13: Statistics of
Multiple RVs

Lisa Yan and Jerry Cain
October 12, 2020




Quick slide reference

14

20

27

48

Expectation of Common RVs
Coupon Collecting Problems
Covariance

Independence and Variance
Exercises

Correlation

Lisa Yan and Jerry Cain, CS109, 2020

13a_expectation_sum
13b_coupon_collecting
13c_covariance
13d_variance_sum
LIVE

LIVE

Stanford University 2



13a_expectation_sum

Expectation of
Common RVs




Linearity of Expectation is useful

Expectation is a linear mathematical operation. If X = Y/-, X; :

E[X] = E ZXi — iE[Xi]
] =1

Even if you don’t know the distribution of X (e.g., because the joint
distribution of (X4, ..., X;,) is unknown), you can still compute
expectation of X!!

Most common use cases:

Problem-solving key: § $ « E[X;] easy to calculate
Define X; such that zxi * Or sum of dependent RVs

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University



Expectations of common RVs: Binomial

X~BIin (Tl, p) E[X] = np #.of success_gs in n independent trials
with probability of success p

Recall: Bin(1,p) = Ber(p)

n
X = le
=1

Let X; = ith trial is heads

X;~Ber(p),E[X;]=p E[X]=E

=§:E[Xi] =Zn:29=np

=1 =1

n
2.
i=1

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 5



Expectations of common RVs: Negative Binomial

Y~NegBin(r, p) E[Y] = r # of independent trials with probability

Recall: NegBin(1, p) = Geo(p)

?
Y=ZYi
=1

Lisa

p of success p until r successes

How should we define Y;?

How many terms are in our summation?

)

Yan and Jerry Cain, C$109, 2020 Stanford University 6



Expectations of common RVs: Negative Binomial

r

p

Y ~NegBin(r,p) ElY] =

Recall: NegBin(1, p) = Geo(p)

?
Y=ZYi
=1

Let Y; = # trials to get ith success (after
(i — 1)th success)

1
¥Vi~Geo(p), ELY] = *

nand)J

# of independent trials with probability
of success p until r successes

<
<

erry Cain, CS109, 2020 Stanford University 7



13b_coupon_collecting

Coupon
Collecting
Problems




Linearity of Expectation is useful

Expectation is a linear mathematical operation. If X = Y/-, X; :

E[X] = E ZXi — iE[Xi]
] =1

Even if you don’t know the distribution of X (e.g., because the joint
distribution of (X4, ..., X;,) is unknown), you can still compute
expectation of the sum!!

Most common use cases:
Problem-solving key: - + E[X;] easy to calculate
Define X; such that zxi $ * Orsum of dependent RVs

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University



Coupon collecting problems: Server requests

The coupon collector’s problem in probability theory: Servers

You buy boxes of cereal. requests
There are k different types of coupons ke servers
For each box you buy, you "collect” request FO
a coupon of type i. Servert
How many coupons do you expect What is the expected number of
after buying n boxes of cereal? utilized servers after n requests?
=
~~—" \ h"‘A -n
- iﬂ“

—,
a m azon *  B52% of Amazon profits
. ™ ** more profitable than Amazon’s
Web SerVICeS North America commerce operations
source

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 10


http://www.zdnet.com/article/amazons-finds-its-profit-horse-in-aws-why-its-so-disruptive-to-its-old-guard/

Computer cluster utilization

Consider a computer cluster with k servers. We send n requests.
Requests independently go to server i with probability p;
Let X = # servers that receive = 1 request.

What is E[X]?

°)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 11



Computer cluster utilization

Consider a computer cluster with k servers. We send n requests.
Requests independently go to server i with probability p;
Let X = # servers that receive = 1 request.

What is E[X]?

Define additional Solve.
random variables.
Let: A; = event that server i ElX;] = P(A )=1- (1 - p)"

receives = 1 request
X; = indicator for 4;

ZX ZE Z(l—(l—plm
P(A;) =1—P(norequeststoi)

k k
=1—-(1—-p)" =Z1 z(l‘pi)"=k—2(1—pi)"
i=1 =1 -

. 1=1
Note: A; are dependent! Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 12



Coupon collecting problems: Hash tables

The coupon collector’s problem in probability theory: Hash Tables
You buy boxes of cereal. strings
There are k different types of coupons k buckets

hashed to

For each box you buy, you “collect”

a coupon of type i. bucket ¢
How many boxes do you expect What is the expected number of
to buy until you have one of strings to hash until each bucket

each coupon? has > 1 string?

Stay tuned for live lecture!

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 13



13c_covariance

Covariance




Statistics of sums of RVs

For any random variables X and Y,

ElX+Y]|=E[X] + E|Y]

Var(X +Y) = ?

But first...
a new statistic!

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 15



Spot the difference

Compare/contrast the following two distributions: Assume all points are
equally likely.
1
¥y . . )% : P(X=x,Y=y)=N
' . ‘C'..- T ’ et
% .o.-.?:;;-..~{," :.: L 2 .?é‘.‘....
R A Ae
2 L 2 R
wl oA SIS et ) s % “Rasiy:
RV 2o .t
I TR L AR
0 IR X PR X
0 2 4 6 0 2 4 6

Both distributions have the same E[X], E[Y], Var(X), and Var(Y)

Difference: how the two variables vary with each other.

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 16



Covariance

The covariance of two variables X and Y is:

Cov(X,Y) =E[(X —E|[X]D(Y — E|Y])]
= E|XY] — E|X]E[Y]

Proof of second part:
Cov(X,Y) =E[X —E[XD( — E[Y]]

= E|XY — XE[Y] — E[X]Y + E[X]E[Y]]

= E[XY] - E[XE[Y]] — E[E[X]Y] + E[E[X]E[Y]] xpoctarion
= E[XY] — E[X]E[Y] — E[X]E[Y] + E[X]E[Y] (ELX], Elr)are
= E[XY] — E[X]E[Y]

Stanford University 17



Covarying humans

Cov(X,Y) = E[(X — E[XD(Y — E[Y])]
= E[XY] — E[X]E[Y]

Weight (kg) | Height (in) W-H
64 57 3648
71 59 4189
53 49 2597
67 62 4154
55 51 2805
58 50 2900
77 55 4235
57 48 2736
56 42 2352
51 42 2142
76 61 4636
68 57 3876

E[W] E[H] E[WH]

= 62.75 =52.75

What is the covariance of weight W and
height H?

Cov(W,H) = E[WH] — E[W]E[H]

= 3355.83 — (62.75)(52.75)
(positive) = 45.77

45 55 65 75 85
Weight W (kilograms)

Covariance > O: one variable T, other variable T

= 3 3 5 5 8 3 Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 18



Properties of Covariance

Properties:
Cov(X,Y) = Cov(Y, X)
Var(X) = E[X?] — (E[X])? = Cov(X, X)

Covariance of sums = sum of all pairwise covariances
COV(X1 + Xz, Yl + Yz) — COV(Xl, Yl) + COV(Xz, Yl) + COV(Xl, Yz) + COV(Xz, Yz)

Non-linearity (to be discussed in live lecture)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 19



13d_variance_sum

Variance of
sums of RVs




Statistics of sums of RVs

For any random variables X and Y,
EIX+Y]|=E|X]|+E|Y]
Var(X +Y) = Var(X) + 2 - Cov(X,Y) + Var(Y)

Stanford University 21



Variance of general sum of RVs

For any random variables X and Y,

Var(X+Y) =Var(X) + 2 -Cov(X,Y) + Var(Y)

Proof:

Var(X+Y) =Cov(X+Y,X+Y) Var(X) = Cov(X, X)
= Cov(X, X) + Cov(X, Y)+ Cov(Y, X)+ Cov(Y,Y) o
— Var(X) + 2. COV(X, y) + Var(Y) Symmetry of covariance +

Cov(X,X) = Var(X)

Var(iz:Xi) ZVar(X)+ZZ z Cov (X;, X;)

=1 j=i+1

More generally:

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 22



Statistics of sums of RVs

For independent X and Y,
E|XY]| = E|X|E|Y]

Var(X +Y) = Var(X)+ Var(Y)

Stanford University 23



Variance of sum of independent RVs

For independent X and Y,

Var(X +Y) = Var(X)+ Var(Y)

Proof:

Cov(X,Y) = E[XY] — E[X]E[Y] def. of covariance
= E[X]E[Y] — E|X]E[Y] X and Y are independent
=0

NOT bidirectional:

Var(X +Y) =Var(X) + 2 - Cov(X,Y) + Var(Y) Cov(X,Y) = 0 does NOT

= Var(X)+ Var(Y) imply independence of X
and Y!

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 24



Proving Variance of the Binomial

X~Bin(n,p) var(X) = np(1 —p)

To simplify the algebra a bit,letg =1 —p,sop+g=1.

So:

E(x?) = kz;)kl(:)
n—1

n
= kn(
k=0 k-1

w3

k=1

=np E G+ 1)(".')17’4’"”
j=0 J

np(i .i<';')p’q”'" + /z: (';)M’"")

j=0

[}

J=0

=np((n—1p+1)

= n*p* +np(1 - p)

Then:

var (X) = E (X?) - E(X)?

= np(1 - p) + w*p* — (np)?

= np(1-p)

as required.

w(£(;7)

m—1\ ;_ —D=(jm <
Z(j—l)p/ 100 4 3 "

= np((n - Dp

=np((n—Dpp+9" " +(p+9")

Definition of Binomial Distribution: p + ¢ = 1

. " - n n—1
Factors of Binomial Coefficient: k P =n k-1

Change of limit: term is zerowhen k — 1 = 0
puttingj=k—-1,m=n-1

splitting sum up into two

[m m—1
Factors of Binomial Coefficient: j{ ) =m| | 1
J J=

Change of limit: term is zero when j — 1 = 0

Binomial Theorem
asp+g=1

by algebra

Expectation of Binomial Distribution: E (X) = np

proofwiki.org

Lisa Yan and Jerry Cain, CS109, 2020

Let’s instead prove this using
independence and variance!
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Proving Variance of the Binomial

X~Bin(n,p) var(X) = np(1 —p)

n
Let X = z X; Var(X) = Var(Z Xl->
i=1 =1
I Xj are independent,
Let X; = ith trial is heads = Z Var(X;) therefore variance of sum
X;~Ber(p) = = sum of variance

Var(X;) = p(1—p) n
— z p(1—p) Variance of Bernoulli
X; are independent t=1

by definition
(by ) =np(1 —p)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 26
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Where are we now? A roadmap of CSio9

Today: Statistics of
multiple RVs!

Friday: Modeling with
Bayesian Networks

Var(X +Y)
E[X +Y]
Cov(X,Y)

p(X,Y)

Wednesday:
Conditional distributions

pxy (x]y)
E[X|Y]

Lisa Yan and Jerry Cain, CS109, 2020

h’any"._, QSUCh
+4 @ {o model

e
i %
WOW

. Very sum
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Don'’t we already know linearity of expectation?

Expectation is a linear mathematical operation. If X = Z?=1Xi ,
n n

> x| =) Elx)

i=1 i=1

We covered this back in Lecture 6 (when we first learned expectation)!
Proved binomial: sum of 1s or Os
Hat check (section): sum of 1s or Os
We ignored (in)dependence of events.

E[X]=E

Why are we learning this again? exclamation poin jackpot
Well, now we can prove it! “
We can now ignore any random variables dependencies! 5l L

Our approach is still the same!

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 29



Proof of expectation of a sum of RVs EIX+Y] = EIX] + E[Y]

E[X+Y] EZ(X + V)pxy (X, y) ;%T(U% =X+Y

zzxpxy(x ) +22ypxy(x y)
= z xz pxy(x,y) + z }’2 Pxy(x,y)
X y y X

= Z xpyx(x) + z ypy (y) Marginal PMFs for X and Y
y

X

= Linearity of summations (and integrals, btw)

= E[X] + E[Y]

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 30



Coupon collecting problems: Hash tables

The coupon collector’s problem in probability theory: Hash Tables
You buy boxes of cereal. strings
There are k different types of coupons k buckets

hashed to

For each box you buy, you “collect”

a coupon of type i. bucket ¢
How many boxes do you expect What is the expected number of
to buy until you have one of strings to hash until each bucket

each coupon? has > 1 string?

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 31



Check out the properties on the next slide

BI'eak()ut (Slide 33). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146231

Rooms

Breakout rooms: 4 min. Introduce yourself!

32



https://us.edstem.org/courses/2678/discussion/146231

Hash Tables g

Consider a hash table with k buckets.
» Strings are equally likely to get hashed into any bucket (independently).
* Let Y = # strings to hash until each bucket = 1 string.

What is E[Y]?

1. Define additional
random variables.  How should we define Y; such that Y = 2 Y; ?
i

@

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 33



Hash Tables g

Consider a hash table with k buckets.
Strings are equally likely to get hashed into any bucket (independently).
Let Y = # strings to hash until each bucket = 1 string.

What is E[Y]?

Define additional  Let: Y; = # of trials to get success after i-th success
random variables. Success: hash string to previously empty bucket

If i non-empty buckets: P(success) = k—l

ro=m =) (7

. ki 1k
Equivalently, Y;~Geo (p = —) ElY;] = ;— p—

k

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 34



Hash Tables g

Consider a hash table with k buckets.

Strings are equally likely to get hashed into any bucket (independently).
Let Y = # strings to hash until each bucket = 1 string.

What is E[Y]?

SOlve Y = YO + Yl + -+ Yk—l

E[Y] = E[Yo] + E[Y] + -+ + E[Yk_4]

—k+ k + k + +k—k1+ ! NRR |
"k k-1 k-2 1~ "k Tk=1 = O(k log k)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 35



Covariance

The covariance of two variables X and Y is:

Cov(X,Y) =E[(X —E|[X]D(Y — E|Y])]
= E|XY] — E|X]E[Y]

Covariance measures how one random variable varies with a second.
Outside temperature and utility bills have a negative covariance.
Handedness and musical ability have near covariance.
Product demand and price have a positive covariance.

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 3s6



Think

Slide 38 has a question to go over by
yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146231

Think by yourself: 1 min


https://us.edstem.org/courses/2678/discussion/146231

. Cov(X,¥) = E[(X — E[XD(Y — E[YD]
Feel the covariance _ E[XY] — E[XIE[Y]

Is the covariance positive, negative, or zero?

EXI| e 2. cor | EIX)
B N Be
Il Il [
> oAt E[y] ™ |
AY "‘.;’?.
X=x X=x

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 3s



. Cov(X,¥) = E[(X — E[XD(Y — E[YD]
Feel the covariance _ E[XY] — E[XIE[Y]

Is the covariance positive, negative, or zero?

EXI| e 2. cor | EIX)
B N Be
I I P
> Eyp > by,
AY ‘.\.;,?
X=x X=x
positive negative Zero

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 39



Properties of Covariance

Properties:
Cov(X,Y) = Cov(Y, X)
Var(X) = Cov(X, X)
Cov(Z; X;, %, %)) = X; % Cov(X,, 1))
X4, Covtax =+, ¥y =aCov(Xx, ¥y +b ?

Covariance is non-linear: Cov(aX + b,Y) = aCov(X,Y)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 4o



Statistics of sums of RVs Review

For any random variables X and Y,

Var(X +Y) = Var(X) + 2 - Cov(X,Y) + Var(Y)
For independent X and Y,

Var(X +Y) = Var(X)+ Var(Y)

Cov(X,Y) = 0 does NOT imply
independence of X and Y'!

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 41



Zero covariance does not imply independence

Let X take on values {—1,0,1}
with equal probability 1/3.

1 ifX =20

Define Y =
| {O otherwise

What is the joint PMF of X and Y?

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 42



Check out the properties on the next slide

BI'eak()ut (Slide 44). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146231

Rooms

Breakout rooms: 4 min. Introduce yourself!

43



https://us.edstem.org/courses/2678/discussion/146231

Zero covariance does not imply independence

Let X take on values {—1,0,1}
with equal probability 1/3.

Define Y = 1 'sz_O
0 otherwise
1 0 1
. 0 |1/3 0 1/3|2/3 Margial
PMF of
0 1/3 0 |1/3 y , ()
1/3 1/3 1/3
Marginal PMF
of X, px(x)

1. E[X] = E[Y] =
0. E[XY] =
3. Cov(X,Y) =

4. Are X and Y independent?

~
[

[0 8
2

an and Jerry Cain, C$109, 2020 Stanford University 44



Zero covariance does not imply independence

Let X take on values {—1,0,1}
with equal probability 1/3.
1 ifX=0

Define Y =
! {0 otherwise

-1 0] 1
O | 1/3 1/3
O 1/3 O
1/3 1/3 1/3

Marginal PMF
of X, px(x)

2/3 Marginal
PMF of

1/3 Y, py (¥)

Lisa

Yan an

E[X] = E[Y] =
()G 1E)=0  o(5)+1(5)=1/3

E[XY] = (—1.0)(%)+(o-1)(§)+(1 0)( )
~ 0

Cov(X,Y) = E[XY] — E[X]E[Y]
=0-0(1/3)=0

does not imply
independence!

Are X andY independent?x
PY=0X=1)=1
+ P(Y=0)=2/3

d Jerry Cain, CS109, 2020 Stanford University 45



Interesting probability news

Probability and Game Theory
in The Hunger Games

Probability of being chosen for the Games by Age
1.00

“Suppose the parents in a given
district gave birth to only...five girls,

and that all of these kids were born at
the same time.”

0.80

0.607

Prob

Not a probability mass function

Also duh? (P(you get chosen if you're the
only person) = 1)

(o]
0.20 e]

You now know enough Python/ probability

to write a better simulation to model the
Reaping!!!!

time
1= 12yrs. old; 2 = 13yrs. old; 3 = 14yrs. old; 4 = 15yrs. old; 5 = 16yrs. old

(8ame theory part of the article is good)

https://www.wired.com/2012/04/probability-and-game-
theory-in-the-hunger-games/

Lisa Yan and Jerry Cain, CS109, 2020
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Topical book review! Fiction is brain food.

Rochester author takes scary look at Big Pharma in debut novel

* "Called 'Malcharist,' it is a completely made-up story about a potentially
dangerous drug being put on the market — with outsourced drug trial
research, ghostwritten studies, lack of access to raw drug-trial data, and
doctors essentially paid to champion new drugs."

MALCHARIST ‘

""'."}-

U
;‘fk S ‘ *  "[Paul John] Scott’s novel is actually a thriller, with not-quite-believable villains
who need to be exposed. Yet it's too wonky to be a beach read. There’s even
a conversation over the [¥] probability concept of p-values [<].”

* "Scott takes his writer into one of those medical meetings he once found so
145 % Bi- cool, and his book reproduces enough of the numbers — yes, [¥'] number

s - PAUL JOHN SCOTT tables [¥¥] in a thriller — that the reader can see the fictional speaker’s good
3 point that the data really do give up their secrets."

https://www.startribune.com/schafer-debut-novel-by-rochester-author-takes-on-big-pharma-issues/572679992

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 47
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LIVE

Correlation




Covarying humans

Cov(X,Y) = E[(X — E[XD(Y — E[Y])]
= E[XY] — E[X]E[Y]

What is the covariance of

70 1
weight W and height H? 5 60 |
Cov(W,H) = E[WH] — E[W]E[H] =, |
= 3355.83 — (62.75)(52.75) %40
= 45.77 (positive) T s 55 65 75 85
Weight W (kilograms)
What about weight (Ib) and =07
' ? S5 160 -
height (cm)~ S L% e .0
Cov(2.20W, 2.54H) 200 | AR
= E[2.20W - 2.54H] — E[2.20W]E[2.54H] T ,,, o o | | |
_ 100 120 140 160 180
= 18752.38 — (138.05)(133.99) Weight W (Ib)
= 255.06 (positive)
|, Covariance depends Sign of covariance (+/-) more
on units! meaningful than magnitude

Lisa Yan and Jerry Cain, CS109, 2020
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Correlation

The correlation of two variables X and Y is:

Cov(X,Y) 2 var
p(X, Y) — JXZ;V (X),
Ox Oy Y

Note: —1 < p(X,Y) <1

Correlation measures the linear relationship between X and Y:

p(X,Y)=1 = Y = aX + b,where a = oy /oy
p(X,Y)=—-1 =Y =aX+ b,wherea = —oy/oy
p(X,Y)=0 = “uncorrelated” (absence of linear relationship)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University so



Think

Slide 52 has a question to go over by
yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146231

Think by yourself: 1 min


https://us.edstem.org/courses/2678/discussion/146231

Correlation reps

What is the correlation coefficient p(X,Y)?

6
1.
.
4

2.

Lisa Yan and Jerry Cain, CS109, 2020

OO w>

p(X,Y) =1
- pX,Y)=-1
. pX,Y)=0
. Other

o0
\‘_\

Stanford University 52



Correlation reps

What is the correlation coefficient p(X,Y)?
1.

B.p(X,Y) =-1
Y=—aX+0b
a>0
C.p(X,Y)=0

“uncorrelated”

2.

A p(X,Y) =1
B, p(X,Y) =-1
C. pX,Y)=0
D. Other
A pX,Y) =1
Y=aX+0b
a>0
C.p(X,Y)=0
Y = X?

X and Y can be nonlinearly related even if p(X,Y) = 0.

Lisa Yan and Jerry Cain, CS109, 2020
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Throwback to CS103: Conditional statements

Statement P — Q: Independence = No correlation
s : : (Iogically
Contrapositive =Q — —P: Correlation - Dependence
equivalent)
Inverse =P — —Q: Dependence = Correlation X (not always)
Y = X2
p(X,Y)=0
Converse Q — P: No correlation = Independence X ot aways)
Slide 45

“Correlation does not imply causation”

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 54



Spurious Correlations

p(X,Y) is used a lot to statistically quantify the relationship b/t X and Y.

Correlation:
0.947091

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Spurious correlations

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 55
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Spurious Correlations

p(X,Y) is used a lot to statistically quantify the relationship b/t X and Y.

Correlation: Per capita cheese consumption

correlates with

0.947091 Number of people who died by becoming tangled in their bedsheets

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
33lbs 800 deaths
o w
2 a
= w
2 3
g 31.5lbs 600 deaths B
o Y
v 5
& 30lbs 400 deaths gz
w
28.5lbs 200 deaths
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-8~ Bedsheet tanglings —#- Cheese consumed SDU rious correlations

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 56
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Divorce vs. Margarine

Divorce rate

Per capita

consumption of

in Maine per L 3
1,000 people Correlation: 99%
5.25 10
5.00
8
475
4.50 N\ y |-
4.25 \ ~
4.00
2
3.75
3.50 0
2000 01 02 TOgIWeLgEeeneSes08 Y 07 0 08 .09

Source: US Census, USDA, tylervigen.com

margarine (Ibs)

SPL

http://www.bbc.com/news/magazine-27537142

Lisa Yan and Jerry Cain, CS109, 2020
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Arcade revenue vs. CS PhDs

Correlation:
0.947091
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Expectation of product of independent RVs

If X and Y are
iIndependent, then

Proof: E[g(X)h(Y)]

E[XY] = E[X]E[Y]
Elg(X)h(Y)] = E[g(X)]E[h(Y)]
= 2, 29ROy (2 for ontnuousprot, epics
= 2 z g(X)h(Y)px(x)py(y) X and Y are independent
Ti d dent
(h<y>py<y>29<x>px<x>) o e erdenony

( g(x)px(x)> Zh(y)py(y)> Summations separate

g (X )Ja@r[&hd(YQa]w €S109, 2020 Stanford University e0



Variance of Sums of Variables

Var Z ZVar(X) + Zz Z Cov (X;, X;)

=1 j=i+1
e o
Proof n \]2 o n n O S,
Var(Z Xl> = Cov (Z Xi,ZXl> = ZZ Cov(X;, X;)
i=1 i=1 i=1 i=1j=1

n n n

. Symmetry of covariance

- Z Var(X;) + Z Z Cov (Xi'X]') Cov(X, X) = Var(X)
i=1 i=1 j=1,j#i
n n n

= Z Var(X;) + 2 z Z Cov (Xi,Xj) Adjust summation bounds
i=1 i=1 j=i+1
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