13: Statistics of Multiple RVs

Lisa Yan and Jerry Cain October 12, 2020

Quick slide reference

3	Expectation of Common RVs	13a_expectation_sum
8	Coupon Collecting Problems	13b_coupon_collecting
14	Covariance	13c_covariance
20	Independence and Variance	13d_variance_sum
27	Exercises	LIVE
48	Correlation	LIVE

13a_expectation_sum

Expectation of Common RVs

Linearity of Expectation is useful

Expectation is a linear mathematical operation. If $X = \sum_{i=1}^{n} X_i$:

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

- Even if you don't know the **distribution** of X (e.g., because the joint distribution of $(X_1, ..., X_n)$ is unknown), you can still compute expectation of X!!
- Problem-solving key: Define X_i such that $X = \sum X_i$

$$X = \sum_{i=1}^{n} X_i$$

- Most common use cases:
 E[X_i] easy to calculate
 Or sum of dependent RVs

Expectations of common RVs: Binomial

Review

$$X \sim Bin(n, p)$$
 $E[X] = np$

of successes in n independent trials with probability of success p

Recall: Bin(1, p) = Ber(p)

$$X = \sum_{i=1}^{n} X_i$$

Let
$$X_i = i$$
th trial is heads $X_i \sim \text{Ber}(p), E[X_i] = p$

Let
$$X_i = i$$
th trial is heads $X_i \sim \text{Ber}(p)$, $E[X_i] = p$
$$E[X] = E\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n E[X_i] = \sum_{i=1}^n p = np$$

Expectations of common RVs: Negative Binomial

$$Y \sim \text{NegBin}(r, p)$$
 $E[Y] = \frac{r}{p}$

of independent trials with probability of success p until r successes

Recall: NegBin(1, p) = Geo(p)

$$Y = \sum_{i=1}^{?} Y_i$$

- **1.** How should we define Y_i ?
- 2. How many terms are in our summation?

Expectations of common RVs: Negative Binomial

$$Y \sim \text{NegBin}(r, p)$$
 $E[Y] = \frac{r}{p}$

of independent trials with probability of success p until r successes

Recall: NegBin(1, p) = Geo(p)

$$Y = \sum_{i=1}^{?} Y_i$$

Let $Y_i = \#$ trials to get ith success (after

$$(i-1)$$
th success)

$$Y_i \sim \text{Geo}(p), E[Y_i] = \frac{1}{p}$$

$$E[Y] = E\left[\sum_{i=1}^{r} Y_i\right] = \sum_{i=1}^{r} E[Y_i] = \sum_{i=1}^{r} \frac{1}{p} = \frac{r}{p}$$

Coupon Collecting Problems

Linearity of Expectation is useful

Expectation is a linear mathematical operation. If $X = \sum_{i=1}^{n} X_i$:

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

- Even if you don't know the distribution of X (e.g., because the joint distribution of $(X_1, ..., X_n)$ is unknown), you can still compute expectation of the sum!!
- Problem-solving key: Define X_i such that $X = \sum X_i$

$$X = \sum_{i=1}^{n} X_i$$

Most common use cases:

- E[X_i] easy to calculate
 Or sum of dependent RVs

Coupon collecting problems: Server requests

The coupon collector's problem in probability theory:

Servers

You buy boxes of cereal.

requests

There are k different types of coupons

k servers

For each box you buy, you "collect" a coupon of type i.

request to server i

1. How many coupons do you expect after buying n boxes of cereal?

What is the expected number of utilized servers after *n* requests?

- 52% of Amazon profits
- ** more profitable than Amazon's North America commerce operations

source

Computer cluster utilization

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

Consider a computer cluster with k servers. We send n requests.

- Requests independently go to server i with probability p_i
- Let X = # servers that receive ≥ 1 request.

What is E[X]?

Computer cluster utilization

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E\left[X_i\right]$$

Consider a computer cluster with k servers. We send n requests.

- Requests independently go to server i with probability p_i
- Let X = # servers that receive ≥ 1 request.

What is E[X]?

1. Define additional random variables.

Let: A_i = event that server ireceives ≥ 1 request $X_i = \text{indicator for } A_i$

$$P(A_i) = 1 - P(\text{no requests to } i)$$

= $1 - (1 - p_i)^n$

Note: A_i are dependent!

2. Solve.

$$E[X_i] = P(A_i) = 1 - (1 - p_i)^n$$

$$E[X] = E\left[\sum_{i=1}^k X_i\right] = \sum_{i=1}^k E[X_i] = \sum_{i=1}^k (1 - (1 - p_i)^n)$$

$$= \sum_{i=1}^k 1 - \sum_{i=1}^k (1 - p_i)^n = k - \sum_{i=1}^k (1 - p_i)^n$$

Lisa Yan and Jerry Cain, CS109, 2020

Stanford University 12

Coupon collecting problems: Hash tables

The coupon collector's problem in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons
- For each box you buy, you "collect" a coupon of type i.
- 1. How many coupons do you expect after buying *n* boxes of cereal?
- 2. How many boxes do you expect to buy until you have one of

What is the expected number of utilized servers after *n* requests?

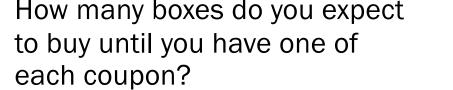
Servers

requests

k servers

request to

server i



What is the expected number of strings to hash until each bucket has ≥ 1 string?

Stay tuned for live lecture!

Hash Tables

strings

k buckets

hashed to

bucket i

Covariance

Statistics of sums of RVs

For any random variables *X* and *Y*,

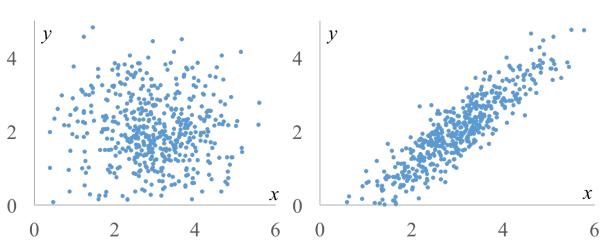
$$E[X + Y] = E[X] + E[Y]$$

$$Var(X + Y) = ?$$

But first... a new statistic!

Spot the difference

Compare/contrast the following two distributions:



Assume all points are equally likely.

$$P(X = x, Y = y) = \frac{1}{N}$$

Both distributions have the same E[X], E[Y], Var(X), and Var(Y)

Difference: how the two variables vary with each other.

Covariance

The **covariance** of two variables *X* and *Y* is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Proof of second part:

$$\begin{aligned} \operatorname{Cov}(X,Y) &= E[(X-E[X])(Y-E[Y])] \\ &= E\big[XY-XE[Y]-E[X]Y+E[X]E[Y]\big] \\ &= E[XY]-E\big[XE[Y]\big]-E\big[E[X]Y\big]+E\big[E[X]E[Y]\big] \end{aligned} \qquad \text{(linearity of expectation)} \\ &= E[XY]-E[X]E[Y]-E[X]E[Y]+E[X]E[Y] \qquad \text{($E[X],E[Y]$ are scalars)} \\ &= E[XY]-E[X]E[Y] \end{aligned}$$

Covarying humans

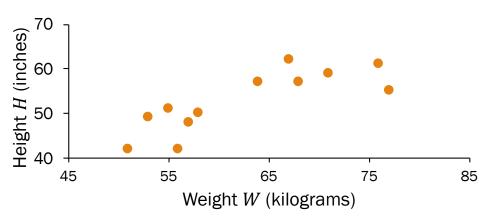
$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Weight (kg)	Height (in)	W · H
64	57	3648
71	59	4189
53	49	2597
67	62	4154
55	51	2805
58	50	2900
77	55	4235
57	48	2736
56	42	2352
51	42	2142
76	61	4636
68	57	3876

$$E[W]$$
 $E[H]$ $E[WH]$
= 62.75 = 52.75 = 3355.83

What is the covariance of weight W and height *H*?

Cov
$$(W, H)$$
 = $E[WH] - E[W]E[H]$
= 3355.83 - (62.75)(52.75)
(positive) = 45.77



Covariance > 0: one variable 1, other variable 1

Properties of Covariance

The **covariance** of two variables X and Y is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Properties:

- 1. Cov(X,Y) = Cov(Y,X)
- 2. $Var(X) = E[X^2] (E[X])^2 = Cov(X, X)$
- 3. Covariance of sums = sum of all pairwise covariances (proof left to you) $Cov(X_1 + X_2, Y_1 + Y_2) = Cov(X_1, Y_1) + Cov(X_2, Y_1) + Cov(X_1, Y_2) + Cov(X_2, Y_2)$
- 4. Non-linearity (to be discussed in live lecture)

13d_variance_sum

Variance of sums of RVs

Statistics of sums of RVs

For any random variables X and Y,

$$E[X + Y] = E[X] + E[Y]$$

$$Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$$

Variance of general sum of RVs

For any random variables *X* and *Y*,

$$Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$$

Proof:

More generally:

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right) \quad \text{(proof in extra slides)}$$

Statistics of sums of RVs

For any random variables X and Y,

$$E[X + Y] = E[X] + E[Y]$$

$$Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$$

For independent X and Y,

$$E[XY] = E[X]E[Y]$$

(Lemma: proof in extra slides)

$$Var(X + Y) = Var(X) + Var(Y)$$

Variance of sum of independent RVs

For independent *X* and *Y*,

$$Var(X + Y) = Var(X) + Var(Y)$$

Proof:

1.
$$Cov(X, Y) = E[XY] - E[X]E[Y]$$

= $E[X]E[Y] - E[X]E[Y]$
= 0

def. of covariance

X and *Y* are independent

$Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$ = Var(X) + Var(Y)

NOT bidirectional:

Cov(X,Y) = 0 does NOT imply independence of Xand Y!

Proving Variance of the Binomial

$$X \sim Bin(n, p) \quad Var(X) = np(1-p)$$

as required

To simplify the algebra a bit, let q = 1 - p, so p + q = 1. $E(X^2) = \sum_{n=1}^{n} k^2 \binom{n}{k} p^k q^{n-k}$ Definition of Binomial Distribution: p + q = 1 $= \sum_{k=0}^{n} kn \binom{n-1}{k-1} p^{k} q^{n-k}$ Factors of Binomial Coefficient: $k \binom{n}{k} = n \binom{n-1}{k-1}$ $= np \sum_{k=1}^{n} k \binom{n-1}{k-1} p^{k-1} q^{(n-1)-(k-1)}$ Change of limit: term is zero when k-1=0 $= np \sum_{i=1}^{m} (j+1) {m \choose i} p^{j} q^{m-j}$ putting j = k - 1, m = n - 1 $= np \left(\sum_{j=0}^{m} j \binom{m}{j} p^{j} q^{m-j} + \sum_{j=0}^{m} \binom{m}{j} p^{j} q^{m-j} \right)$ $= np \left(\sum_{i=0}^{m} m \binom{m-1}{j-1} p^{j} q^{m-j} + \sum_{i=0}^{m} \binom{m}{j} p^{i} q^{m-j} \right)$ Factors of Binomial Coefficient: $j\binom{m}{i} = m\binom{m-1}{i-1}$ $= np \left((n-1)p \sum_{j=1}^{m} {m-1 \choose j-1} p^{j-1} q^{(m-1)-(j-1)} + \sum_{j=0}^{m} {m \choose j} p^{j} q^{m-j} \right)$ Change of limit: term is zero when j-1=0 $= np((n-1)p(p+q)^{m-1} + (p+q)^m)$ Binomial Theorem = np((n-1)p+1)as p + q = 1 $= n^2 p^2 + np(1-p)$ by algebra $\operatorname{var}(X) = \operatorname{E}(X^{2}) - (\operatorname{E}(X))^{2}$ $= np(1-p) + n^2p^2 - (np)^2$ Expectation of Binomial Distribution: E(X) = np

Let's instead prove this using independence and variance!

proofwiki.org

Proving Variance of the Binomial

$$X \sim Bin(n, p) \quad Var(X) = np(1-p)$$

Let
$$X = \sum_{i=1}^{n} X_i$$

Let $X_i = i$ th trial is heads $X_i \sim \text{Ber}(p)$ $Var(X_i) = p(1-p)$

> X_i are independent (by definition)

$$Var(X) = Var\left(\sum_{i=1}^{n} X_i\right)$$

$$= \sum_{i=1}^{n} Var(X_i)$$

$$= \sum_{i=1}^{n} p(1-p)$$

 X_i are independent, therefore variance of sum = sum of variance

Variance of Bernoulli

= np(1-p)

(live)

13: Statistics of Multiple RVs

Lisa Yan and Jerry Cain October 12, 2020

Where are we now? A roadmap of CS109

Last week: Joint

distributions

 $p_{X,Y}(x,y)$

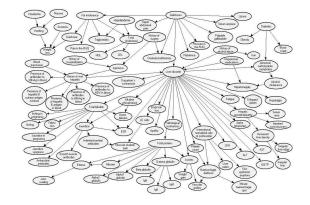
Today: Statistics of multiple RVs!

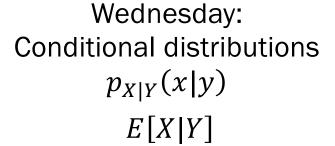
$$Var(X + Y)$$

$$E[X+Y]$$

$$\rho(X,Y)$$

Friday: Modeling with Bayesian Networks





Don't we already know linearity of expectation?

Review

Expectation is a linear mathematical operation. If $X = \sum_{i=1}^{n} X_i$:

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

We covered this back in Lecture 6 (when we first learned expectation)!

- Proved binomial: sum of 1s or 0s
- Hat check (section): sum of 1s or 0s
- We ignored (in)dependence of events.

Why are we learning this again?

- Well, now we can prove it!
- We can now ignore any random variables dependencies!
- Our approach is still the same!



Proof of expectation of a sum of RVs

$$E[X + Y] = E[X] + E[Y]$$

$$E[X + Y] = \sum_{x} \sum_{y} (x + y) p_{X,Y}(x, y)$$

$$= \sum_{x} \sum_{y} x p_{X,Y}(x, y) + \sum_{x} \sum_{y} y p_{X,Y}(x, y)$$

$$= \sum_{x} \sum_{y} p_{X,Y}(x, y) + \sum_{y} y \sum_{x} p_{X,Y}(x, y)$$

$$= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)$$

= E[X] + E[Y]

LOTUS,
$$g(X,Y) = X + Y$$

Linearity of summations (and integrals, btw)

Marginal PMFs for X and Y

Coupon collecting problems: Hash tables

The coupon collector's problem in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons
- For each box you buy, you "collect" a coupon of type i.
- 1. How many coupons do you expect after buying *n* boxes of cereal?
- 2. How many boxes do you expect to buy until you have one of each coupon?

What is the expected number of utilized servers after *n* requests?

What is the expected number of strings to hash until each bucket has ≥ 1 string?

Breakout Rooms

Check out the properties on the next slide (Slide 33). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146231

Breakout rooms: 4 min. Introduce yourself!

Hash Tables

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let Y = # strings to hash until each bucket ≥ 1 string.

What is E[Y]?

- 1. Define additional How should we define Y_i such that $Y = \sum_{i=1}^{n} Y_i$? random variables.
- 2. Solve.

Hash Tables

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E\left[X_i\right]$$

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let Y = # strings to hash until each bucket ≥ 1 string.

What is E[Y]?

1. Define additional random variables. Let: $Y_i = \#$ of trials to get success after *i*-th success

- Success: hash string to previously empty bucket
- If *i* non-empty buckets: $P(\text{success}) = \frac{k-i}{k}$

2. Solve.

$$P(Y_i = n) = \left(\frac{i}{k}\right)^{n-1} \left(\frac{k-i}{k}\right)$$

Equivalently,
$$Y_i \sim \text{Geo}\left(p = \frac{k-i}{k}\right)$$
 $E[Y_i] = \frac{1}{p} = \frac{k}{k-i}$

Hash Tables

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E\left[X_i\right]$$

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let Y = # strings to hash until each bucket ≥ 1 string.

What is E[Y]?

random variables.

1. Define additional Let: $Y_i = \#$ of trials to get success after *i*-th success $Y_i \sim \text{Geo}\left(p = \frac{k-i}{k}\right), \qquad E[Y_i] = \frac{1}{n} = \frac{k}{k-i}$

2. Solve.
$$Y = Y_0 + Y_1 + \dots + Y_{k-1}$$

$$E[Y] = E[Y_0] + E[Y_k] + \dots + E[Y_{k-1}]$$

$$= \frac{k}{k} + \frac{k}{k-1} + \frac{k}{k-2} + \dots + \frac{k}{1} = k \left[\frac{1}{k} + \frac{1}{k-1} + \dots + 1 \right] = O(k \log k)$$

Covariance Review

The **covariance** of two variables *X* and *Y* is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Covariance measures how one random variable varies with a second.

- Outside temperature and utility bills have a negative covariance.
- Handedness and musical ability have near zero covariance.
- Product demand and price have a positive covariance.

Think

Slide 38 has a question to go over by yourself.

Post any clarifications here!

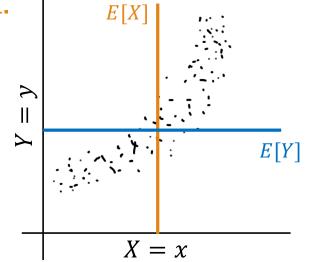
https://us.edstem.org/courses/2678/discussion/146231

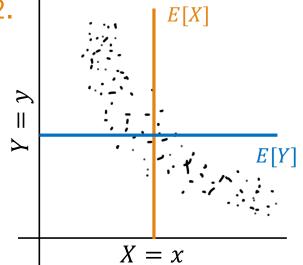
Think by yourself: 1 min

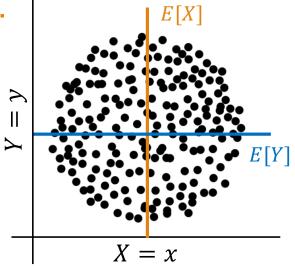
Feel the covariance

Cov(X,Y) = E[(X - E[X])(Y - E[Y])]= E[XY] - E[X]E[Y]

Is the covariance positive, negative, or zero?



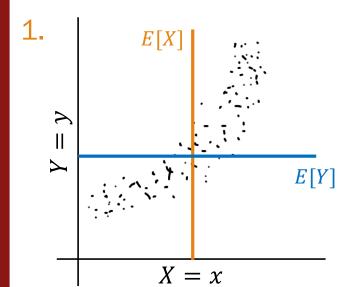


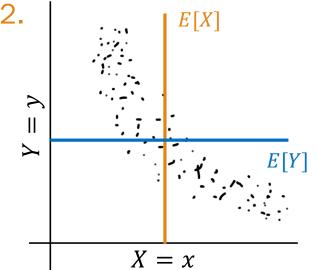


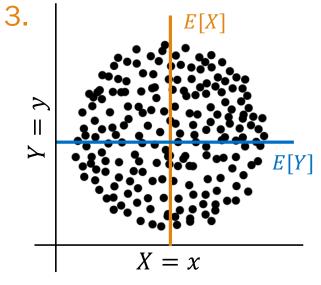
Feel the covariance

Cov(X,Y) = E[(X - E[X])(Y - E[Y])]= E[XY] - E[X]E[Y]

Is the covariance positive, negative, or zero?







positive

negative

zero

Properties of Covariance

The **covariance** of two variables X and Y is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Properties:

- 1. Cov(X,Y) = Cov(Y,X)
- 2. Var(X) = Cov(X, X)
- 3. $Cov(\sum_i X_i, \sum_i Y_i) = \sum_i \sum_i Cov(X_i, Y_i)$
- (A)4. (Cov(aX + b, Y) = aCov(X, Y) + b?

Covariance is non-linear: Cov(aX + b, Y) = aCov(X, Y)

For any random variables *X* and *Y*,

$$E[X + Y] = E[X] + E[Y]$$

$$Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$$

For independent *X* and *Y*,

$$E[XY] = E[X]E[Y]$$

(Lemma: proof in extra slides)

$$Var(X + Y) = Var(X) + Var(Y)$$

Cov(X, Y) = 0 does NOT imply independence of X and Y!

Zero covariance does not imply independence

Lisa Yan and Jerry Cain, CS109, 2020

Let *X* take on values $\{-1,0,1\}$ with equal probability 1/3.

Define
$$Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$$

What is the joint PMF of *X* and *Y*?

Breakout Rooms

Check out the properties on the next slide (Slide 44). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146231

Breakout rooms: 4 min. Introduce yourself!

Zero covariance does not imply independence

Let *X* take on values $\{-1,0,1\}$ with equal probability 1/3.

Define
$$Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$$

Marginal PMF of X, $p_X(x)$

1.
$$E[X] = E[Y] =$$

$$2. \quad E[XY] =$$

3.
$$Cov(X,Y) =$$

4. Are *X* and *Y* independent?

Zero covariance does not imply independence

Let *X* take on values $\{-1,0,1\}$ with equal probability 1/3.

Define
$$Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$$

Marginal PMF of X, $p_X(x)$

1.
$$E[X] = E[Y] = -1\left(\frac{1}{3}\right) + 0\left(\frac{1}{3}\right) + 1\left(\frac{1}{3}\right) = 0$$
 $O\left(\frac{2}{3}\right) + 1\left(\frac{1}{3}\right) = 1/3$

2.
$$E[XY] = (-1 \cdot 0) \left(\frac{1}{3}\right) + (0 \cdot 1) \left(\frac{1}{3}\right) + (1 \cdot 0) \left(\frac{1}{3}\right)$$

= 0

3.
$$Cov(X,Y) = E[XY] - E[X]E[Y]$$

= $0 - 0(1/3) = 0$ does not imply independence!

4. Are X and Y independent?

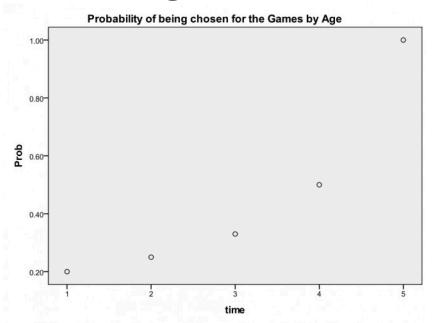
$$P(Y = 0|X = 1) = 1$$

 $\neq P(Y = 0) = 2/3$

Lisa Yan and Jerry Cain, CS109, 2020

Interesting probability news

Probability and Game Theory in The Hunger Games



1 = 12yrs. old; 2 = 13yrs. old; 3 = 14yrs. old; 4 = 15yrs. old; 5 = 16yrs. old

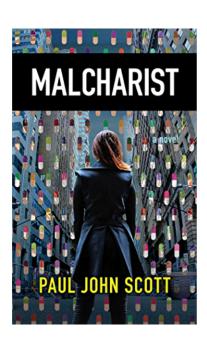
"Suppose the parents in a given district gave birth to only...five girls, and that all of these kids were born at the same time."

- Not a probability mass function
- Also duh? (P(you get chosen if you're the only person) = 1)
- You now know enough Python/ probability to write a better simulation to model the Reaping!!!!
- (game theory part of the article is good)

https://www.wired.com/2012/04/probability-and-gametheory-in-the-hunger-games/

Topical book review! Fiction is brain food.

Rochester author takes scary look at Big Pharma in debut novel



- "Called 'Malcharist,' it is a completely made-up story about a potentially dangerous drug being put on the market — with outsourced drug trial research, ghostwritten studies, lack of access to raw drug-trial data, and doctors essentially paid to champion new drugs."
- "[Paul John] Scott's novel is actually a thriller, with not-quite-believable villains who need to be exposed. Yet it's too wonky to be a beach read. There's even a conversation over the [b] probability concept of p-values [c]."
- "Scott takes his writer into one of those medical meetings he once found so cool, and his book reproduces enough of the numbers — yes, [umber tables [9] in a thriller — that the reader can see the fictional speaker's good point that the data really do give up their secrets."

https://www.startribune.com/schafer-debut-novel-by-rochester-author-takes-on-big-pharma-issues/572679992

Correlation

Covarying humans

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

What is the covariance of weight *W* and height *H*?

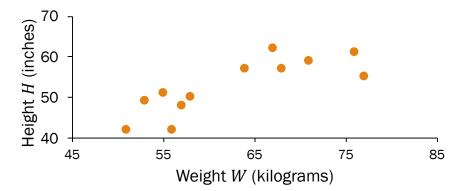
$$Cov(W, H) = E[WH] - E[W]E[H]$$

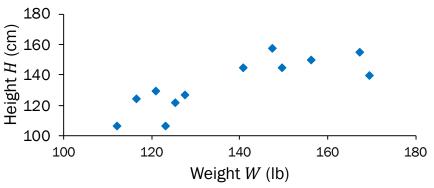
= 3355.83 - (62.75)(52.75)
= 45.77 (positive)

What about weight (lb) and height (cm)?

```
Cov(2.20W, 2.54H)
= E[2.20W \cdot 2.54H] - E[2.20W]E[2.54H]
= 18752.38 - (138.05)(133.99)
= 255.06 (positive)
```

Covariance depends on units!





Sign of covariance (+/-) more meaningful than magnitude

Correlation

The correlation of two variables X and Y is:

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \, \sigma_Y}$$

$$\sigma_X^2 = Var(X),$$

 $\sigma_Y^2 = Var(Y)$

- Note: $-1 \le \rho(X, Y) \le 1$
- Correlation measures the **linear relationship** between *X* and *Y*:

$$\rho(X,Y) = 1 \implies Y = aX + b$$
, where $a = \sigma_Y/\sigma_X$

$$\rho(X,Y) = -1 \implies Y = aX + b$$
, where $a = -\sigma_Y/\sigma_X$

$$\rho(X,Y) = 0 \implies \text{"uncorrelated" (absence of linear relationship)}$$

Think

Slide 52 has a question to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146231

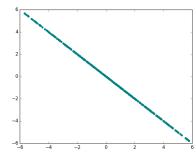
Think by yourself: 1 min

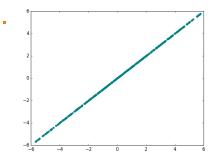
Correlation reps

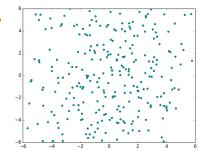
A. $\rho(X,Y) = 1$ B. $\rho(X,Y) = -1$ C. $\rho(X,Y) = 0$

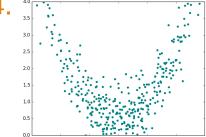
D. Other

What is the correlation coefficient $\rho(X,Y)$?









Correlation reps

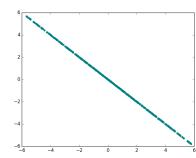
A. $\rho(X,Y)=1$

B. $\rho(X, Y) = -1$

 $\frac{\mathsf{C}.}{\rho(X,Y)}=0$

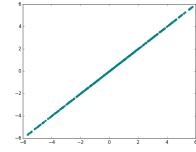
D. Other

What is the correlation coefficient $\rho(X,Y)$?



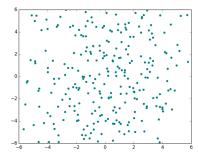
B. $\rho(X, Y) = -1$

$$Y = -aX + b$$
$$a > 0$$



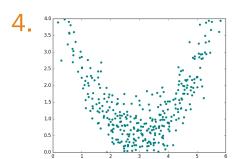
A. $\rho(X,Y)=1$

$$Y = aX + b$$
$$a > 0$$



 $C. \rho(X,Y) = 0$

"uncorrelated"



 $C. \rho(X,Y) = 0$ $Y = X^2$

X and Y can be nonlinearly related even if $\rho(X,Y)=0$.

Throwback to CS103: Conditional statements

Statement $P \rightarrow Q$:

Independence \rightarrow No correlation \checkmark

Contrapositive $\neg Q \rightarrow \neg P$: Correlation \rightarrow Dependence

(logically equivalent)

Inverse $\neg P \rightarrow \neg Q$:

Dependence → Correlation

(not always)

$$Y = X^2$$

$$\rho(X, Y) = 0$$

Converse $Q \rightarrow P$:

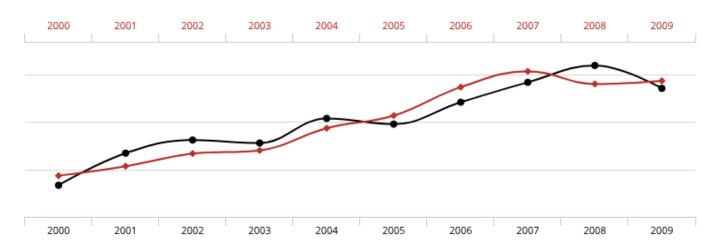
No correlation → Independence

"Correlation does not imply causation"

Spurious Correlations

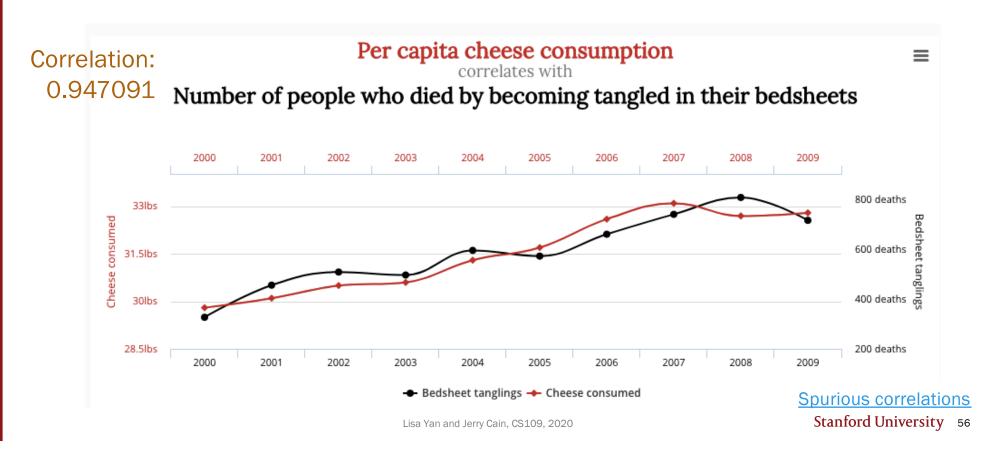
 $\rho(X,Y)$ is used a lot to statistically quantify the relationship b/t X and Y.

Correlation: 0.947091

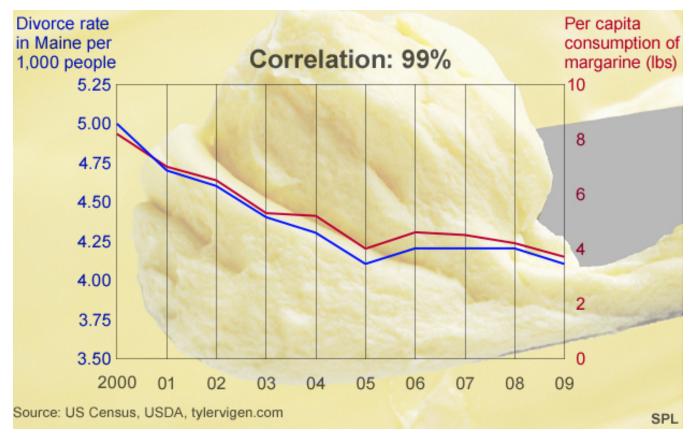


Spurious Correlations

 $\rho(X,Y)$ is used a lot to statistically quantify the relationship b/t X and Y.



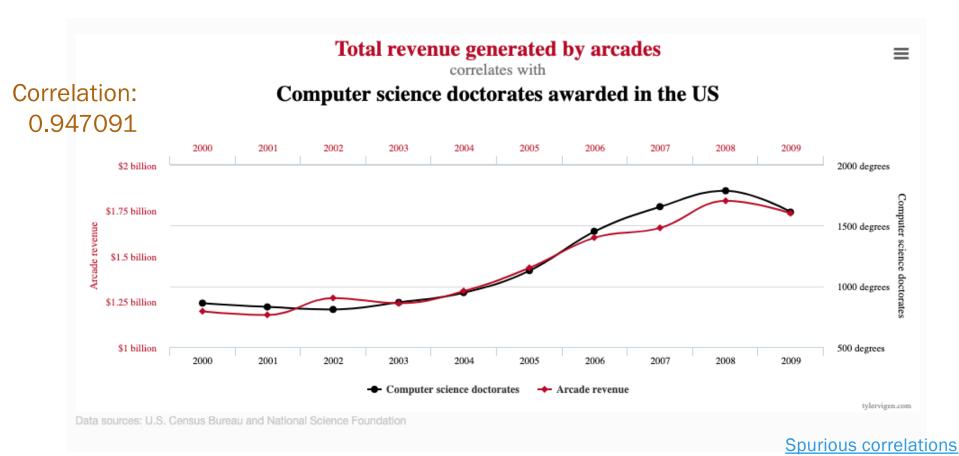
Divorce vs. Margarine



http://www.bbc.com/news/magazine-27537142

Stanford University

Arcade revenue vs. CS PhDs



Extra

Expectation of product of independent RVs

If X and Y are independent, then

$$E[XY] = E[X]E[Y]$$

$$E[g(X)h(Y)] = E[g(X)]E[h(Y)]$$

Proof:
$$E[g(X)h(Y)] = \sum_{y} \sum_{x} g(x)h(y)p_{X,Y}(x,y)$$

$$= \sum_{y} \sum_{x} g(x)h(y)p_{X}(x)p_{Y}(y)$$

$$= \sum_{y} \left(h(y)p_{Y}(y)\sum_{x} g(x)p_{X}(x)\right)$$

$$= \left(\sum_{x} g(x)p_{X}(x)\right)\left(\sum_{y} h(y)p_{Y}(y)\right)$$

$$= E[g(X)]E[h(Y)] \cos 109, 2020$$

(for continuous proof, replace summations with integrals)

X and *Y* are independent

Terms dependent on yare constant in integral of x

Summations separate

Variance of Sums of Variables

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)$$

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}(X_{i}, X_{j})$$

$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \operatorname{Cov}(X_{i}, X_{j})$$

$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}(X_{i}, X_{j})$$

Symmetry of covariance Cov(X,X) = Var(X)

Adjust summation bounds