# 13: Statistics of Multiple RVs

Lisa Yan and Jerry Cain October 12, 2020

# Quick slide reference

| 3  | Expectation of Common RVs  | 13a_expectation_sum   |
|----|----------------------------|-----------------------|
| 8  | Coupon Collecting Problems | 13b_coupon_collecting |
| 14 | Covariance                 | 13c_covariance        |
| 20 | Independence and Variance  | 13d_variance_sum      |
| 27 | Exercises                  | LIVE                  |
| 48 | Correlation                | LIVE                  |

13a\_expectation\_sum

# Expectation of Common RVs

# Linearity of Expectation is useful

Expectation is a linear mathematical operation. If  $X = \sum_{i=1}^{n} X_i$ :

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

- Even if you don't know the **distribution** of X (e.g., because the joint distribution of  $(X_1, ..., X_n)$  is unknown), you can still compute expectation of X!!
- Problem-solving key: Define  $X_i$  such that  $X = \sum X_i$

$$X = \sum_{i=1}^{n} X_i$$



- Most common use cases:
  E[X<sub>i</sub>] easy to calculate
  Or sum of dependent RVs

# Expectations of common RVs: Binomial

Review

$$X \sim Bin(n, p)$$
  $E[X] = np$ 

# of successes in n independent trials with probability of success p

Recall: Bin(1, p) = Ber(p)

$$X = \sum_{i=1}^{n} X_i$$

Let 
$$X_i = i$$
th trial is heads  $X_i \sim \text{Ber}(p), E[X_i] = p$ 



Let 
$$X_i = i$$
th trial is heads  $X_i \sim \text{Ber}(p)$ ,  $E[X_i] = p$  
$$E[X] = E\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n E[X_i] = \sum_{i=1}^n p = np$$

# Expectations of common RVs: Negative Binomial

$$Y \sim \text{NegBin}(r, p)$$
  $E[Y] = \frac{r}{p}$ 

# of independent trials with probability of success p until r successes

Recall: NegBin(1, p) = Geo(p)

$$Y = \sum_{i=1}^{?} Y_i$$

- **1.** How should we define  $Y_i$ ?
- 2. How many terms are in our summation?



# Expectations of common RVs: Negative Binomial

$$Y \sim \text{NegBin}(r, p)$$
  $E[Y] = \frac{r}{p}$ 

# of independent trials with probability of success p until r successes

Recall: NegBin(1, p) = Geo(p)

$$Y = \sum_{i=1}^{?} Y_i$$

Let  $Y_i = \#$  trials to get ith success (after

$$(i-1)$$
th success)

$$Y_i \sim \text{Geo}(p), E[Y_i] = \frac{1}{p}$$

$$E[Y] = E\left[\sum_{i=1}^{r} Y_i\right] = \sum_{i=1}^{r} E[Y_i] = \sum_{i=1}^{r} \frac{1}{p} = \frac{r}{p}$$

# Coupon Collecting Problems

# Linearity of Expectation is useful

Expectation is a linear mathematical operation. If  $X = \sum_{i=1}^{n} X_i$ :

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

- Even if you don't know the distribution of X (e.g., because the joint distribution of  $(X_1, ..., X_n)$  is unknown), you can still compute expectation of the sum!!
- Problem-solving key: Define  $X_i$  such that  $X = \sum X_i$

$$X = \sum_{i=1}^{n} X_i$$



Most common use cases:

- E[X<sub>i</sub>] easy to calculate
   Or sum of dependent RVs

# Coupon collecting problems: Server requests

The coupon collector's problem in probability theory:

Servers

You buy boxes of cereal.

requests

There are k different types of coupons

k servers

For each box you buy, you "collect" a coupon of type i.

request to server i

1. How many coupons do you expect after buying n boxes of cereal?



What is the expected number of utilized servers after *n* requests?



- 52% of Amazon profits
- \*\* more profitable than Amazon's North America commerce operations

source

# Computer cluster utilization

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

Consider a computer cluster with k servers. We send n requests.

- Requests independently go to server i with probability  $p_i$
- Let X = # servers that receive  $\geq 1$  request.

What is E[X]?



# Computer cluster utilization

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E\left[X_i\right]$$

Consider a computer cluster with k servers. We send n requests.

- Requests independently go to server i with probability  $p_i$
- Let X = # servers that receive  $\geq 1$  request.

#### What is E[X]?

#### 1. Define additional random variables.

Let:  $A_i$  = event that server ireceives  $\geq 1$  request  $X_i = \text{indicator for } A_i$ 

$$P(A_i) = 1 - P(\text{no requests to } i)$$
  
=  $1 - (1 - p_i)^n$ 

Note:  $A_i$  are dependent!

#### 2. Solve.

$$E[X_i] = P(A_i) = 1 - (1 - p_i)^n$$

$$E[X] = E\left[\sum_{i=1}^k X_i\right] = \sum_{i=1}^k E[X_i] = \sum_{i=1}^k (1 - (1 - p_i)^n)$$

$$= \sum_{i=1}^k 1 - \sum_{i=1}^k (1 - p_i)^n = k - \sum_{i=1}^k (1 - p_i)^n$$

Lisa Yan and Jerry Cain, CS109, 2020

Stanford University 12

# Coupon collecting problems: Hash tables

The coupon collector's problem in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons
- For each box you buy, you "collect" a coupon of type i.
- 1. How many coupons do you expect after buying *n* boxes of cereal?
- 2. How many boxes do you expect to buy until you have one of



What is the expected number of utilized servers after *n* requests?

Servers

requests

k servers

request to

server i





What is the expected number of strings to hash until each bucket has  $\geq 1$  string?

Stay tuned for live lecture!

**Hash Tables** 

strings

k buckets

hashed to

bucket i

# Covariance

#### Statistics of sums of RVs

For any random variables *X* and *Y*,

$$E[X + Y] = E[X] + E[Y]$$

$$Var(X + Y) = ?$$

But first... a new statistic!

# Spot the difference

Compare/contrast the following two distributions:



Assume all points are equally likely.

$$P(X = x, Y = y) = \frac{1}{N}$$

Both distributions have the same E[X], E[Y], Var(X), and Var(Y)

Difference: how the two variables vary with each other.

#### Covariance

The **covariance** of two variables *X* and *Y* is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Proof of second part:

$$\begin{aligned} \operatorname{Cov}(X,Y) &= E[(X-E[X])(Y-E[Y])] \\ &= E\big[XY-XE[Y]-E[X]Y+E[X]E[Y]\big] \\ &= E[XY]-E\big[XE[Y]\big]-E\big[E[X]Y\big]+E\big[E[X]E[Y]\big] \end{aligned} \qquad \text{(linearity of expectation)} \\ &= E[XY]-E[X]E[Y]-E[X]E[Y]+E[X]E[Y] \qquad \text{($E[X],E[Y]$ are scalars)} \\ &= E[XY]-E[X]E[Y] \end{aligned}$$

# Covarying humans

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

| Weight (kg) | Height (in) | W · H |
|-------------|-------------|-------|
| 64          | 57          | 3648  |
| 71          | 59          | 4189  |
| 53          | 49          | 2597  |
| 67          | 62          | 4154  |
| 55          | 51          | 2805  |
| 58          | 50          | 2900  |
| 77          | 55          | 4235  |
| 57          | 48          | 2736  |
| 56          | 42          | 2352  |
| 51          | 42          | 2142  |
| 76          | 61          | 4636  |
| 68          | 57          | 3876  |
|             |             |       |

$$E[W]$$
  $E[H]$   $E[WH]$   
= 62.75 = 52.75 = 3355.83

What is the covariance of weight W and height *H*?

Cov
$$(W, H)$$
 =  $E[WH] - E[W]E[H]$   
= 3355.83 - (62.75)(52.75)  
(positive) = 45.77



Covariance > 0: one variable 1, other variable 1

# Properties of Covariance

The **covariance** of two variables X and Y is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

#### **Properties:**

- 1. Cov(X,Y) = Cov(Y,X)
- 2.  $Var(X) = E[X^2] (E[X])^2 = Cov(X, X)$
- 3. Covariance of sums = sum of all pairwise covariances (proof left to you)  $Cov(X_1 + X_2, Y_1 + Y_2) = Cov(X_1, Y_1) + Cov(X_2, Y_1) + Cov(X_1, Y_2) + Cov(X_2, Y_2)$
- 4. Non-linearity (to be discussed in live lecture)

13d\_variance\_sum

# Variance of sums of RVs

#### Statistics of sums of RVs

For any random variables X and Y,

$$E[X + Y] = E[X] + E[Y]$$

$$Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$$

### Variance of general sum of RVs

For any random variables *X* and *Y*,

$$Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$$

Proof:

More generally:

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right) \quad \text{(proof in extra slides)}$$

#### Statistics of sums of RVs

For any random variables X and Y,

$$E[X + Y] = E[X] + E[Y]$$

$$Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$$

For independent X and Y,

$$E[XY] = E[X]E[Y]$$

(Lemma: proof in extra slides)

$$Var(X + Y) = Var(X) + Var(Y)$$

# Variance of sum of independent RVs

For independent *X* and *Y*,

$$Var(X + Y) = Var(X) + Var(Y)$$

Proof:

1. 
$$Cov(X, Y) = E[XY] - E[X]E[Y]$$
  
=  $E[X]E[Y] - E[X]E[Y]$   
= 0

def. of covariance

*X* and *Y* are independent

#### $Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$ = Var(X) + Var(Y)

#### NOT bidirectional:

Cov(X,Y) = 0 does NOT imply independence of Xand Y!

# Proving Variance of the Binomial

$$X \sim Bin(n, p) \quad Var(X) = np(1-p)$$

as required

To simplify the algebra a bit, let q = 1 - p, so p + q = 1.  $E(X^2) = \sum_{n=1}^{n} k^2 \binom{n}{k} p^k q^{n-k}$ Definition of Binomial Distribution: p + q = 1 $= \sum_{k=0}^{n} kn \binom{n-1}{k-1} p^{k} q^{n-k}$ Factors of Binomial Coefficient:  $k \binom{n}{k} = n \binom{n-1}{k-1}$  $= np \sum_{k=1}^{n} k \binom{n-1}{k-1} p^{k-1} q^{(n-1)-(k-1)}$ Change of limit: term is zero when k-1=0 $= np \sum_{i=1}^{m} (j+1) {m \choose i} p^{j} q^{m-j}$ putting j = k - 1, m = n - 1 $= np \left( \sum_{j=0}^{m} j \binom{m}{j} p^{j} q^{m-j} + \sum_{j=0}^{m} \binom{m}{j} p^{j} q^{m-j} \right)$  $= np \left( \sum_{i=0}^{m} m \binom{m-1}{j-1} p^{j} q^{m-j} + \sum_{i=0}^{m} \binom{m}{j} p^{i} q^{m-j} \right)$ Factors of Binomial Coefficient:  $j\binom{m}{i} = m\binom{m-1}{i-1}$  $= np \left( (n-1)p \sum_{j=1}^{m} {m-1 \choose j-1} p^{j-1} q^{(m-1)-(j-1)} + \sum_{j=0}^{m} {m \choose j} p^{j} q^{m-j} \right)$ Change of limit: term is zero when j-1=0 $= np((n-1)p(p+q)^{m-1} + (p+q)^m)$ Binomial Theorem = np((n-1)p+1)as p + q = 1 $= n^2 p^2 + np(1-p)$ by algebra  $\operatorname{var}(X) = \operatorname{E}(X^{2}) - (\operatorname{E}(X))^{2}$  $= np(1-p) + n^2p^2 - (np)^2$  Expectation of Binomial Distribution: E(X) = np



Let's instead prove this using independence and variance!

proofwiki.org

# Proving Variance of the Binomial

$$X \sim Bin(n, p) \quad Var(X) = np(1-p)$$

Let 
$$X = \sum_{i=1}^{n} X_i$$

Let  $X_i = i$ th trial is heads  $X_i \sim \text{Ber}(p)$  $Var(X_i) = p(1-p)$ 

> $X_i$  are independent (by definition)

$$Var(X) = Var\left(\sum_{i=1}^{n} X_i\right)$$

$$= \sum_{i=1}^{n} Var(X_i)$$

$$= \sum_{i=1}^{n} p(1-p)$$

 $X_i$  are independent, therefore variance of sum = sum of variance

Variance of Bernoulli



= np(1-p)

(live)

# 13: Statistics of Multiple RVs

Lisa Yan and Jerry Cain October 12, 2020

# Where are we now? A roadmap of CS109

Last week: Joint

distributions

 $p_{X,Y}(x,y)$ 

Today: Statistics of multiple RVs!

$$Var(X + Y)$$

$$E[X+Y]$$

$$\rho(X,Y)$$

Friday: Modeling with Bayesian Networks







# Don't we already know linearity of expectation?

Review

Expectation is a linear mathematical operation. If  $X = \sum_{i=1}^{n} X_i$ :

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

We covered this back in Lecture 6 (when we first learned expectation)!

- Proved binomial: sum of 1s or 0s
- Hat check (section): sum of 1s or 0s
- We ignored (in)dependence of events.

Why are we learning this again?

- Well, now we can prove it!
- We can now ignore any random variables dependencies!
- Our approach is still the same!



### Proof of expectation of a sum of RVs

$$E[X + Y] = E[X] + E[Y]$$

$$E[X + Y] = \sum_{x} \sum_{y} (x + y) p_{X,Y}(x, y)$$

$$= \sum_{x} \sum_{y} x p_{X,Y}(x, y) + \sum_{x} \sum_{y} y p_{X,Y}(x, y)$$

$$= \sum_{x} \sum_{y} p_{X,Y}(x, y) + \sum_{y} y \sum_{x} p_{X,Y}(x, y)$$

$$= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)$$

= E[X] + E[Y]

LOTUS, 
$$g(X,Y) = X + Y$$

Linearity of summations (and integrals, btw)

Marginal PMFs for X and Y

# Coupon collecting problems: Hash tables

The coupon collector's problem in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons
- For each box you buy, you "collect" a coupon of type i.
- 1. How many coupons do you expect after buying *n* boxes of cereal?
- 2. How many boxes do you expect to buy until you have one of each coupon?



What is the expected number of utilized servers after *n* requests?



What is the expected number of strings to hash until each bucket has  $\geq 1$  string?

# Breakout Rooms

Check out the properties on the next slide (Slide 33). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146231

Breakout rooms: 4 min. Introduce yourself!



#### Hash Tables

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let Y = # strings to hash until each bucket  $\geq 1$  string.

#### What is E[Y]?

- 1. Define additional How should we define  $Y_i$  such that  $Y = \sum_{i=1}^{n} Y_i$ ? random variables.
- 2. Solve.



#### **Hash Tables**

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E\left[X_i\right]$$

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let Y = # strings to hash until each bucket  $\geq 1$  string.

#### What is E[Y]?

1. Define additional random variables. Let:  $Y_i = \#$  of trials to get success after *i*-th success

- Success: hash string to previously empty bucket
- If *i* non-empty buckets:  $P(\text{success}) = \frac{k-i}{k}$

2. Solve.

$$P(Y_i = n) = \left(\frac{i}{k}\right)^{n-1} \left(\frac{k-i}{k}\right)$$

Equivalently, 
$$Y_i \sim \text{Geo}\left(p = \frac{k-i}{k}\right)$$
  $E[Y_i] = \frac{1}{p} = \frac{k}{k-i}$ 

#### Hash Tables

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E\left[X_i\right]$$

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let Y = # strings to hash until each bucket  $\geq 1$  string.

#### What is E[Y]?

random variables.

1. Define additional Let:  $Y_i = \#$  of trials to get success after *i*-th success  $Y_i \sim \text{Geo}\left(p = \frac{k-i}{k}\right), \qquad E[Y_i] = \frac{1}{n} = \frac{k}{k-i}$ 

2. Solve. 
$$Y = Y_0 + Y_1 + \dots + Y_{k-1}$$

$$E[Y] = E[Y_0] + E[Y_k] + \dots + E[Y_{k-1}]$$

$$= \frac{k}{k} + \frac{k}{k-1} + \frac{k}{k-2} + \dots + \frac{k}{1} = k \left[ \frac{1}{k} + \frac{1}{k-1} + \dots + 1 \right] = O(k \log k)$$

Covariance Review

The **covariance** of two variables *X* and *Y* is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Covariance measures how one random variable varies with a second.

- Outside temperature and utility bills have a negative covariance.
- Handedness and musical ability have near zero covariance.
- Product demand and price have a positive covariance.

## Think

Slide 38 has a question to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146231

Think by yourself: 1 min



#### Feel the covariance

Cov(X,Y) = E[(X - E[X])(Y - E[Y])]= E[XY] - E[X]E[Y]

Is the covariance positive, negative, or zero?













#### Feel the covariance

Cov(X,Y) = E[(X - E[X])(Y - E[Y])]= E[XY] - E[X]E[Y]

Is the covariance positive, negative, or zero?







positive

negative

zero

## Properties of Covariance

The **covariance** of two variables X and Y is:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

#### Properties:

- 1. Cov(X,Y) = Cov(Y,X)
- 2. Var(X) = Cov(X, X)
- 3.  $Cov(\sum_i X_i, \sum_i Y_i) = \sum_i \sum_i Cov(X_i, Y_i)$
- (A)4. (Cov(aX + b, Y) = aCov(X, Y) + b?

Covariance is non-linear: Cov(aX + b, Y) = aCov(X, Y)

For any random variables *X* and *Y*,

$$E[X + Y] = E[X] + E[Y]$$

$$Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)$$

For independent *X* and *Y*,

$$E[XY] = E[X]E[Y]$$

(Lemma: proof in extra slides)

$$Var(X + Y) = Var(X) + Var(Y)$$

Cov(X, Y) = 0 does NOT imply independence of X and Y!

## Zero covariance does not imply independence

Lisa Yan and Jerry Cain, CS109, 2020

Let *X* take on values  $\{-1,0,1\}$ with equal probability 1/3.

Define 
$$Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$$

What is the joint PMF of *X* and *Y*?

# Breakout Rooms

Check out the properties on the next slide (Slide 44). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146231

Breakout rooms: 4 min. Introduce yourself!



## Zero covariance does not imply independence

Let *X* take on values  $\{-1,0,1\}$ with equal probability 1/3.

Define 
$$Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$$

**Marginal PMF** of X,  $p_X(x)$ 

1. 
$$E[X] = E[Y] =$$

$$2. \quad E[XY] =$$

3. 
$$Cov(X,Y) =$$

4. Are *X* and *Y* independent?



## Zero covariance does not imply independence

Let *X* take on values  $\{-1,0,1\}$ with equal probability 1/3.

Define 
$$Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$$

**Marginal PMF** of X,  $p_X(x)$ 

1. 
$$E[X] = E[Y] = -1\left(\frac{1}{3}\right) + 0\left(\frac{1}{3}\right) + 1\left(\frac{1}{3}\right) = 0$$
  $O\left(\frac{2}{3}\right) + 1\left(\frac{1}{3}\right) = 1/3$ 

2. 
$$E[XY] = (-1 \cdot 0) \left(\frac{1}{3}\right) + (0 \cdot 1) \left(\frac{1}{3}\right) + (1 \cdot 0) \left(\frac{1}{3}\right)$$
  
= 0

3. 
$$Cov(X,Y) = E[XY] - E[X]E[Y]$$
  
=  $0 - 0(1/3) = 0$  does not imply independence!

4. Are X and Y independent?

$$P(Y = 0|X = 1) = 1$$
  
 $\neq P(Y = 0) = 2/3$ 

Lisa Yan and Jerry Cain, CS109, 2020

## Interesting probability news

### **Probability and Game Theory** in The Hunger Games



1 = 12yrs. old; 2 = 13yrs. old; 3 = 14yrs. old; 4 = 15yrs. old; 5 = 16yrs. old

"Suppose the parents in a given district gave birth to only...five girls, and that all of these kids were born at the same time."

- Not a probability mass function
- Also duh? (P(you get chosen if you're the only person) = 1)
- You now know enough Python/ probability to write a better simulation to model the Reaping!!!!
- (game theory part of the article is good)

https://www.wired.com/2012/04/probability-and-gametheory-in-the-hunger-games/

## Topical book review! Fiction is brain food.



#### Rochester author takes scary look at Big Pharma in debut novel



- "Called 'Malcharist,' it is a completely made-up story about a potentially dangerous drug being put on the market — with outsourced drug trial research, ghostwritten studies, lack of access to raw drug-trial data, and doctors essentially paid to champion new drugs."
- "[Paul John] Scott's novel is actually a thriller, with not-quite-believable villains who need to be exposed. Yet it's too wonky to be a beach read. There's even a conversation over the [ b] probability concept of p-values [ c]."
- "Scott takes his writer into one of those medical meetings he once found so cool, and his book reproduces enough of the numbers — yes, [ umber tables [ 9] in a thriller — that the reader can see the fictional speaker's good point that the data really do give up their secrets."

https://www.startribune.com/schafer-debut-novel-by-rochester-author-takes-on-big-pharma-issues/572679992

# Correlation

## Covarying humans

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

What is the covariance of weight *W* and height *H*?

$$Cov(W, H) = E[WH] - E[W]E[H]$$
  
= 3355.83 - (62.75)(52.75)  
= 45.77 (positive)

What about weight (lb) and height (cm)?

```
Cov(2.20W, 2.54H)
= E[2.20W \cdot 2.54H] - E[2.20W]E[2.54H]
= 18752.38 - (138.05)(133.99)
= 255.06 (positive)
```

Covariance depends on units!





Sign of covariance (+/-) more meaningful than magnitude

#### Correlation

The correlation of two variables X and Y is:

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \, \sigma_Y}$$

$$\sigma_X^2 = Var(X),$$
  
 $\sigma_Y^2 = Var(Y)$ 

- Note:  $-1 \le \rho(X, Y) \le 1$
- Correlation measures the **linear relationship** between *X* and *Y*:

$$\rho(X,Y) = 1 \implies Y = aX + b$$
, where  $a = \sigma_Y/\sigma_X$ 

$$\rho(X,Y) = -1 \implies Y = aX + b$$
, where  $a = -\sigma_Y/\sigma_X$ 

$$\rho(X,Y) = 0 \implies \text{"uncorrelated" (absence of linear relationship)}$$

## Think

Slide 52 has a question to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146231

Think by yourself: 1 min



## Correlation reps

A.  $\rho(X,Y) = 1$ B.  $\rho(X,Y) = -1$ C.  $\rho(X,Y) = 0$ 

D. Other

What is the correlation coefficient  $\rho(X,Y)$ ?















## Correlation reps

A.  $\rho(X,Y)=1$ 

B.  $\rho(X, Y) = -1$ 

 $\frac{\mathsf{C}.}{\rho(X,Y)}=0$ 

D. Other

#### What is the correlation coefficient $\rho(X,Y)$ ?



B.  $\rho(X, Y) = -1$ 

$$Y = -aX + b$$
$$a > 0$$



A.  $\rho(X,Y)=1$ 

$$Y = aX + b$$
$$a > 0$$



 $C. \rho(X,Y) = 0$ 

"uncorrelated"



 $C. \rho(X,Y) = 0$  $Y = X^2$ 

X and Y can be nonlinearly related even if  $\rho(X,Y)=0$ .

## Throwback to CS103: Conditional statements

Statement  $P \rightarrow Q$ :

Independence  $\rightarrow$  No correlation  $\checkmark$ 



Contrapositive  $\neg Q \rightarrow \neg P$ : Correlation  $\rightarrow$  Dependence

(logically equivalent)

Inverse  $\neg P \rightarrow \neg Q$ :

Dependence → Correlation

(not always)

$$Y = X^2$$

$$\rho(X, Y) = 0$$



Converse  $Q \rightarrow P$ :

No correlation → Independence



"Correlation does not imply causation"

## **Spurious Correlations**

 $\rho(X,Y)$  is used a lot to statistically quantify the relationship b/t X and Y.

#### **Correlation:** 0.947091



### **Spurious Correlations**

 $\rho(X,Y)$  is used a lot to statistically quantify the relationship b/t X and Y.



## Divorce vs. Margarine



http://www.bbc.com/news/magazine-27537142

**Stanford University** 

#### Arcade revenue vs. CS PhDs



# Extra

## Expectation of product of independent RVs

If X and Y are independent, then

$$E[XY] = E[X]E[Y]$$
  
$$E[g(X)h(Y)] = E[g(X)]E[h(Y)]$$

Proof: 
$$E[g(X)h(Y)] = \sum_{y} \sum_{x} g(x)h(y)p_{X,Y}(x,y)$$

$$= \sum_{y} \sum_{x} g(x)h(y)p_{X}(x)p_{Y}(y)$$

$$= \sum_{y} \left(h(y)p_{Y}(y)\sum_{x} g(x)p_{X}(x)\right)$$

$$= \left(\sum_{x} g(x)p_{X}(x)\right)\left(\sum_{y} h(y)p_{Y}(y)\right)$$

$$= E[g(X)]E[h(Y)] \cos 109, 2020$$

(for continuous proof, replace summations with integrals)

*X* and *Y* are independent

Terms dependent on yare constant in integral of x

Summations separate

#### Variance of Sums of Variables

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)$$

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}(X_{i}, X_{j})$$

$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \operatorname{Cov}(X_{i}, X_{j})$$

$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}(X_{i}, X_{j})$$

Symmetry of covariance Cov(X,X) = Var(X)

Adjust summation bounds