14: Conditional Expectation

Lisa Yan and Jerry Cain October 14, 2020

Quick slide reference

3	Conditional distributions	14a_conditional_distributions
11	Web server requests, redux	14b_web_servers
14	Conditional expectation	14c_cond_expectation
20	Law of Total Expectation	14d_law_of_total_expectation
24	Exercises	LIVE

14a_conditional_distributions

Discrete conditional distributions

Discrete conditional distributions

Recall the definition of the conditional probability of event E given event F:

$$P(E|F) = \frac{P(EF)}{P(F)}$$

For discrete random variables X and Y, the conditional PMF of X given Y is

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Different notation, same idea:

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

Discrete probabilities of CS109

Each student responds with:

Year Y

- 1: Frosh/Soph
- 2: Jr/Sr
- 3: Co-term/grad/NDO

Timezone T (12pm California time in my timezone is):

- -1: AM
- 0: noon
- 1: PM

Joint PMF						
	Y = 1	Y=2	Y = 3			
T = -1	.06	.01	.01			
T = 0	.29	.14	.09			
T = 1	.30	.08	.02			

$$P(Y = 3, T = 1)$$

Joint PMFs sum to 1.

Discrete probabilities of CS109

The below are conditional probability tables for conditional PMFs

(A)
$$P(Y = y | T = t)$$
 and (B) $P(T = t | Y = y)$.

- 1. Which is which?
- 2. What's the missing probability?

	Joint PMF				
	Y = 1	Y = 2	Y = 3		
T = -1	.06	.01	.01		
T = 0	.29	.14	.09		
T = 1	.30	.08	.02		

	Y = 1 Y	Y = 2 Y	r = 3		Y = 1	Y = 2	Y=3
T = -1	.09	.04	.08	T = -1	.75	.125	?
T = 0	.45	.61	.75	T = 0	.56	.27	.17
T = 1	.46	.35	.17	T = 1	.75	.2	.05

Discrete probabilities of CS109

The below are **conditional probability tables** for conditional PMFs

(A)
$$P(Y = y | T = t)$$
 and (B) $P(T = t | Y = y)$.

- Which is which?
- 2. What's the missing probability?

(B)
$$P(T = t | Y = y)$$

 $Y = 1 Y = 2 Y = 3$
 $T = -1$.09 .04 .08
 $T = 0$.45 .61 .75
 $T = 1$.46 .35 .17

$$T = 0$$
 | .29 | .14 | .09 | .7 | .30 | .08 | .02 | .14 | .09 | .30 | .08 | .02 | .14 | .29 | .30 | .08 | .02 | .29 | .30 | .08 | .02 | .30 | .3

_17

.05

.06

Joint PMF

.01

.01

.30/(.06+.29+.30)

Conditional PMFs also sum to 1 conditioned on different events!

.27

T = -1

T = 0

.56

.75

T = 0

T=1

Extended to Amazon

P(bought item *X* | bought item *Y*)

Quick check

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Number or function?

1.
$$P(X = 2|Y = 5)$$

2.
$$P(X = x | Y = 5)$$

3.
$$P(X = 2|Y = y)$$

4.
$$P(X = x | Y = y)$$

True or false?

5.
$$\sum_{x} P(X = x | Y = 5) = 1$$

6.
$$\sum_{y} P(X = 2|Y = y) = 1$$

7.
$$\sum_{x} \sum_{y} P(X = x | Y = y) = 1$$

8.
$$\sum_{x} \left(\sum_{y} P(X = x | Y = y) P(Y = y) \right) = 1$$

Quick check

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Number or function?

1.
$$P(X = 2|Y = 5)$$

2.
$$P(X = x | Y = 5)$$

1-D function

3.
$$P(X = 2|Y = y)$$

1-D function

4.
$$P(X = x | Y = y)$$

2-D function

True or false?

5.
$$\sum_{x} P(X = x | Y = 5) = 1$$
 true

6.
$$\sum_{y} P(X = 2|Y = y) = 1$$
 false

7.
$$\sum_{x} \sum_{y} P(X = x | Y = y) = 1$$
 false

8.
$$\sum_{x} \left(\sum_{y} P(X = x | Y = y) P(Y = y) \right) = 1$$
 true

14b_web_servers

Web server requests, redux

Web server requests (Lecture: Independent RVs)

Review

Let N = # of requests to a web server per day. Suppose $N \sim \text{Poi}(\lambda)$.

- Each request independently comes from a human (prob. p), or bot (1-p).
- Let X be # of human requests/day, and Y be # of bot requests/day.

Are X and Y independent? What are their marginal PMFs?

Our approach:

Yes, independent Poisson random variables:

$$X \sim \text{Poi}(\lambda p), Y \sim \text{Poi}(\lambda(1-p))$$

Two big parts of our derivation:

•
$$P(X = n, Y = m) = P(X = n | N = n + m)P(N = n)$$

• $X|N = n + m \sim Bin(n + m, p)$

Web server requests, redux

(Note: this is a different problem setup from the previous slide)

Consider the number of requests to a web server per day.

- Let X = # requests from humans/day. $X \sim \text{Poi}(\lambda_1)$
- Let Y = # requests from bots/day. $Y \sim Poi(\lambda_2)$
- $\rightarrow X + Y \sim Poi(\lambda_1 + \lambda_2)$ X and Y are independent.

What is P(X = k | X + Y = n)?

$$P(X = k | X + Y = n) = \frac{P(X = k, Y = n - k)}{P(X + Y = n)} = \frac{P(X = k)P(Y = n - k)}{P(X + Y = n)}$$

$$= \frac{e^{-\lambda_1} \lambda_1^k}{k!} \cdot \frac{e^{-\lambda_2} \lambda_2^{n-k}}{(n - k)!} \cdot \frac{n!}{e^{-(\lambda_1 + \lambda_2)} (\lambda_1 + \lambda_2)^n} = \frac{n!}{k!} \cdot \frac{\lambda_1^k \lambda_2^{n-k}}{(\lambda_1 + \lambda_2)^n}$$

$$= \binom{n}{k} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^k \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^{n-k}$$

$$X|X + Y \sim \text{Bin}\left(X + Y, \frac{\lambda_1}{\lambda_1 + \lambda_2}\right)$$

14c_cond_expectation

Conditional Expectation

Conditional expectation

Recall the the conditional PMF of X given Y = y:

$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

The conditional expectation of X given Y = y is

$$E[X|Y = y] = \sum_{x} xP(X = x|Y = y) = \sum_{x} xp_{X|Y}(x|y)$$

It's been so long, our dice friends

$$E[X|Y = y] = \sum_{x} x p_{X|Y}(x|y)$$

- Roll two 6-sided dice.
- Let roll 1 be D_1 , roll 2 be D_2 .
- Let $S = \text{value of } D_1 + D_2$.

1. What is
$$E[S|D_2 = 6]$$
? $E[S|D_2 = 6] = \sum_{x=7}^{12} xP(S = x|D_2 = 6)$ $= \left(\frac{1}{6}\right)(7 + 8 + 9 + 10 + 11 + 12)$ $= \frac{57}{6} = 9.5$

Intuitively: $6 + E[D_1] = 6 + 3.5 = 9.5$

Let's prove this!

Properties of conditional expectation

LOTUS:

$$E[g(X)|Y=y] = \sum_{x} g(x)p_{X|Y}(x|y)$$

Linearity of conditional expectation:

$$E\left[\sum_{i=1}^{n} X_i \mid Y = y\right] = \sum_{i=1}^{n} E[X_i \mid Y = y]$$

3. Law of total expectation (next time)

It's been so long, our dice friends

$$E[X|Y = y] = \sum_{x} x p_{X|Y}(x|y)$$

- Roll two 6-sided dice.
- Let roll 1 be D_1 , roll 2 be D_2 .
- Let $S = \text{value of } D_1 + D_2$.
- 1. What is $E[S|D_2 = 6]$?
- 2. What is $E[S|D_2]$?
 - A. A function of S
 - B. A function of D_2
 - C. A number
- 3. Give an expression for $E[S|D_2]$.

 $\frac{57}{6} = 9.5$

It's been so long, our dice friends

$$E[X|Y = y] = \sum_{x} x p_{X|Y}(x|y)$$

- Roll two 6-sided dice.
- Let roll 1 be D_1 , roll 2 be D_2 .
- Let $S = \text{value of } D_1 + D_2$.
- 1. What is $E[S|D_2 = 6]$?

- A function of S \mathbb{B} A function of D_2 C. A number
- 3. Give an expression for $E[S|D_2]$.

$$\frac{57}{6} = 9.5$$

$$\begin{split} E[S|D_2 = d_2] &= E[D_1 + d_2|D_2 = d_2] \\ &= \sum_{d_1} (d_1 + d_2) P(D_1 = d_1|D_2 = d_2) \\ &= \sum_{d_1} d_1 P(D_1 = d_1) + d_2 \sum_{d_1} P(D_1 = d_1) \end{split} \begin{subarray}{l} (D_1 = d_1, D_2 = d_2) \\ (D_1 = d_1, D_2 = d_2) \\ (D_1 = d_1) \\ (D_1$$

14d_law_of_total_expectation

Law of Total Expectation

Properties of conditional expectation

1. LOTUS:

$$E[g(X)|Y = y] = \sum_{x} g(x)p_{X|Y}(x|y)$$

Linearity of conditional expectation:

$$E\left[\sum_{i=1}^{n} X_{i} \mid Y = y\right] = \sum_{i=1}^{n} E[X_{i} \mid Y = y]$$

3. Law of total expectation:

$$E[X] = E[E[X|Y]]$$
 what?!

Proof of Law of Total Expectation

 $E[X] = E\big[E[X|Y]\big]$

$$E[E[X|Y]] = E[g(Y)] = \sum_{y} P(Y = y)E[X|Y = y]$$
 (LOTUS, $g(Y) = E[X|Y]$)
$$= \sum_{y} P(Y = y) \sum_{x} xP(X = x|Y = y)$$
 (def of conditional expectation)
$$= \sum_{y} \left(\sum_{x} xP(X = x|Y = y)P(Y = y)\right) = \sum_{y} \left(\sum_{x} xP(X = x, Y = y)\right)$$
 (chain rule)
$$= \sum_{x} \sum_{y} xP(X = x, Y = y) = \sum_{x} x \sum_{y} P(X = x, Y = y)$$
 (switch order of summations)
$$= \sum_{x} xP(X = x)$$
 (marginalization)
$$= E[X]$$
 ...what?

$$E[E[X|Y]] = \sum_{y} P(Y = y)E[X|Y = y] = E[X]$$

If we only have a conditional PMF of X on some discrete variable Y, we can compute E[X] as follows:

- Compute expectation of X given some value of Y = y
- Repeat step 1 for all values of Y
- Compute a weighted sum (where weights are P(Y = y))

```
def recurse():
  if (random.random() < 0.5):
      return 3
  else: return (2 + recurse())
```

Useful for analyzing recursive code!!

(live)

14: Conditional Expectation

Lisa Yan and Jerry Cain October 14, 2020

Where are we now? A roadmap of CS109

Monday: Statistics of multiple RVs!

$$Var(X + Y)$$

$$E[X+Y]$$

$$\rho(X,Y)$$

Last week: Joint distributions $p_{X,Y}(x,y)$

> Today: Conditional distributions

Time to kick it up a notch!

Lisa Yan and Jerry Cain, CS109, 2020

Conditional Expectation

Conditional Distributions

Expectation

Breakout Rooms

Check out the question on the next slide (Slide 28). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146233

Breakout rooms: 4 min. Introduce yourself!

Quick check

- E[X]
- 2. E[X,Y]? \subseteq $\stackrel{\sim}{\sim}$
- $\frac{\sum \{x \neq y\} p(x = x, Y = y) \Rightarrow value}{\sum E[X|Y]} \xrightarrow{B} \approx f(Y) \xrightarrow{x} y \xrightarrow{x} y \xrightarrow{x} E[X|Y = 2]$ $E[X|Y = 2] \xrightarrow{x} \xrightarrow{x} y \xrightarrow{$

$$7.^* \left\langle E[Y|X = x] \right\rangle$$

- A. value
 - B. one RV, function on Y
 - C. one RV, function on X
- D. two RVs, function on X and Y
- doesn't make sense

6. E[X = 1]

The conditional expectation of X given Y = y is

$$E[X|Y = y] = \sum_{x} xP(X = x|Y = y) = \sum_{x} xp_{X|Y}(x|y)$$

Interpret:

E[X|Y] is a random variable that takes on the value 7=1,2,3, 8

E[X|Y = y] with probability P(Y = y)

The Law of Total Expectation states that

$$E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y) = E[X]$$

Apply:

E[X] can be calculated as the expectation of E[X|Y]

```
E[X] = E[E[X|Y]] = \sum E[X|Y = y]P(Y = y)
```

```
def recurse():
  # equally likely values 1,2,3
  x = np.random.choice([1,2,3])
  if (x == 1): return 3
  elif (x == 2): return (5 + recurse())
  else: return (7 + recurse())
```

Let Y = return value of recurse(). What is E[Y]?

```
E[X] = E[E[X|Y]] = \sum E[X|Y = y]P(Y = y)
```

```
def recurse():
  # equally likely values 1,2,3
                                          Let Y = \text{return value of recurse}().
  x = np.random.choice([1,2,3])
  if (x == 1): return (3)
                                          What is E[Y]?
  elif (x == 2): return (5) + recurse())
  else: return (7 + recurse())
E[Y] = E[Y|X=1]P(X=1) + E[Y|X=2]P(X=2) + E[Y|X=3]P(X=3)
   E[Y|X = 1] = 3
 When X = 1, return 3.
```

Think

Slide 33 has a question to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146233

Think by yourself: 2 min

$$E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$$

```
def recurse():
 # equally likely values 1,2,3
 x = np.random.choice([1,2,3])
 if (x == 1): return 3
 elif (x == 2): return (5) recurse()
 else: return (7 + recurse())
```

Let Y = return value of recurse(). What is E[Y]?

$$E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3)$$

$$E[Y|X=1]=3$$

B.
$$E[Y + 5] = 5 + E[Y]$$

$$E[Y|X=2] = 5 + E[Y|X=2]$$
(by yourself)


```
If Y discrete
E[X] = E[E[X|Y]] = \sum E[X|Y = y]P(Y = y)
```

```
def recurse():
  # equally likely values 1,2,3
  x = np.random.choice([1,2,3])
  if (x == 1): return 3
  elif (x == 2): return (5 + recurse())
  else: return (7 + recurse())
```

Let Y = return value of recurse(). What is E[Y]?

$$E[Y] = E[Y|X = 1]P(X = 1) + \underbrace{E[Y|X = 2]}P(X = 2) + E[Y|X = 3]P(X = 3)$$
 $E[Y|X = 1] = 3$ When $X = 2$, return 5 +

a future return value of recurse().

What is E[Y|X=2]?

- A. E[5] + Y
- B. E[Y + 5] = 5 + E[Y]
- C. 5 + E[Y|X = 2]

$$E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$$

```
def recurse():
  # equally likely values 1,2,3
  x = np.random.choice([1,2,3])
  if (x == 1): return 3
  elif (x == 2): return (5 + recurse())
  else: return (7 + recurse())
```

Let Y = return value of recurse(). What is E[Y]?

$$E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3)$$

$$E[Y|X = 1] = 3$$
 $E[Y|X = 2] = E[5 + Y]$ When $X = 3$, return

7 + a future return value of recurse().

$$E[Y|X = 3] = E[7 + Y]$$

$$E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$$

```
def recurse():
  # equally likely values 1,2,3
  x = np.random.choice([1,2,3])
  if (x == 1): return 3
  elif (x == 2): return (5 + recurse())
  else: return (7 + recurse())
```

Let Y = return value of recurse(). What is E[Y]?

$$E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3)$$

$$E[Y|X=1]=3$$
 $E[Y|X=2]=E[5+Y]$ $E[Y|X=3]=E[7+Y]$

$$E[Y] = 3(1/3) + (5 + E[Y])(1/3) + (7 + E[Y])(1/3)$$

$$E[Y] = (1/3)(15 + 2E[Y]) = 5 + (2/3)E[Y]$$

$$E[Y] = 15$$

On your owh, What is War(Y)?

Interlude for jokes/announcements

Announcements

$$\int \frac{\text{cabin}}{\text{dcabin}} = \log \text{cabin } dC$$
house boat

Quizzes Are Graded

Your custom solution available here! Regrade requests accepted through Monday, 11:59pm

Problem Set 3

Friday 10/16 1pm Due: Covers: Up to and including Lecture 11

Interesting probability news

U.S. Recession Model at 100% Confirms Downturn Is Already Here

"Bloomberg Economics created a model last year to determine America's recession odds."

I encourage you to read through and understand the parameters used to define this model!

Chance of Recession Within 12 Months

Independent RVs, defined another way

If X and Y are independent discrete random variables, then $\forall x, y$:

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{P(X = x)P(Y = y)}{P(Y = y)} = P(X = x)$$

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)} = \frac{p_X(x)p_Y(y)}{p_Y(y)} = p_X(x)$$

Note for conditional expectation, independent X and Y implies

$$E[X|Y=y] \neq \sum_{x} x p_{X|Y}(x|y) = \sum_{x} x p_{X}(x) \neq E[X]$$

Breakout Rooms

Check out the question on the next slide (Slide 42). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146233

3

Breakout rooms: 4 min.

Random number of random variables

indep X, YE[X|Y=y] = E[X]

Say you have a website: BestJokesEver.com. Let:

• X = # of people per day who visit your site. $X \sim Bin(100,0.5)$

• $Y_i = \#$ of minutes spent per day by visitor i $Y_i \sim Poi(8)$

• X and all Y_i are independent. The time spent by all visitors per day is $W = \sum_{i=1}^{N} Y_i$. What is E[W]?

Random number of random variables

Say you have a website: BestJokesEver.com. Let:

- X = # of people per day who visit your site. $X \sim \text{Bin}(100,0.5)$
- $Y_i = \#$ of minutes spent by visitor i. $Y_i \sim Poi(8)$
- X and all Y_i are independent.

The time spent by all visitors per day is $W = \sum Y_i$. What is E[W]?

$$E[W] = E\left[\sum_{i=1}^{X} Y_i\right] = E\left[\sum_{i=1}^{X} Y_i \mid X\right]$$

$$= E[XE[Y_i]]$$

$$= E[Y_i]E[X]$$

 $(scalar E[Y_i])$

$$=850$$
 $=400$

Suppose X = x.

$$E\left[\sum_{i}^{x} Y_{i} | X = x\right] = \sum_{i=1}^{x} E[Y_{i} | X = x]$$
 (linearity)
$$= \sum_{i=1}^{x} E[Y_{i}]$$
 (independence)

See you next time!

Have a super Wednesday!

(no video)

Extra

Your company has only one job opening for a software engineer.

- *n* candidates interview, in order (*n!* orderings equally likely)
- Must decide hire/no hire *immediately* after each interview
- Strategy: 1. Interview k (of n) candidates and reject all k
 - 2. Accept the next candidate better than all of first k candidates.

What is your target k that maximizes P(get best candidate)?

Fun fact:

- There is an α -to-1 factor difference in productivity b/t the "best" and "average" software engineer.
- Steve jobs said α =25, Mark Zuckerberg claims α =100, some even claim α =300

Your company has only one job opening for a software engineer.

- *n* candidates interview, in order (*n*! orderings equally likely)
- Must decide hire/no hire *immediately* after each interview
- Strategy: 1. Interview k (of n) candidates and reject all k
 - 2. Accept the next candidate better than all of first k candidates.

What is your target k that maximizes P(get best candidate)?

Define: X = position of best engineer candidate (1, 2, ..., n)

B = event that you hire the best engineer

Want to maximize for k: $P_k(B)$ = probability of B when using strategy for a given k

$$P_k(B) = \sum_{i=1}^n P_k(B|X=i)P(X=i) = \frac{1}{n}\sum_{i=1}^n P_k(B|X=i)$$
 (law of total probability)

Your company has only one job opening for a software engineer.

Strategy: 1. Interview k (of n) candidates and reject all k

2. Accept the next candidate better than all of first k candidates.

What is your target k that maximizes P(get best candidate)?

Define: X = position of best engineer candidate

B = event that you hire the best engineer

If
$$i \le k$$
: $P_k(B|X=i) = 0$ (we fired best candidate already)

Else:

We must not hire prior to the *i*-th candidate.

$$P_k(B|X=i) = \frac{k}{i-1}$$

 \rightarrow We must have fired the best of the i-1 first candidates.

 \rightarrow The best of the i-1 needs to be our comparison point for positions k+1, ..., i-1.

 \rightarrow The best of the i-1 needs to be one of our first k comparison/auto-fire

$$P_k(B) = \frac{1}{n} \sum_{i=1}^n P_k(B|X=i) = \frac{1}{n} \sum_{i=k+1}^n \frac{k}{i-1}$$

$$= \frac{1}{n} \sum_{i=k+1}^n \frac{k}{i-1}$$
Want to maximize over k
Stanford University 48

Your company has only one job opening for a software engineer.

Strategy: 1. Interview k (of n) candidates and reject all k

2. Accept the next candidate better than all of first *k* candidates.

What is your target k that maximizes P(get best candidate)?

Want to maximize over k:

Sum of converging series

$$P_k(B) = \frac{1}{n} \sum_{i=k+1}^n \frac{k}{i-1} \approx \frac{k}{n} \int_{i=k+1}^n \frac{1}{i-1} di = \frac{k}{n} \ln(i-1) \Big|_{i=k+1}^n = \frac{k}{n} \ln \frac{n-1}{k} \approx \frac{k}{n} \ln \frac{n}{k}$$

Maximize by differentiating w.r.t k, set to 0, solve for k:

$$\frac{d}{dk} \binom{k}{n} \ln \frac{n}{k} = \frac{1}{n} \ln \frac{n}{k} + \frac{k}{n} \cdot \frac{k}{n} \cdot \frac{-n}{k^2} = 0$$

$$\ln \frac{n}{k} = 1$$

$$1. \text{ Interview } \frac{n}{e} \text{ candidates}$$

$$k = \frac{n}{-} \quad 2. \text{ Pick best based on strategy}$$

$$P_k(B) \approx 1/e \approx 0.368 \text{ anford University} \quad 49$$