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Discrete conditional distributions
Recall the definition of the conditional probability of event 𝐸 given event 𝐹:

𝑃 𝐸 𝐹 =
𝑃 𝐸𝐹
𝑃 𝐹

For discrete random variables 𝑋 and 𝑌, the conditional PMF of 𝑋 given 𝑌 is

𝑃 𝑋 = 𝑥 𝑌 = 𝑦 =
𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

𝑃 𝑌 = 𝑦

𝑝!|# 𝑥|𝑦 =
𝑝!,# 𝑥, 𝑦
𝑝# 𝑦

4

Different notation,
same idea:
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Discrete probabilities of CS109
Each student responds with:
Year 𝑌
• 1: Frosh/Soph
• 2: Jr/Sr
• 3: Co-term/grad/NDO

Timezone 𝑇 (12pm California time in 
my timezone is):
• −1: AM
• 0: noon
• 1: PM

5

𝑃 𝑌 = 3, 𝑇 = 1

Joint PMFs sum to 1.

𝑌 = 1 𝑌 = 2 𝑌 = 3
𝑇 = −1 .06 .01 .01
𝑇 = 0 .29 .14 .09
𝑇 = 1 .30 .08 .02

Joint PMF
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Discrete probabilities of CS109
The below are conditional probability tables
for conditional PMFs
(A) 𝑃 𝑌 = 𝑦|𝑇 = 𝑡 and (B) 𝑃 𝑇 = 𝑡|𝑌 = 𝑦 .
1. Which is which?
2. What’s the missing probability?

6

𝑌 = 1 𝑌 = 2 𝑌 = 3
𝑇 = −1 .06 .01 .01
𝑇 = 0 .29 .14 .09
𝑇 = 1 .30 .08 .02

Joint PMF

🤔

𝑌 = 1 𝑌 = 2 𝑌 = 3
𝑇 = −1 .09 .04 .08
𝑇 = 0 .45 .61 .75
𝑇 = 1 .46 .35 .17

𝑌 = 1 𝑌 = 2 𝑌 = 3
𝑇 = −1 .75 .125 ?
𝑇 = 0 .56 .27 .17
𝑇 = 1 .75 .2 .05
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Discrete probabilities of CS109
The below are conditional probability tables
for conditional PMFs
(A) 𝑃 𝑌 = 𝑦|𝑇 = 𝑡 and (B) 𝑃 𝑇 = 𝑡|𝑌 = 𝑦 .
1. Which is which?
2. What’s the missing probability?

7

𝑌 = 1 𝑌 = 2 𝑌 = 3
𝑇 = −1 .06 .01 .01
𝑇 = 0 .29 .14 .09
𝑇 = 1 .30 .08 .02

𝑌 = 1 𝑌 = 2 𝑌 = 3
𝑇 = −1 .09 .04 .08
𝑇 = 0 .45 .61 .75
𝑇 = 1 .46 .35 .17

Joint PMF

𝑌 = 1 𝑌 = 2 𝑌 = 3
𝑇 = −1 .75 .125 ?
𝑇 = 0 .56 .27 .17
𝑇 = 1 .75 .2 .05

(B) 𝑃 𝑇 = 𝑡|𝑌 = 𝑦 (A) 𝑃 𝑌 = 𝑦|𝑇 = 𝑡

.30/(.06+.29+.30)

1-.75-.125
.125

Conditional PMFs also sum to 1 conditioned on 
different events!
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Extended to Amazon

8

P(bought item 𝑋 | bought item 𝑌)
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Quick check
Number or function?

1. 𝑃 𝑋 = 2 𝑌 = 5

2. 𝑃 𝑋 = 𝑥 𝑌 = 5

3. 𝑃 𝑋 = 2 𝑌 = 𝑦

4. 𝑃 𝑋 = 𝑥 𝑌 = 𝑦

9

𝑃 𝑋 = 𝑥 𝑌 = 𝑦 =
𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

𝑃 𝑌 = 𝑦

🤔

True or false?

5.

6.

7.

8.

)
!

)
"

𝑃 𝑋 = 𝑥|𝑌 = 𝑦 = 1

)
"

𝑃 𝑋 = 2|𝑌 = 𝑦 = 1

)
!

𝑃 𝑋 = 𝑥|𝑌 = 5 = 1

)
!

)
"

𝑃 𝑋 = 𝑥|𝑌 = 𝑦 𝑃 𝑌 = 𝑦 = 1
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Quick check
Number or function?

1. 𝑃 𝑋 = 2 𝑌 = 5

2. 𝑃 𝑋 = 𝑥 𝑌 = 5

3. 𝑃 𝑋 = 2 𝑌 = 𝑦

4. 𝑃 𝑋 = 𝑥 𝑌 = 𝑦
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2-D function

1-D function

1-D function

number
true

false

false

𝑃 𝑋 = 𝑥 𝑌 = 𝑦 =
𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

𝑃 𝑌 = 𝑦

True or false?

5.

6.

7.

8.

)
!

)
"

𝑃 𝑋 = 𝑥|𝑌 = 𝑦 = 1

)
"

𝑃 𝑋 = 2|𝑌 = 𝑦 = 1

)
!

𝑃 𝑋 = 𝑥|𝑌 = 5 = 1

)
!

)
"

𝑃 𝑋 = 𝑥|𝑌 = 𝑦 𝑃 𝑌 = 𝑦 = 1 true



Web server 
requests, redux

11

14b_web_servers
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Web server requests (Lecture: Independent RVs)
Let 𝑁 = # of requests to a web server per day. Suppose 𝑁~Poi 𝜆 .
• Each request independently comes from a human (prob. 𝑝), or bot (1 − 𝑝).
• Let 𝑋 be # of human requests/day, and 𝑌 be # of bot requests/day.

Are 𝑋 and 𝑌 independent? What are their marginal PMFs?

Our approach:
• Yes, independent Poisson random variables:

𝑋~Poi 𝜆𝑝 , 𝑌~Poi 𝜆 1 − 𝑝
• Two big parts of our derivation:
◦ 𝑃 𝑋 = 𝑛, 𝑌 = 𝑚 = 𝑃 𝑋 = 𝑛|𝑁 = 𝑛 + 𝑚 𝑃 𝑁 = 𝑛
◦ 𝑋|𝑁 = 𝑛 + 𝑚~Bin 𝑛 + 𝑚, 𝑝

12

Review

A conditional distribution, 𝑋|𝑁!
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Web server requests, redux
Consider the number of requests to a web server per day.
• Let 𝑋 = # requests from humans/day. 𝑋~Poi 𝜆#
• Let 𝑌 = # requests from bots/day. 𝑌~Poi 𝜆$
• 𝑋 and 𝑌 are independent. → 𝑋 + 𝑌~Poi 𝜆# + 𝜆$
What is 𝑃 𝑋 = 𝑘|𝑋 + 𝑌 = 𝑛 ?

𝑃 𝑋 = 𝑘|𝑋 + 𝑌 = 𝑛 =
𝑃 𝑋 = 𝑘, 𝑌 = 𝑛 − 𝑘

𝑃 𝑋 + 𝑌 = 𝑛
=
𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘

𝑃 𝑋 + 𝑌 = 𝑛

=
𝑒%&!𝜆#'

𝑘!
⋅
𝑒%&"𝜆$(%'

𝑛 − 𝑘 !
⋅

𝑛!
𝑒% &!)&" 𝜆# + 𝜆$ ( =

𝑛!
𝑘! 𝑛 − 𝑘 !

⋅
𝜆#'𝜆$(%'

𝜆# + 𝜆$ (

= 𝑛
𝑘

𝜆#
𝜆# + 𝜆$

' 𝜆$
𝜆# + 𝜆$

(%'

13

(𝑋,𝑌 indep.)

𝑋|𝑋 + 𝑌~Bin 𝑋 + 𝑌,
𝜆#

𝜆# + 𝜆$

(Note: this is a different problem 
setup from the previous slide)



Conditional 
Expectation

14

14c_cond_expectation



Lisa Yan and Jerry Cain, CS109, 2020

Conditional expectation
Recall the the conditional PMF of 𝑋 given 𝑌 = 𝑦: 

𝑝<|= 𝑥|𝑦 = 𝑃 𝑋 = 𝑥|𝑌 = 𝑦 =
𝑝<,= 𝑥, 𝑦
𝑝= 𝑦

The conditional expectation of 𝑋 given 𝑌 = 𝑦 is

𝐸 𝑋|𝑌 = 𝑦 =<
'

𝑥𝑃 𝑋 = 𝑥|𝑌 = 𝑦 =<
'

𝑥𝑝!|# 𝑥|𝑦

15
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It’s been so long, our dice friends
• Roll two 6-sided dice.
• Let roll 1 be 𝐷(, roll 2 be 𝐷). 
• Let 𝑆 = value of 𝐷( + 𝐷).

1. What is 𝐸 𝑆|𝐷) = 6 ?

16

𝐸 𝑋|𝑌 = 𝑦 = 0
!

𝑥𝑝"|$ 𝑥|𝑦

𝐸 𝑆|𝐷$ = 6 =)
!

𝑥𝑃 𝑆 = 𝑥|𝐷$ = 6

=
1
6

7 + 8 + 9 + 10 + 11 + 12

Intuitively: 6 + 𝐸 𝐷# = 6 + 3.5 = 9.5

=
57
6
= 9.5

Let’s prove this!
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Properties of conditional expectation

17

1. LOTUS:

𝐸 𝑔 𝑋 |𝑌 = 𝑦 =)
!

𝑔 𝑥 𝑝3|4(𝑥|𝑦)

2. Linearity of conditional expectation:

𝐸 )
56#

(

𝑋5 | 𝑌 = 𝑦 =)
56#

(

𝐸 𝑋5|𝑌 = 𝑦

3. Law of total expectation (next time)
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It’s been so long, our dice friends
• Roll two 6-sided dice.
• Let roll 1 be 𝐷(, roll 2 be 𝐷). 
• Let 𝑆 = value of 𝐷( + 𝐷).

1. What is 𝐸 𝑆|𝐷) = 6 ?
2. What is 𝐸 𝑆|𝐷) ?

A. A function of 𝑆
B. A function of 𝐷)
C. A number

3. Give an expression
for 𝐸 𝑆|𝐷) .

18

𝐸 𝑋|𝑌 = 𝑦 = 0
!

𝑥𝑝"|$ 𝑥|𝑦

57
6
= 9.5

🤔
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It’s been so long, our dice friends
• Roll two 6-sided dice.
• Let roll 1 be 𝐷(, roll 2 be 𝐷). 
• Let 𝑆 = value of 𝐷( + 𝐷).

1. What is 𝐸 𝑆|𝐷) = 6 ?
2. What is 𝐸 𝑆|𝐷) ?

A. A function of 𝑆
B. A function of 𝐷)
C. A number

3. Give an expression
for 𝐸 𝑆|𝐷) .

19

𝐸 𝑋|𝑌 = 𝑦 = 0
!

𝑥𝑝"|$ 𝑥|𝑦

57
6
= 9.5

𝐸 𝑆|𝐷$ = 𝑑$ = 𝐸 𝐷# + 𝑑$|𝐷$ = 𝑑$

=)
7!

𝑑# + 𝑑$ 𝑃 𝐷# = 𝑑#|𝐷$ = 𝑑$

=)
7!

𝑑#𝑃 𝐷# = 𝑑# + 𝑑$)
7!

𝑃 𝐷# = 𝑑#

= 𝐸 𝐷# + 𝑑$ = 3.5 + 𝑑$ 𝐸 𝑆|𝐷) = 3.5 + 𝐷)

(𝐷% = 𝑑%, 𝐷& = 𝑑&
independent 

events)



Law of Total 
Expectation

20

14d_law_of_total_expectation
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Properties of conditional expectation

21

1. LOTUS:

𝐸 𝑔 𝑋 |𝑌 = 𝑦 =)
!

𝑔 𝑥 𝑝3|4(𝑥|𝑦)

2. Linearity of conditional expectation:

𝐸 )
56#

(

𝑋5 | 𝑌 = 𝑦 =)
56#

(

𝐸 𝑋5|𝑌 = 𝑦

3. Law of total expectation:

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 what?!
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Proof of Law of Total Expectation

22

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌

𝐸 𝐸 𝑋|𝑌 = 𝐸 𝑔 𝑌 =)
"

𝑃 𝑌 = 𝑦 𝐸 𝑋|𝑌 = 𝑦 (LOTUS, 𝑔 𝑌 = 𝐸 𝑋|𝑌 )

=)
"

𝑃 𝑌 = 𝑦 )
!

𝑥𝑃 𝑋 = 𝑥|𝑌 = 𝑦
(def of 

conditional 
expectation)

=)
"

)
!

𝑥𝑃 𝑋 = 𝑥|𝑌 = 𝑦 𝑃 𝑌 = 𝑦 =)
"

)
!

𝑥𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 (chain rule)

=)
!

)
"

𝑥𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 =)
!

𝑥)
"

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 (switch order of 
summations)

=)
!

𝑥𝑃 𝑋 = 𝑥 (marginalization)

= 𝐸 𝑋 …what?
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Another way to compute 𝐸 𝑋

If we only have a conditional PMF of 𝑋 on some discrete variable 𝑌,
we can compute 𝐸 𝑋 as follows:
1. Compute expectation of 𝑋 given some value of 𝑌 = 𝑦
2. Repeat step 1 for all values of 𝑌
3. Compute a weighted sum (where weights are 𝑃 𝑌 = 𝑦 )

23

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌

𝐸 𝐸 𝑋|𝑌 =)
"

𝑃 𝑌 = 𝑦 𝐸 𝑋|𝑌 = 𝑦 = 𝐸 𝑋

Useful for analyzing recursive code!!

def recurse():
if (random.random() < 0.5):

return 3
else: return (2 + recurse())



(live)
14: Conditional 
Expectation
Lisa Yan and Jerry Cain
October 14, 2020
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Where are we now? A roadmap of CS109

Last week: Joint 
distributions
𝑝!,# 𝑥, 𝑦

25

Monday: Statistics of 
multiple RVs!
Var 𝑋 + 𝑌
𝐸 𝑋 + 𝑌
Cov 𝑋, 𝑌
𝜌 𝑋, 𝑌

Today:
Conditional distributions

𝑝!|# 𝑥|𝑦
𝐸 𝑋|𝑌

Time to kick it up a notch!

Friday: Modeling with 
Bayesian Networks
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Conditional Expectation

26

Conditional Distributions Expectation



Breakout 
Rooms

Check out the question on the next slide 
(Slide 28). Post any clarifications here!
https://us.edstem.org/courses/2678/discussion/146233

Breakout rooms: 4 min. Introduce yourself!

27

https://us.edstem.org/courses/2678/discussion/146233
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Quick check
1. 𝐸 𝑋

2. 𝐸 𝑋, 𝑌

3. 𝐸 𝑋 + 𝑌

4. 𝐸 𝑋|𝑌

5. 𝐸 𝑋|𝑌 = 6

6. 𝐸 𝑋 = 1

7. 𝐸 𝑌|𝑋 = 𝑥

28

A. value
B. one RV, function on 𝑌
C. one RV, function on 𝑋
D. two RVs, function on 𝑋 and 𝑌
E. doesn’t make sense

*
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Conditional Expectation
The conditional expectation of 𝑋 given 𝑌 = 𝑦 is

𝐸 𝑋|𝑌 = 𝑦 =<
'

𝑥𝑃 𝑋 = 𝑥|𝑌 = 𝑦 =<
'

𝑥𝑝!|# 𝑥|𝑦

• Interpret: 𝐸 𝑋|𝑌 is a random variable that takes on the value
𝐸 𝑋|𝑌 = 𝑦 with probability 𝑃 𝑌 = 𝑦

The Law of Total Expectation states that

𝐸 𝐸 𝑋|𝑌 =<
-

𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦 = 𝐸 𝑋

• Apply: 𝐸 𝑋 can be calculated as the expectation of 𝐸 𝑋|𝑌

29

Review
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Analyzing recursive code

30

def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌 = return value of recurse().
What is 𝐸 𝑌 ?

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 = 0
'

𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
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Analyzing recursive code

31

def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌 = return value of recurse().
What is 𝐸 𝑌 ?

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 = 0
'

𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦

When 𝑋 = 1, return 3.
𝐸 𝑌|𝑋 = 1 = 3

𝐸 𝑌 = 𝐸 𝑌|𝑋 = 1 𝑃 𝑋 = 1 + 𝐸 𝑌|𝑋 = 2 𝑃 𝑋 = 2 + 𝐸 𝑌|𝑋 = 3 𝑃 𝑋 = 3



Think
Slide 33 has a question to go over by 
yourself.

Post any clarifications here!
https://us.edstem.org/courses/2678/discussion/146233

Think by yourself: 2 min

32

(by yourself)

https://us.edstem.org/courses/2678/discussion/146233
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🤔
33

Analyzing recursive code

def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌 = return value of recurse().
What is 𝐸 𝑌 ?

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 = 0
'

𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
If 𝑌 discrete

What is 𝐸 𝑌|𝑋 = 2 ?
A. 𝐸 5 + 𝑌
B. 𝐸 𝑌 + 5 = 5 + 𝐸 𝑌
C. 5 + 𝐸 𝑌|𝑋 = 2

𝐸 𝑌|𝑋 = 1 = 3

𝐸 𝑌 = 𝐸 𝑌|𝑋 = 1 𝑃 𝑋 = 1 + 𝐸 𝑌|𝑋 = 2 𝑃 𝑋 = 2 + 𝐸 𝑌|𝑋 = 3 𝑃 𝑋 = 3

(by yourself)
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Analyzing recursive code

34

def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌 = return value of recurse().
What is 𝐸 𝑌 ?

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 = 0
'

𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
If 𝑌 discrete

When 𝑋 = 2, return 5 +
a future return value of recurse().

What is 𝐸 𝑌|𝑋 = 2 ?
A. 𝐸 5 + 𝑌
B. 𝐸 𝑌 + 5 = 5 + 𝐸 𝑌
C. 5 + 𝐸 𝑌|𝑋 = 2

𝐸 𝑌|𝑋 = 1 = 3

𝐸 𝑌 = 𝐸 𝑌|𝑋 = 1 𝑃 𝑋 = 1 + 𝐸 𝑌|𝑋 = 2 𝑃 𝑋 = 2 + 𝐸 𝑌|𝑋 = 3 𝑃 𝑋 = 3
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Analyzing recursive code

35

def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌 = return value of recurse().
What is 𝐸 𝑌 ?

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 = 0
'

𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
If 𝑌 discrete

𝐸 𝑌|𝑋 = 1 = 3 𝐸 𝑌|𝑋 = 2 = 𝐸 5 + 𝑌 When 𝑋 = 3, return 
7 + a future return value 
of recurse().

𝐸 𝑌|𝑋 = 3 = 𝐸 7 + 𝑌

𝐸 𝑌 = 𝐸 𝑌|𝑋 = 1 𝑃 𝑋 = 1 + 𝐸 𝑌|𝑋 = 2 𝑃 𝑋 = 2 + 𝐸 𝑌|𝑋 = 3 𝑃 𝑋 = 3
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Analyzing recursive code
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def recurse():
# equally likely values 1,2,3
x = np.random.choice([1,2,3])
if (x == 1): return 3
elif (x == 2): return (5 + recurse())
else: return (7 + recurse())

Let 𝑌 = return value of recurse().
What is 𝐸 𝑌 ?

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌 = 0
'

𝐸 𝑋|𝑌 = 𝑦 𝑃 𝑌 = 𝑦
If 𝑌 discrete

𝐸 𝑌 = 𝐸 𝑌|𝑋 = 1 𝑃 𝑋 = 1 + 𝐸 𝑌|𝑋 = 2 𝑃 𝑋 = 2 + 𝐸 𝑌|𝑋 = 3 𝑃 𝑋 = 3

𝐸 𝑌 = 3 1/3 + 5 + 𝐸 𝑌 1/3 + 7 + 𝐸 𝑌 1/3

𝐸 𝑌 = 1/3 15 + 2𝐸 𝑌 = 5 + 2/3 𝐸 𝑌

𝐸 𝑌 = 15

𝐸 𝑌|𝑋 = 1 = 3 𝐸 𝑌|𝑋 = 2 = 𝐸 5 + 𝑌 𝐸 𝑌|𝑋 = 3 = 𝐸 7 + 𝑌

On your own: What is Var 𝑌 ?



Interlude for 
jokes/announcements
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Announcements
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Quizzes Are Graded

Your custom solution available here!
Regrade requests accepted through
Monday, 11:59pm

Problem Set 3

Due: Friday 10/16 1pm
Covers: Up to and including Lecture 11

http://web.stanford.edu/class/cs109/exams/quizzes.html
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Interesting probability news
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https://www.bloomberg.com/graphics/us-economic-
recession-tracker/

“Bloomberg Economics created a 
model last year to determine 
America’s recession odds.”
• I encourage you to read through 

and understand the parameters 
used to define this model!

https://www.bloomberg.com/graphics/us-economic-recession-tracker/
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Independent RVs, defined another way
If 𝑋 and 𝑌 are independent discrete random variables, then ∀𝑥, 𝑦:

𝑃 𝑋 = 𝑥|𝑌 = 𝑦 =
𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

𝑃 𝑌 = 𝑦
=
𝑃 𝑋 = 𝑥 𝑃 𝑌 = 𝑦

𝑃 𝑌 = 𝑦
= 𝑃 𝑋 = 𝑥

𝑝!|# 𝑥|𝑦 =
𝑝!,# 𝑥, 𝑦
𝑝# 𝑦

=
𝑝! 𝑥 𝑝# 𝑦
𝑝# 𝑦

= 𝑝! 𝑥

Note for conditional expectation, independent 𝑋 and 𝑌 implies

𝐸 𝑋|𝑌 = 𝑦 =<
'

𝑥𝑝!|# 𝑥|𝑦 = <
'

𝑥𝑝! 𝑥 = 𝐸 𝑋

40



Breakout 
Rooms

Check out the question on the next slide 
(Slide 42). Post any clarifications here!
https://us.edstem.org/courses/2678/discussion/146233

Breakout rooms: 4 min.

41

https://us.edstem.org/courses/2678/discussion/146233
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Random number of random variables
Say you have a website: BestJokesEver.com. Let:
• 𝑋 = # of people per day who visit your site. 𝑋~Bin 100,0.5
• 𝑌5 = # of minutes spent per day by visitor 𝑖 𝑌5~Poi 8
• 𝑋 and all 𝑌5 are independent.

The time spent by all visitors per day is . What is 𝐸 𝑊 ?

42

𝑊 =)
56#

3

𝑌5

𝐸 𝑋|𝑌 = 𝑦 = 𝐸 𝑋
indep 𝑋, 𝑌
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Random number of random variables
Say you have a website: BestJokesEver.com. Let:
• 𝑋 = # of people per day who visit your site. 𝑋~Bin 100,0.5
• 𝑌5 = # of minutes spent by visitor 𝑖. 𝑌5~Poi 8
• 𝑋 and all 𝑌5 are independent.

The time spent by all visitors per day is . What is 𝐸 𝑊 ?

43

𝑊 =)
56#

3

𝑌5

𝐸 𝑊 = 𝐸 )
56#

3

𝑌5 = 𝐸 𝐸 )
56#

3

𝑌5 |𝑋 Suppose 𝑋 = 𝑥.

𝐸 0
!

"

𝑌! |𝑋 = 𝑥 =0
!#$

"

𝐸 𝑌!|𝑋 = 𝑥

=)
56#

!

𝐸 𝑌5

= 𝑥𝐸 𝑌5

(independence)

(linearity)

= 𝐸 𝑋𝐸 𝑌1
= 𝐸 𝑌1 𝐸 𝑋

= 8 ⋅ 50

(scalar 𝐸 𝑌! )
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See you next time!

Have a super Wednesday!

44



Extra

45

(no video)
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Hiring software engineers
Your company has only one job opening for a software engineer.
• n candidates interview, in order (n! orderings equally likely)
• Must decide hire/no hire immediately after each interview
Strategy:

What is your target k that maximizes P(get best candidate)?

46

1. Interview k (of n) candidates and reject all k
2. Accept the next candidate better than all of first k candidates.

Fun fact:
• There is an α-to-1 factor difference in productivity b/t

the “best” and “average” software engineer.
• Steve jobs said α=25, Mark Zuckerberg claims α=100, 

some even claim α=300
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Hiring software engineers
Your company has only one job opening for a software engineer.
• n candidates interview, in order (n! orderings equally likely)
• Must decide hire/no hire immediately after each interview
Strategy:

What is your target k that maximizes P(get best candidate)?

47

Define: X = position of best engineer candidate (1, 2, …, n)
B = event that you hire the best engineer

Want to maximize for k: Pk(B) = probability of B when using strategy for a given k

𝑃' 𝐵 = ∑56#( 𝑃' 𝐵|𝑋 = 𝑖 𝑃 𝑋 = 𝑖 = #
(
∑56#( 𝑃' 𝐵|𝑋 = 𝑖 (law of total probability)

1. Interview k (of n) candidates and reject all k
2. Accept the next candidate better than all of first k candidates.



Lisa Yan and Jerry Cain, CS109, 2020

Hiring software engineers
Your company has only one job opening for a software engineer.
Strategy:

What is your target k that maximizes P(get best candidate)?

48

Define: X = position of best engineer candidate
B = event that you hire the best engineer

If 𝑖 ≤ 𝑘 : 𝑃' 𝐵|𝑋 = 𝑖 = 0 (we fired best candidate already)
Else:

𝑃' 𝐵 = #
(
∑56#( 𝑃' 𝐵|𝑋 = 𝑖

=
1
𝑛 0
!#%&$

'
𝑘

𝑖 − 1 ß Want to maximize over k

We must not hire prior to the i-th candidate.
àWe must have fired the best of the i–1 first candidates.
à The best of the i–1 needs to be our comparison point for positions k+1, …, i–1.
à The best of the i–1 needs to be one of our first k comparison/auto-fire

𝑃' 𝐵|𝑋 = 𝑖 =
𝑘

𝑖 − 1

1. Interview k (of n) candidates and reject all k
2. Accept the next candidate better than all of first k candidates.
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Hiring software engineers
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Want to maximize over k:

𝑃' 𝐵 =
1
𝑛
)
56')#

(
𝑘

𝑖 − 1 =
𝑘
𝑛

Pln 𝑖 − 1
56')#

(
=
𝑘
𝑛
ln
𝑛 − 1
𝑘

≈
𝑘
𝑛
ln
𝑛
𝑘

𝑑
𝑑𝑘

𝑘
𝑛
ln
𝑛
𝑘

=
1
𝑛
ln
𝑛
𝑘
+
𝑘
𝑛
⋅
𝑘
𝑛
⋅
−𝑛
𝑘$

= 0

Maximize by differentiating w.r.t k , set to 0, solve for k:

ln
𝑛
𝑘
= 1 𝑘 =

𝑛
𝑒

1. Interview (
<

candidates
2. Pick best based on strategy
3. 𝑃' 𝐵 ≈ 1/𝑒 ≈ 0.368

Sum of converging series

≈
𝑘
𝑛
T
56')#

( 1
𝑖 − 1

𝑑𝑖

Your company has only one job opening for a software engineer.
Strategy:

What is your target k that maximizes P(get best candidate)?

1. Interview k (of n) candidates and reject all k
2. Accept the next candidate better than all of first k candidates.


