14: Conditional Expectation

Lisa Yan and Jerry Cain October 14, 2020

Quick slide reference

- 3 Conditional distributions
- 11 Web server requests, redux
- 14 Conditional expectation
- 20 Law of Total Expectation
- 24 Exercises

14a_conditional_distributions

14b_web_servers

14c_cond_expectation

14d_law_of_total_expectation

LIVE

Lisa Yan and Jerry Cain, CS109, 2020

14a_conditional_distributions

3

Discrete conditional distributions

Discrete conditional distributions

Recall the definition of the conditional probability of event *E* given event *F*:

$$P(E|F) = \frac{P(EF)}{P(F)}$$

For discrete random variables X and Y, the conditional PMF of X given Y is

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Different notation, same idea:

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

Lisa Yan and Jerry Cain, CS109, 2020

Discrete probabilities of CS109

Each student responds	with:
-----------------------	-------

Year Y

- 1: Frosh/Soph
- 2: Jr/Sr
- 3: Co-term/grad/NDO

Timezone T (12pm California time in my timezone is):

- -1: AM
- 0: noon
- 1: PM

Joint PMF				
	Y = 1	Y = 2	Y = 3	
T = -1	.06	.01	.01	
T = 0	.29	.14	.09	
T = 1	.30	.08	.02	
P(Y = 3, T = 1)				

Lisa Yan and Jerry Cain, CS109, 2020

Joint PMFs sum to 1.

Discrete probabilities of CS109

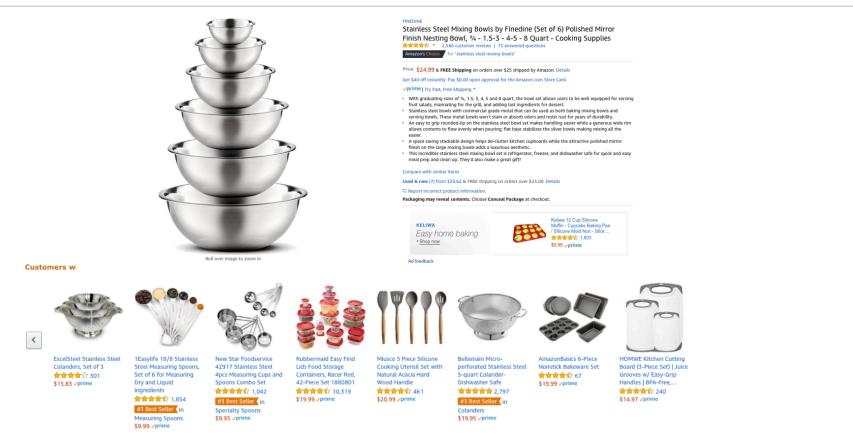
The below are conditional probability tables for conditional PMFs					$\begin{array}{c} \underline{\text{Joint PMF}} \\ Y = 1 Y = 2 Y = 3 \end{array}$				
			d (B) P	(T = t Y = y).	T = -1	.0	6.01	01	
		-			T = 0	.29	9.14	.09	
						.02			
2. What's the missing probability?									
I				1					
	Y = 1 Y	Y = 2 Y	f = 3	<u> </u>	= 1 Y =	= 2 Y =	= 3		
T = -1	.09	.04	.08	T = -1	.75 .1	.25			
T = 0	.45	.61	.75	T = 0	.56	.27	.17		
T = 1	.46	.35	.17	T = 1	.75	.2	.05		

Discrete probabilities of CS109

The below are conditional proba for conditional PMFs	bility tables		$\begin{array}{c c} \underline{\text{Joint}} \\ Y = 1 & Y \end{array}$	$\frac{PMF}{Y=2} Y=3$
(A) $P(Y = y T = t)$ and (B) $P(T)$	= t Y = v).	T = -1	.06	.01 .01
1. Which is which?		T = 0	.29	.14 .09
		T = 1	.30	.08 .02
2. What's the missing probabilit (B) $P(T = t Y = y)$	-	A) $P(Y =$	y T = t)	
Y = 1 Y = 2 Y = 3	Y	Y = 1 Y =	= 2 Y = 3	175125
T = -1 .09 .04 .08	T = -1	.75 .1	.25 .125	
T = 0 .45 .61 .75	T = 0	.56	.27 .17	,
T = 1 .46 .35 .17	T = 1	.75	.2 .05)
.30/(.06+.29+.30)	Conditional P different ever		sum to 1 cc	onditioned on

Lisa Yan and Jerry Cain, CS109, 2020

Extended to Amazon



P(bought item X | bought item Y)

Lisa Yan and Jerry Cain, CS109, 2020

Quick check

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Number or function?

1. P(X = 2|Y = 5)

2. P(X = x | Y = 5)

3. P(X = 2|Y = y)

 $4. \quad P(X = x | Y = y)$

True or false?

5.
$$\sum_{x} P(X = x | Y = 5) = 1$$

6. $\sum_{y} P(X = 2 | Y = y) = 1$
7. $\sum_{y} \sum_{y} P(X = x | Y = y) = 1$

8.
$$\sum_{x} \left(\sum_{y} P(X = x | Y = y) P(Y = y) \right) = 1$$

Lisa Yan and Jerry Cain, CS109, 2020

 \overline{x} y

Quick check

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Number or function?

1.
$$P(X = 2|Y = 5)$$

number

- 2. P(X = x | Y = 5)1-D function
- 3. P(X = 2|Y = y)1-D function

4.
$$P(X = x | Y = y)$$

2-D function

True or false?

5.
$$\sum_{x} P(X = x | Y = 5) = 1 \quad \text{true}$$

6.
$$\sum_{y} P(X = 2 | Y = y) = 1 \quad \text{false}$$

7.
$$\sum_{x} \sum_{y} P(X = x | Y = y) = 1 \quad \text{false}$$

8.
$$\sum_{x} \left(\sum_{y} P(X = x | Y = y) P(Y = y) \right) = 1 \quad \text{true}$$

Lisa Yan and Jerry Cain, CS109, 2020

14b_web_servers

Web server requests, redux

Web server requests (Lecture: Independent RVs)

Review

Let N = # of requests to a web server per day. Suppose $N \sim Poi(\lambda)$.

- Each request independently comes from a human (prob. p), or bot (1 p).
- Let *X* be *#* of human requests/day, and *Y* be *#* of bot requests/day.

Are X and Y independent? What are their marginal PMFs?

Our approach:

• Yes, independent Poisson random variables:

$$X \sim \mathsf{Poi}(\lambda p), Y \sim \mathsf{Poi}(\lambda(1-p))$$

- Two big parts of our derivation:
 - P(X = n, Y = m) = P(X = n | N = n + m)P(N = n)
 - $X|N = n + m \sim Bin(n + m, p)$

A conditional distribution, X | N!

Lisa Yan and Jerry Cain, CS109, 2020

Web server requests, redux

(Note: this is a different problem setup from the previous slide)

Consider the number of requests to a web server per day.

- Let X = # requests from humans/day. $X \sim Poi(\lambda_1)$
- Let Y = # requests from bots/day.

What is P(X = k | X + Y = n)?

X and Y are independent.

$$Y \sim \text{Poi}(\lambda_2)$$

$$\rightarrow X + Y \sim \operatorname{Poi}(\lambda_1 + \lambda_2)$$

 $P(X = k | X + Y = n) = \frac{P(X = k, Y = n - k)}{P(X + Y = n)} = \frac{P(X = k)P(Y = n - k)}{P(X + Y = n)}$ (X,Y indep.) $= \frac{e^{-\lambda_1}\lambda_1^k}{k!} \cdot \frac{e^{-\lambda_2}\lambda_2^{n-k}}{(n-k)!} \cdot \frac{n!}{e^{-(\lambda_1 + \lambda_2)}(\lambda_1 + \lambda_2)^n} = \frac{n!}{k!(n-k)!} \cdot \frac{\lambda_1^k\lambda_2^{n-k}}{(\lambda_1 + \lambda_2)^n}$ $= \binom{n}{k} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^k \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^{n-k} X | X + Y \sim \text{Bin}\left(X + Y, \frac{\lambda_1}{\lambda_1 + \lambda_2}\right)$

Lisa Yan and Jerry Cain, CS109, 2020

14c_cond_expectation

Conditional Expectation

Conditional expectation

Recall the the conditional PMF of X given Y = y:

$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

The **conditional expectation** of *X* given Y = y is

$$E[X|Y = y] = \sum_{x} xP(X = x|Y = y) = \sum_{x} xp_{X|Y}(x|y)$$

Lisa Yan and Jerry Cain, CS109, 2020

It's been so long, our dice friends

- Roll two 6-sided dice.
- Let roll 1 be D_1 , roll 2 be D_2 .
- Let S = value of $D_1 + D_2$.

 $E[X|Y = y] = \sum x p_{X|Y}(x|y)$

1. What is
$$E[S|D_2 = 6]$$
? $E[S|D_2 = 6] = \sum_{x=7}^{12} xP(S = x|D_2 = 6)$
 $= \left(\frac{1}{6}\right)(7 + 8 + 9 + 10 + 11 + 12)$
 $= \frac{57}{6} = 9.5$

Intuitively: $6 + E[D_1] = 6 + 3.5 = 9.5$ Let's prove this!

Lisa Yan and Jerry Cain, CS109, 2020

Properties of conditional expectation

1. LOTUS:

$$E[g(X)|Y = y] = \sum_{x} g(x)p_{X|Y}(x|y)$$

2. Linearity of conditional expectation:

$$E\left[\sum_{i=1}^{n} X_{i} \mid Y = y\right] = \sum_{i=1}^{n} E[X_{i}|Y = y]$$

3. Law of total expectation (next time)

Lisa Yan and Jerry Cain, CS109, 2020

It's been so long, our dice friends

- Roll two 6-sided dice.
- Let roll 1 be D_1 , roll 2 be D_2 .
- Let S = value of $D_1 + D_2$.
- 1. What is $E[S|D_2 = 6]$?
- 2. What is $E[S|D_2]$?
 - A. A function of S
 - B. A function of D_2
 - C. A number
- 3. Give an expression for $E[S|D_2]$.

 $E[X|Y = y] = \sum x p_{X|Y}(x|y)$

 $\frac{57}{6} = 9.5$

It's been so long, our dice friends

- Roll two 6-sided dice.
- Let roll 1 be D_1 , roll 2 be D_2 .
- Let S = value of $D_1 + D_2$.
- 1. What is $E[S|D_2 = 6]$?
- 2. What is $E[S|D_2]$?
 - A. A function of S B A function of D_2 C. A number
- 3. Give an expression for $E[S|D_2]$.

 $E[X|Y = y] = \sum x p_{X|Y}(x|y)$

$$E[S|D_{2} = d_{2}] = E[D_{1} + d_{2}|D_{2} = d_{2}]$$

$$= \sum_{d_{1}} (d_{1} + d_{2})P(D_{1} = d_{1}|D_{2} = d_{2})$$

$$= \sum_{d_{1}} d_{1}P(D_{1} = d_{1}) + d_{2} \sum_{d_{1}} P(D_{1} = d_{1})$$

$$= E[D_{1}] + d_{2} = 3.5 + d_{2}$$

$$E[S|D_{2}] = 3.5 + D_{2}$$

Lisa Yan and Jerry Cain, CS109, 2020

 $\frac{57}{6} = 9.5$

14d_law_of_total_expectation

Law of Total Expectation

Properties of conditional expectation

1. LOTUS:

$$E[g(X)|Y = y] = \sum_{x} g(x)p_{X|Y}(x|y)$$

2. Linearity of conditional expectation:

$$E\left[\sum_{i=1}^{n} X_{i} \mid Y = y\right] = \sum_{i=1}^{n} E[X_{i} \mid Y = y]$$

3. Law of total expectation:

$$E[X] = E[E[X|Y]] \quad \text{what?!}$$

Lisa Yan and Jerry Cain, CS109, 2020

Proof of Law of Total Expectation

$$E[X] = E[E[X|Y]]$$

$$E[E[X|Y]] = E[g(Y)] = \sum_{y} P(Y = y)E[X|Y = y]$$
(LOTUS, $g(Y) = E[X|Y]$)

(def of conditional expectation)

$$= \sum_{y} P(Y = y) \sum_{x} xP(X = x | Y = y)$$

$$= \sum_{y} \left(\sum_{x} xP(X = x | Y = y)P(Y = y) \right) = \sum_{y} \left(\sum_{x} xP(X = x, Y = y) \right)$$
(chain rule)

$$= \sum_{x} \sum_{y} xP(X = x, Y = y) = \sum_{x} x \sum_{y} P(X = x, Y = y)$$
 (switch order of summations)

(marginalization)

= E[X]...what?

 $=\sum_{x}xP(X=x)$

Lisa Yan and Jerry Cain, CS109, 2020

Another way to compute E[X]

$$E[E[X|Y]] = \sum_{y} P(Y=y)E[X|Y=y] = E[X]$$

If we only have a conditional PMF of X on some discrete variable Y, we can compute E[X] as follows:

- **1.** Compute expectation of *X* given some value of Y = y
- 2. Repeat step 1 for all values of Y
- 3. Compute a weighted sum (where weights are P(Y = y))

```
def recurse():
    if (random.random() < 0.5):
        return 3
    else: return (2 + recurse())</pre>
```

Useful for analyzing recursive code!!

Lisa Yan and Jerry Cain, CS109, 2020

14: Conditional Expectation

Lisa Yan and Jerry Cain October 14, 2020

Where are we now? A roadmap of CS109

Monday: Statistics of
multiple RVs!Friday: Modeling with
Bayesian NetworksVar(X + Y)Var(X + Y)Last week: Joint
distributionsE[X + Y]
Cov(X, Y)
 $\rho(X, Y)$ Image: Cov(X, Y)
 $\rho(X, Y)$

Today: Conditional distributions $p_{X|Y}(x|y)$ E[X|Y]

Time to kick it up a notch! Lisa Yan and Jerry Cain, CS109, 2020

Conditional Expectation

Conditional Distributions

Lisa Yan and Jerry Cain, CS109, 2020

Breakout Rooms

Check out the question on the next slide (Slide 28). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146233

Breakout rooms: 4 min. Introduce yourself!

Quick check

- **1.** E[X]
- $2. \quad E[X,Y]$
- **3.** E[X + Y]
- $4. \quad E[X|Y]$
- 5. E[X|Y = 6]
- 6. E[X = 1]
- **7**^{*}. E[Y|X = x]

- A. value
- B. one RV, function on *Y*
- C. one RV, function on X
- D. two RVs, function on *X* and *Y*
- E. doesn't make sense

Conditional Expectation

Review

The conditional expectation of *X* given Y = y is

$$E[X|Y = y] = \sum_{x} xP(X = x|Y = y) = \sum_{x} xp_{X|Y}(x|y)$$

• Interpret: E[X|Y] is a random variable that takes on the value E[X|Y = y] with probability P(Y = y)

The Law of Total Expectation states that

$$E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y) = E[X]$$

• Apply: E[X] can be calculated as the expectation of E[X|Y]

Lisa Yan and Jerry Cain, CS109, 2020

```
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

$$E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$$

Let Y =return value of recurse(). What is E[Y]?

Lisa Yan and Jerry Cain, CS109, 2020

def recurse():
 # equally likely values 1,2,3
 x = np.random.choice([1,2,3])
 if (x == 1): return 3
 elif (x == 2): return (5 + recurse())
 else: return (7 + recurse())

 $E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$

Let Y =return value of recurse(). What is E[Y]?

E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3)

E[Y|X = 1] = 3When X = 1, return 3.

Lisa Yan and Jerry Cain, CS109, 2020

Think

Slide 33 has a question to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146233

Think by yourself: 2 min

32

def recurse(): # equally likely values 1,2,3 x = np.random.choice([1,2,3])**if** (x == 1): **return** 3 elif (x == 2): return (5 + recurse()) else: return (7 + recurse())

If Y discrete $E[X] = E[E[X|Y]] = \sum E[X|Y = y]P(Y = y)$

Let Y =return value of recurse(). What is E[Y]?

E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3)

E[Y|X = 1] = 3

What is E[Y|X = 2]? A. E[5] + YB. E[Y + 5] = 5 + E[Y]C. 5 + E[Y|X = 2]

(by yourself


```
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

 $E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$

Let Y =return value of recurse(). What is E[Y]?

 $E[Y] = E[Y|X = 1]P(X = 1) + \frac{E[Y|X = 2]}{P(X = 2)} + \frac{E[Y|X = 3]P(X = 3)}{P(X = 3)}$

E[Y|X = 1] = 3 When X = 2, return 5 + a future return value of recurse(). What is E[Y|X = 2]? A. E[5] + YB. E[Y + 5] = 5 + E[Y]C. 5 + E[Y|X = 2]

Stanford University 34

def recurse():
 # equally likely values 1,2,3
 x = np.random.choice([1,2,3])
 if (x == 1): return 3
 elif (x == 2): return (5 + recurse())
 else: return (7 + recurse())

 $E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$

Let Y =return value of recurse(). What is E[Y]?

E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3)

$$E[Y|X = 1] = 3$$
 $E[Y|X = 2] = E[5 + Y]$

When X = 3, return 7 + a future return value of recurse().

$$E[Y|X=3] = E[7+Y]$$

def recurse():
 # equally likely values 1,2,3
 x = np.random.choice([1,2,3])
 if (x == 1): return 3
 elif (x == 2): return (5 + recurse())
 else: return (7 + recurse())

 $E[X] = E[E[X|Y]] = \sum_{y} E[X|Y = y]P(Y = y)$

Let Y =return value of recurse(). What is E[Y]?

E[Y] = E[Y|X = 1]P(X = 1) + E[Y|X = 2]P(X = 2) + E[Y|X = 3]P(X = 3) $E[Y|X = 1] = 3 \qquad E[Y|X = 2] = E[5 + Y] \qquad E[Y|X = 3] = E[7 + Y]$ E[Y] = 3(1/3) + (5 + E[Y])(1/3) + (7 + E[Y])(1/3) E[Y] = (1/3)(15 + 2E[Y]) = 5 + (2/3)E[Y] E[Y] = 15On your own: What is Var(Y)?

Lisa Yan and Jerry Cain, CS109, 2020

Interlude for jokes/announcements

Announcements

Quizzes Are Graded

Your custom solution available <u>here</u>! Regrade requests accepted through Monday, 11:59pm

Problem Set 3

Due:Friday 10/16 1pmCovers:Up to and including Lecture 11

Lisa Yan and Jerry Cain, CS109, 2020

Interesting probability news

U.S. Recession Model at 100% Confirms Downturn Is Already Here

"Bloomberg Economics created a model last year to determine America's recession odds."

 I encourage you to read through and understand the parameters used to define this model!

Chance of Recession Within 12 Months

https://www.bloomberg.com/graphics/us-economicrecession-tracker/

Independent RVs, defined another way

If X and Y are independent discrete random variables, then $\forall x, y$:

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{P(X = x)P(Y = y)}{P(Y = y)} = P(X = x)$$
$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x, y)}{p_Y(y)} = \frac{p_X(x)p_Y(y)}{p_Y(y)} = p_X(x)$$

Note for conditional expectation, independent X and Y implies

$$E[X|Y = y] = \sum_{x} x p_{X|Y}(x|y) = \sum_{x} x p_{X}(x) = E[X]$$

Lisa Yan and Jerry Cain, CS109, 2020

Breakout Rooms

Check out the question on the next slide (Slide 42). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146233

Breakout rooms: 4 min.

Random number of random variables

indep X, YE[X|Y = y] = E[X]

Say you have a website: BestJokesEver.com. Let:

- X = # of people per day who visit your site. $X \sim Bin(100, 0.5)$
- $Y_i = #$ of minutes spent per day by visitor $i = Y_i$
- X and all Y_i are independent.

The time spent by all visitors per day is W

$$W = \sum_{i=1}^{X} Y_i$$
. What is $E[W]$?

Lisa Yan and Jerry Cain, CS109, 2020

Random number of random variables

Say you have a website: BestJokesEver.com. Let: X = # of people per day who visit your site. $X \sim Bin(100, 0.5)$ $Y_i = \#$ of minutes spent by visitor *i*. $Y_i \sim \text{Poi}(8)$ • X and all Y_i are independent. The time spent by all visitors per day is $W = \sum_{i=1}^{N} Y_i$. What is E[W]? $E[W] = E\left[\sum_{i=1}^{X} Y_i\right] = E\left[E\left[\sum_{i=1}^{X} Y_i | X\right]\right]$ Suppose X = x. $E\left[\sum_{i=1}^{x} Y_{i} | X = x\right] = \sum_{i=1}^{x} E[Y_{i} | X = x]$ (linearity) $= E[XE[Y_i]]$ $=\sum_{i=1}^{\infty} E[Y_i]$ (independence) $= E[Y_i]E[X] \qquad (\text{scalar } E[Y_i])$ $= xE[Y_i]$ $= 8 \cdot 50$

Lisa Yan and Jerry Cain, CS109, 2020

See you next time!

Have a super Wednesday!

Lisa Yan and Jerry Cain, CS109, 2020

(no video)

Extra

Your company has only one job opening for a software engineer.

- *n* candidates interview, in order (*n*! orderings equally likely)
- Must decide hire/no hire *immediately* after each interview
- Strategy: 1. Interview *k* (of *n*) candidates and reject all *k*
 - 2. Accept the next candidate better than all of first *k* candidates.

What is your target k that maximizes P(get best candidate)?

Fun fact:

- There is an α-to-1 factor difference in productivity b/t the "best" and "average" software engineer.
- Steve jobs said α =25, Mark Zuckerberg claims α =100, some even claim α =300

Lisa Yan and Jerry Cain, CS109, 2020

Your company has only one job opening for a software engineer.

- *n* candidates interview, in order (*n*! orderings equally likely)
- Must decide hire/no hire *immediately* after each interview

Strategy: 1. Interview *k* (of *n*) candidates and reject all *k*

2. Accept the next candidate better than all of first *k* candidates.

What is your target k that maximizes P(get best candidate)?

Define: X = position of best engineer candidate (1, 2, ..., n) B = event that you hire the best engineer Want to maximize for k: $P_k(B)$ = probability of B when using strategy for a given k $P_k(B) = \sum_{i=1}^n P_k (B|X = i) P(X = i) = \frac{1}{n} \sum_{i=1}^n P_k(B|X = i)$ (law of total probability)

Your company has only one job opening for a software engineer. Strategy: 1. Interview k (of n) candidates and reject all k 2. Accept the next candidate better than all of first k candidates. What is your target k that maximizes P(get best candidate)? Define: X = position of best engineer candidate B = event that you hire the best engineer If $i \leq k$: $P_k(B|X=i) = 0$ (we fired best candidate already) Else: $P_k(B|X=i) = \frac{k}{i-1}$ We must not hire prior to the *i*-th candidate. \rightarrow We must have fired the best of the *i*-1 first candidates. \rightarrow The best of the i-1 needs to be our comparison point for positions k+1, ..., i-1. \rightarrow The best of the *i*-1 needs to be one of our first k comparison/auto-fire $P_k(B) = \frac{1}{n} \sum_{i=1}^{n} P_k(B|X=i) = \frac{1}{n} \sum_{i=1}^{n} \frac{k}{i-1}$ $= \frac{1}{n} \sum_{i=1}^{n} \frac{k}{i-1}$ Want to maximize over k Stanford University 48

Your company has only one job opening for a software engineer.

- Strategy: 1. Interview *k* (of *n*) candidates and reject all *k*
 - 2. Accept the next candidate better than all of first *k* candidates.

What is your target k that maximizes P(get best candidate)?

Want to maximize over k:

$$P_k(B) = \frac{1}{n} \sum_{i=k+1}^n \frac{k}{i-1} \approx \frac{k}{n} \int_{i=k+1}^n \frac{1}{i-1} di = \frac{k}{n} \ln(i-1) \Big|_{i=k+1}^n = \frac{k}{n} \ln \frac{n-1}{k} \approx \frac{k}{n} \ln \frac{n}{k}$$

Maximize by differentiating w.r.t k , set to 0, solve for k:

$$\frac{d}{dk} \left(\frac{k}{n} \ln \frac{n}{k}\right) = \frac{1}{n} \ln \frac{n}{k} + \frac{k}{n} \cdot \frac{k}{n} \cdot \frac{-n}{k^2} = 0$$

$$\ln \frac{n}{k} = 1$$

$$\lim_{k \to \infty} \frac{n}{k} \cdot \frac{n}{k} \cdot \frac{-n}{k^2} = 0$$

$$\lim_{k \to \infty} \frac{n}{k} \cdot \frac{n}{k^2} \cdot \frac{-n}{k^2} = 0$$

$$\lim_{k \to \infty} \frac{n}{k} \cdot \frac{n}{k^2} \cdot \frac{-n}{k^2} = 0$$

$$\lim_{k \to \infty} \frac{n}{k} \cdot \frac{n}{k^2} \cdot \frac{-n}{k^2} = 0$$

$$\lim_{k \to \infty} \frac{n}{k} \cdot \frac{n}{k^2} \cdot \frac{-n}{k^2} = 0$$

$$\lim_{k \to \infty} \frac{n}{k} \cdot \frac{n}{k^2} \cdot \frac{-n}{k^2} = 0$$

$$\lim_{k \to \infty} \frac{n}{k} \cdot \frac{n}{k^2} \cdot \frac{-n}{k^2} = 0$$

$$\lim_{k \to \infty} \frac{n}{k} \cdot \frac{n}{k^2} \cdot \frac{-n}{k^2} = 0$$

$$\lim_{k \to \infty} \frac{n}{k^2} \cdot \frac{n}{k^2} \cdot \frac{n}{k^2} \cdot \frac{n}{k^2} \cdot \frac{n}{k^2} \cdot \frac{n}{k^2} = 0$$

$$\lim_{k \to \infty} \frac{n}{k^2} \cdot \frac{n}{k^2} \cdot$$