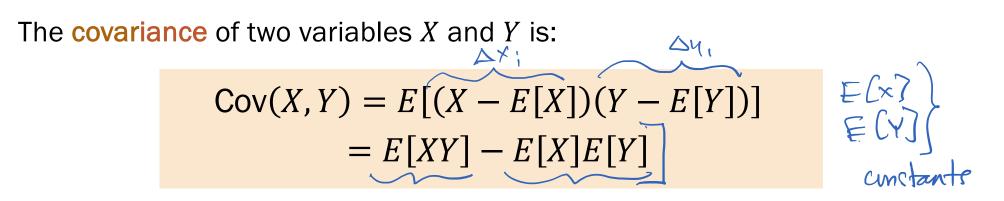
1. Define additional Let: $Y_i = \#$ of trials to get success after *i*-th success random variables. $V_i \sim \text{Geo}\left(p = \frac{k-i}{k}\right), \quad E[Y_i] = \frac{1}{n} = \frac{k}{k-i}$

2. Solve.
$$Y = Y_0 + Y_1 + \dots + Y_{k-1}$$

 $E[Y] = E[Y_0] + E[Y_k] + \dots + E[Y_{k-1}]$
 $= \frac{k}{k} + \frac{k}{k-1} + \frac{k}{k-2} + \dots + \frac{k}{1} = k \left[\frac{1}{k} + \frac{1}{k-1} + \dots + 1 \right] = O(k \log k)$

Lisa Yan and Jerry Cain, CS109, 2020

Covariance



Covariance measures how one random variable varies with a second.

- Outside temperature and utility bills have a negative covariance.
- Handedness and musical ability have near zero covariance.
- Product demand and price have a positive covariance.

Lisa Yan and Jerry Cain, CS109, 2020

Think

Slide 38 has a question to go over by yourself.

Post any clarifications here!

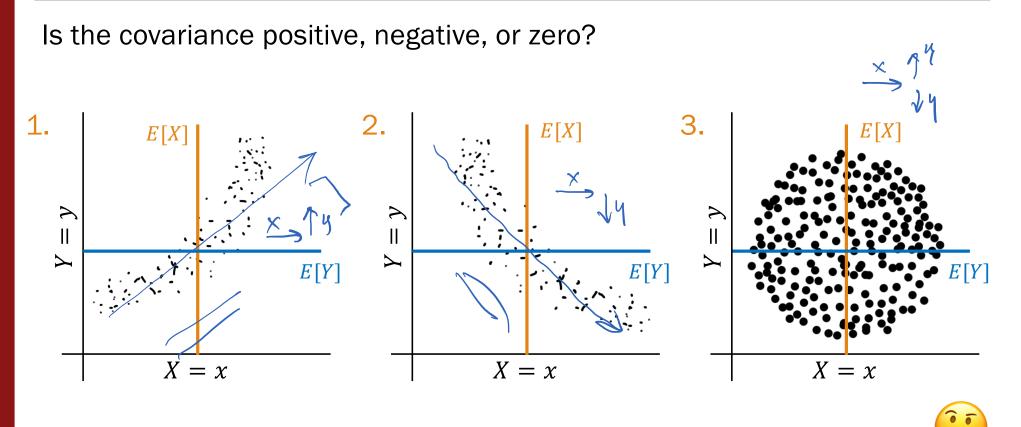
https://us.edstem.org/courses/2678/discussion/146231

Think by yourself: 1 min

37

Feel the covariance

Cov(X,Y) = E[(X - E[X])(Y - E[Y])]= E[XY] - E[X]E[Y]

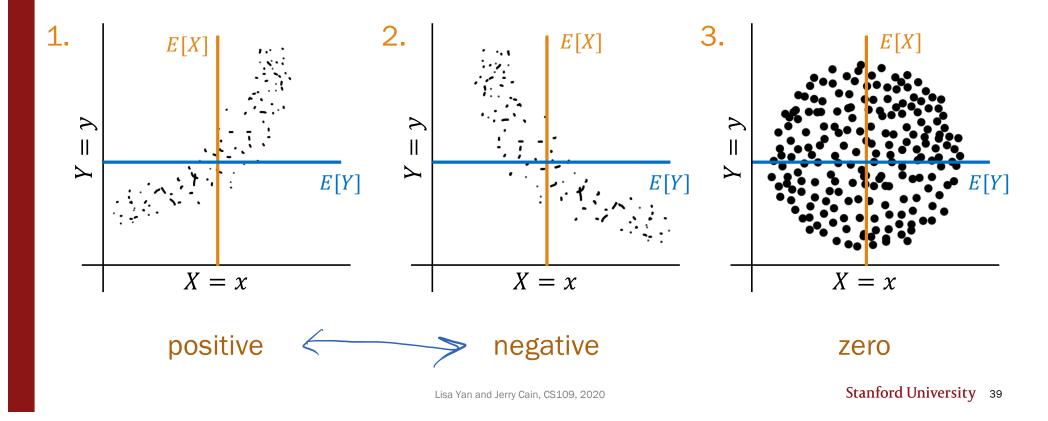


Lisa Yan and Jerry Cain, CS109, 2020

Feel the covariance

Cov(X,Y) = E[(X - E[X])(Y - E[Y])]= E[XY] - E[X]E[Y]

Is the covariance positive, negative, or zero?



Properties of Covariance

The covariance of two variables X and Y is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Properties:

1. Cov(X, Y) = Cov(Y, X)

2.
$$Var(X) = Cov(X, X)$$

3. $\operatorname{Cov}(\sum_{i} X_{i}, \sum_{j} Y_{j}) = \sum_{i} \sum_{j} \operatorname{Cov}(X_{i}, Y_{j})$

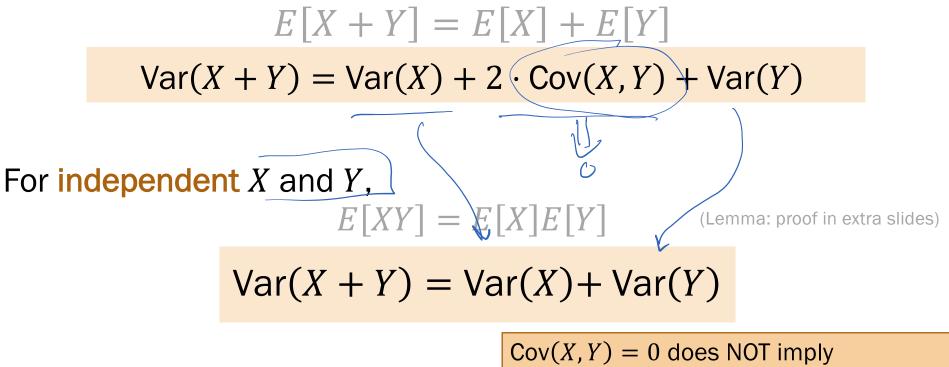
$$4. \quad Cov(aX + b, Y) = aCov(X, Y) + b ?$$

Covariance is non-linear: Cov(aX + b, Y) = aCov(X, Y)

Statistics of sums of RVs

Review

For any random variables *X* and *Y*,



Cov(X, Y) = 0 does NOT implication independence of X and Y!

Lisa Yan and Jerry Cain, CS109, 2020

Zero covariance does not imply independence

Let X take on values $\{-1,0,1\}$ with equal probability 1/3. Define $Y = \begin{cases} 1 & \text{if } X = 0\\ 0 & \text{otherwise} \end{cases}$

What is the joint PMF of *X* and *Y*?

Lisa Yan and Jerry Cain, CS109, 2020

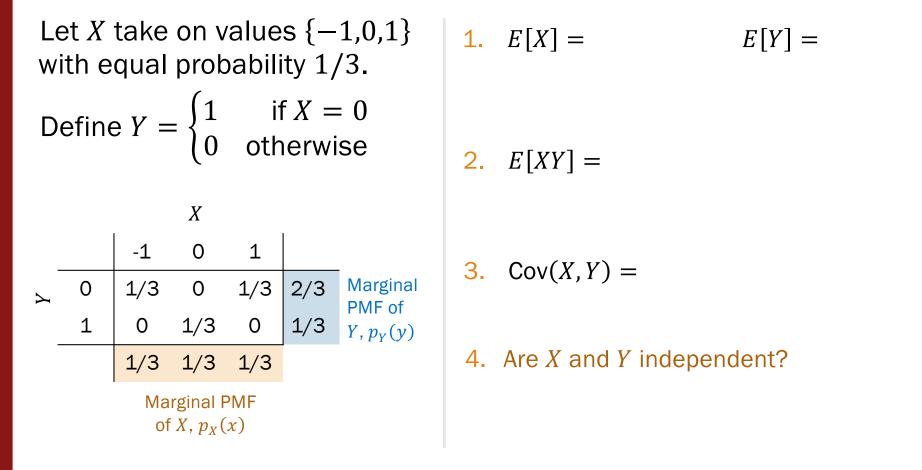
Breakout Rooms

Check out the properties on the next slide (Slide 44). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146231

Breakout rooms: 4 min. Introduce yourself!

Zero covariance does not imply independence



Lisa Yan and Jerry Cain, CS109, 2020

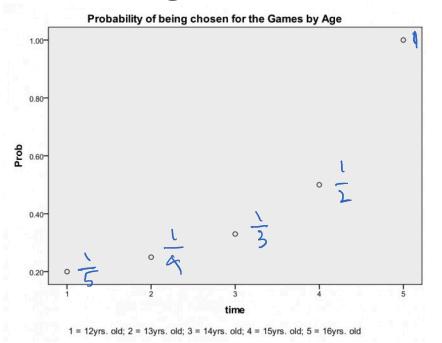
Zero covariance does not imply independence

Let X take on values $\{-1,0,1\}$ **1.** E[X] = E[Y] =with equal probability 1/3. $-1\left(\frac{1}{3}\right) + 0\left(\frac{1}{3}\right) + 1\left(\frac{1}{3}\right) = 0$ $0\left(\frac{2}{3}\right) + 1\left(\frac{1}{3}\right) = 1/3$ Define $Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$ 2. $E[XY] = (-1 \cdot 0) \left(\frac{1}{2}\right) + (0 \cdot 1) \left(\frac{1}{2}\right) + (1 \cdot 0) \left(\frac{1}{2}\right)$ = 0X 3. Cov(X, Y) = E[XY] - E[X]E[Y]Marginal 0 does not imply = 0 - 0(1/3) = 0 4 PMF of independence! 1/30 $Y, p_Y(y)$ 4. Are X and Y independent? 1/31/31/3P(Y = 0 | X = 1) = 1**Marginal PMF** of X, $p_X(x)$ $\neq P(Y = 0) = 2/3$

Lisa Yan and Jerry Cain, CS109, 2020

Interesting probability news

Probability and Game Theory in *The Hunger Games*



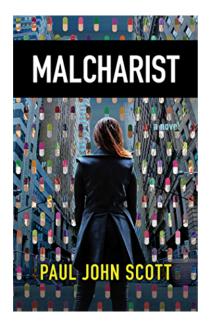
https://www.wired.com/2012/04/probability-and-gametheory-in-the-hunger-games/ Lisa Yan and Jerry Cain, CS109, 2020

"Suppose the parents in a given district gave birth to only...five girls, and that all of these kids were born at the same time."

- Not a probability mass function
- Also duh? (P(you get chosen if you're the only person) = 1)
- You now know enough Python/ probability to write a better simulation to model the Reaping!!!!
- (game theory part of the article is good)

Topical book review! Fiction is brain food.

Rochester author takes scary look at Big Pharma in debut novel



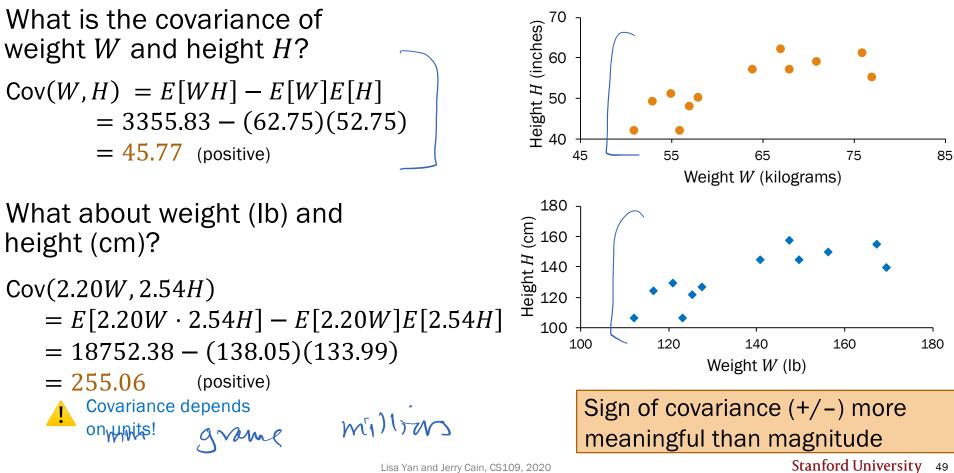
- "Called 'Malcharist,' it is a completely made-up story about a potentially dangerous drug being put on the market — with outsourced drug trial research, ghostwritten studies, lack of access to raw drug-trial data, and doctors essentially paid to champion new drugs."
- "[Paul John] Scott's novel is actually a thriller, with not-quite-believable villains who need to be exposed. Yet it's too wonky to be a beach read. There's even a conversation over the [[]] probability concept of p-values []."
- "Scott takes his writer into one of those medical meetings he once found so cool, and his book reproduces enough of the numbers — yes, ["] number tables [] in a thriller — that the reader can see the fictional speaker's good point that the data really do give up their secrets."

https://www.startribune.com/schafer-debut-novel-by-rochester-author-takes-on-big-pharma-issues/572679992 Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 47

LIVE

Correlation

Covarying humans



Cov(X,Y) = E[(X - E[X])(Y - E[Y])]= E[XY] - E[X]E[Y]

Lisa Yan and Jerry Cain, CS109, 2020

Correlation

The **correlation** of two variables *X* and *Y* is:

- Note: $-1 \le \rho(X, Y) \le 1$ [why?]
- Correlation measures the **linear relationship** between *X* and *Y*:

$$\begin{array}{ll} \rho(X,Y) = 1 & \implies Y = aX + b, \text{where } a = \sigma_Y / \sigma_X \\ \rho(X,Y) = -1 & \implies Y = aX + b, \text{where } a = -\sigma_Y / \sigma_X \\ \rho(X,Y) = 0 & \implies \text{``uncorrelated''} (absence of linear relationship) \end{array}$$

Lisa Yan and Jerry Cain, CS109, 2020

Think

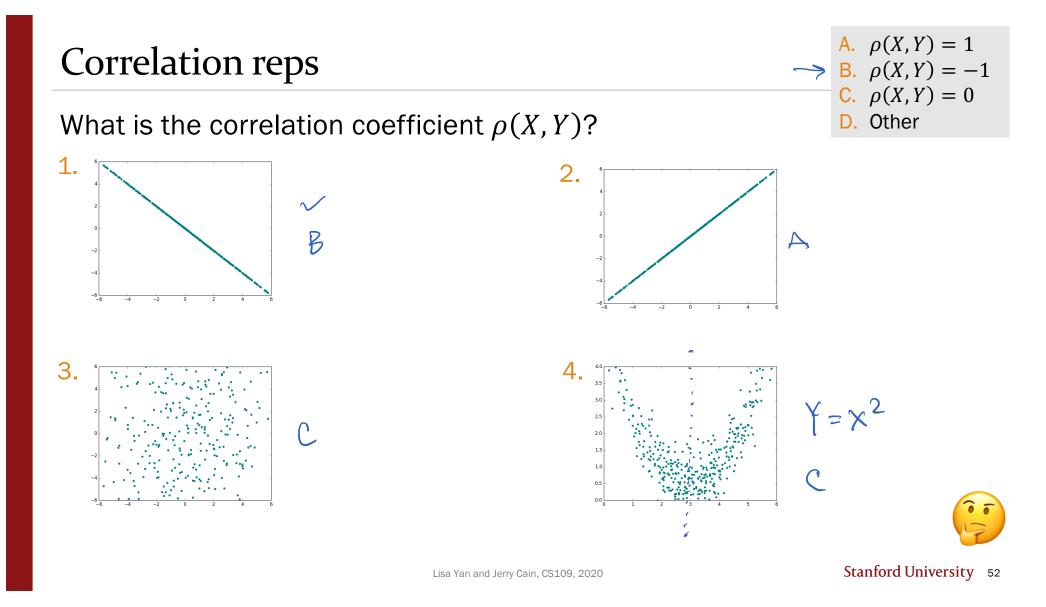
Slide 52 has a question to go over by yourself.

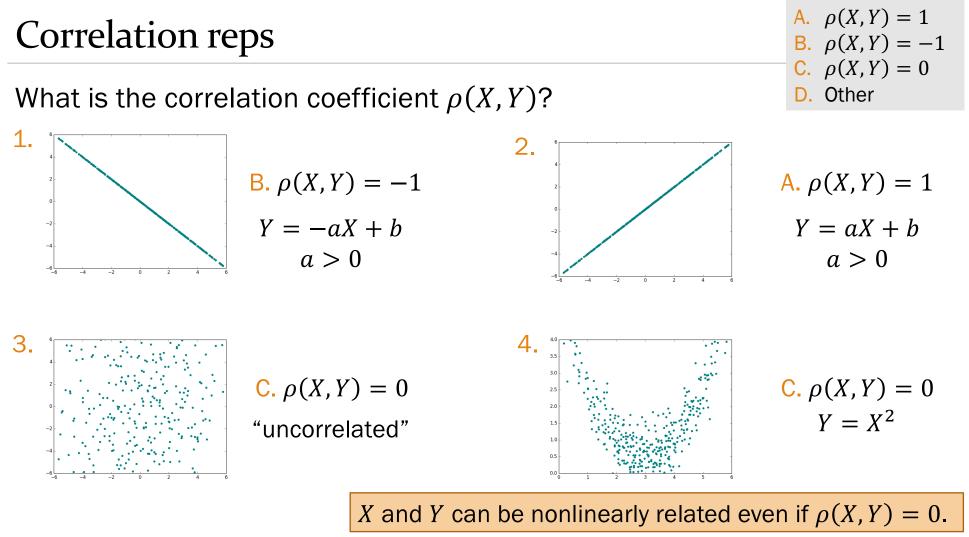
Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146231

Think by yourself: 1 min

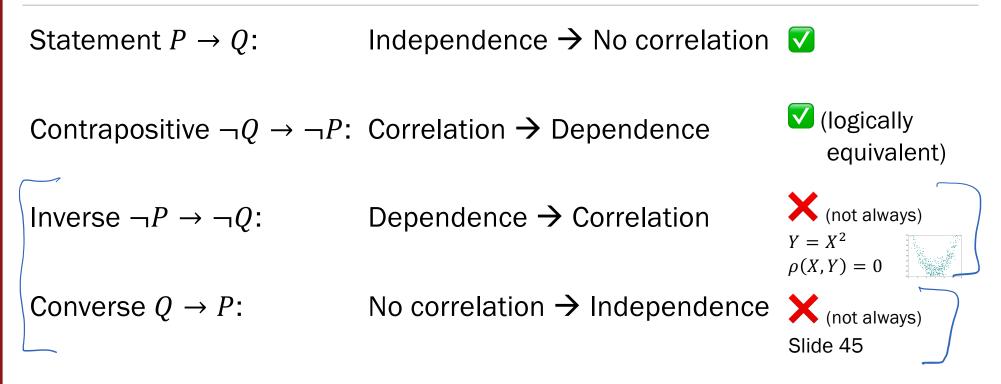
51





Lisa Yan and Jerry Cain, CS109, 2020

Throwback to CS103: Conditional statements



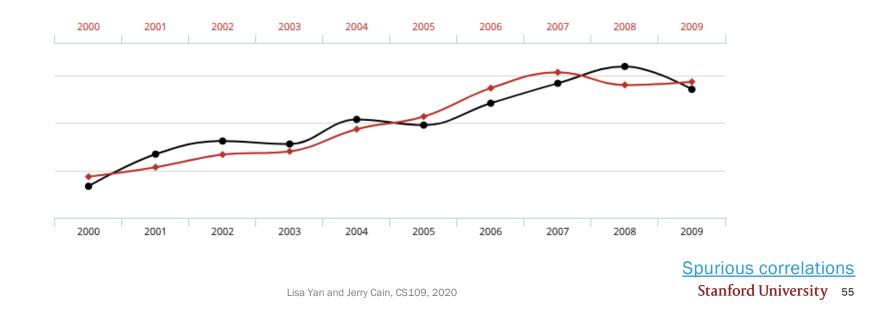
"Correlation does not imply causation"

Lisa Yan and Jerry Cain, CS109, 2020

Spurious Correlations

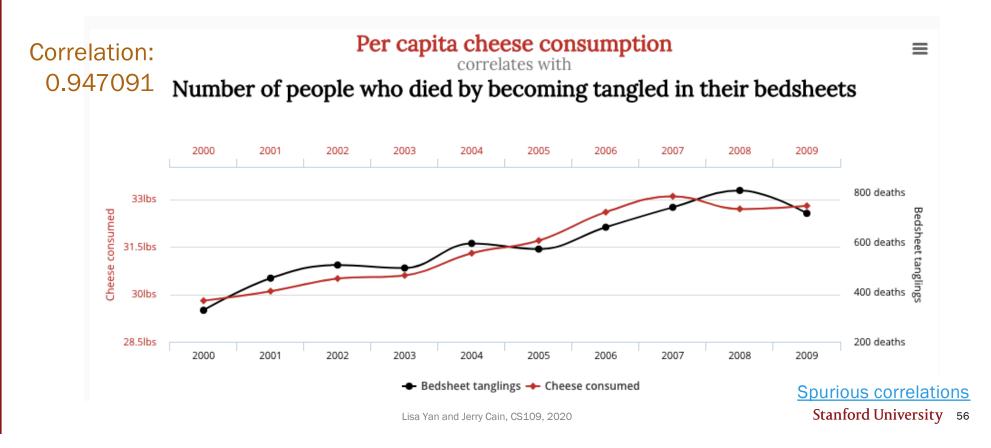
 $\rho(X, Y)$ is used a lot to statistically quantify the relationship b/t X and Y.

Correlation: 0.947091

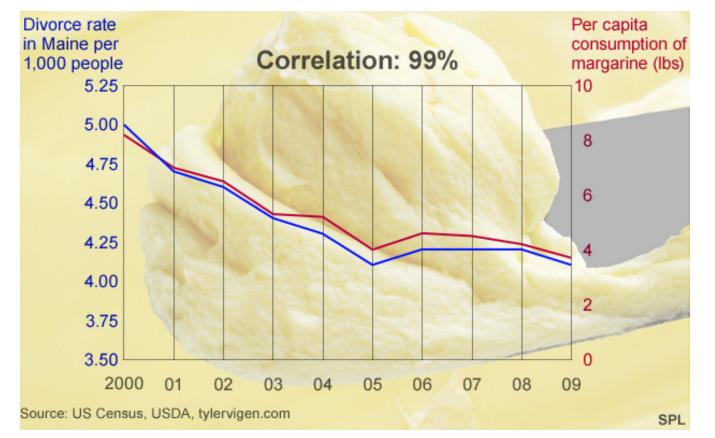


Spurious Correlations

 $\rho(X, Y)$ is used a lot to statistically quantify the relationship b/t X and Y.



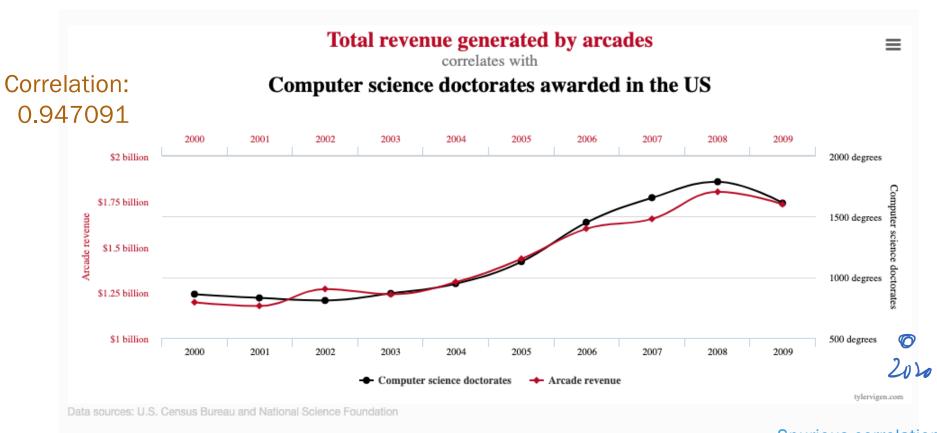
Divorce vs. Margarine



http://www.bbc.com/news/magazine-27537142

Lisa Yan and Jerry Cain, CS109, 2020

Arcade revenue vs. CS PhDs



Spurious correlations

Lisa Yan and Jerry Cain, CS109, 2020

13e_extra

Extra

Expectation of product of independent RVs

If X and Y are
independent, then
$$E[XY] = E[X]E[Y]$$

$$E[g(X)h(Y)] = \sum_{y} \sum_{x} g(x)h(y)p_{X,Y}(x,y)$$
(for continuous proof, replace
summations with integrals)
$$= \sum_{y} \sum_{x} g(x)h(y)p_X(x)p_Y(y)$$

$$X \text{ and } Y \text{ are independent}$$

$$= \sum_{y} \left(h(y)p_Y(y)\sum_{x} g(x)p_X(x)\right)$$
Terms dependent on y
are constant in integral of x

$$= \left(\sum_{x} g(x)p_X(x)\right)\left(\sum_{y} h(y)p_Y(y)\right)$$
Summations separate

$$= E[g(X)]E[h(Y)], \text{ CSLOB, 2020}$$
Stanford University 60

Variance of Sums of Variables

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)$$

Proof:

$$\operatorname{Var}\left(\sum_{i=1}^n X_i\right)$$

$$V_{i=1}^{\text{Var}(X)}(X,X) = \operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}\right)^{\operatorname{covariance} of} = \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}(X_{i}, X_{j})$$
$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \operatorname{Cov}(X_{i}, X_{j})$$
$$Symmetry of covariance \operatorname{Cov}(X, X) = \operatorname{Var}(X)$$
$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}(X_{i}, X_{j})$$
Adjust summation bounds

Lisa Yan and Jerry Cain, CS109, 2020