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Inference
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General inference question:

Given the values of some random
variables, what is the conditional
distribution of some other random
variables?
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Inference
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One inference question:

𝑃 𝐹 = 1|𝑁 = 1, 𝑇 = 1

=
𝑃 𝐹 = 1,𝑁 = 1, 𝑇 = 1

𝑃 𝑁 = 1, 𝑇 = 1
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8

Flu

Cold

Cancer

Under-
grad

Chest 
pain

TiredSore
Throat

Fever

Nausea

Another inference question:

𝑃 𝐶! = 1, 𝑈 = 1|𝑆 = 0, 𝐹" = 0

=
𝑃 𝐶! = 1,𝑈 = 1, 𝑆 = 0, 𝐹" = 0

𝑃 𝑆 = 0, 𝐹" = 0
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Inference
If we knew the joint distribution,
we can answer all probabilistic
inference questions.

What is the size of the joint 
probability table? 
A. 2#$% entries
B. 𝑁& entries
C. 2# entries
D. None/other/don’t know

Flu

Cold

Cancer

Under-
grad

Chest 
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TiredSore
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Fever

Nausea 𝑁 = 9
all binary RVs

🤔
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Inference
If we knew the joint distribution,
we can answer all probabilistic
inference questions.

What is the size of the joint 
probability table? 
A. 2#$% entries
B. 𝑁& entries
C. 2# entries
D. None/other/don’t know

Flu

Cold

Cancer

Under-
grad

Chest 
pain

TiredSore
Throat

Fever

Nausea 𝑁 = 9
all binary RVs

Naively specifying a joint distribution 
is often intractable.
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N can be large…
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Conditional Probability Independence

Conditionally Independent RVs

12

Conditional Distributions Independent RVs
Conditional Probability Independence



Lisa Yan and Jerry Cain, CS109, 2020

Conditionally Independent RVs
Recall that two events 𝐴 and 𝐵 are
conditionally independent given 𝐸 if:

𝑛 discrete random variables 𝑋%, 𝑋&, … , 𝑋' are called conditionally 
independent given 𝑌 if: 

for all 𝑥%, 𝑥&, … , 𝑥' , 𝑦:

𝑃 𝑋% = 𝑥%, 𝑋& = 𝑥&, … , 𝑋' = 𝑥'|𝑌 = 𝑦 =6
()%

'

𝑃 𝑋( = 𝑥(|𝑌 = 𝑦

This implies the following (cool to remember for later):

log 𝑃 𝑋% = 𝑥%, 𝑋& = 𝑥&, … , 𝑋' = 𝑥'|𝑌 = 𝑦 =:
()%

'

log 𝑃 𝑋( = 𝑥(|𝑌 = 𝑦

13

𝑃 𝐴𝐵|𝐸 = 𝑃 𝐴|𝐸 𝑃(𝐵|𝐸)
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Lec. 12: Independence of multiple random variables
Recall independence of
𝑛 events 𝐸%, 𝐸&, … , 𝐸':

We have independence of 𝑛 discrete random variables 𝑋%, 𝑋&, … , 𝑋' if
for all 𝑥%, 𝑥&, … , 𝑥':

𝑃 𝑋% = 𝑥%, 𝑋& = 𝑥&, … , 𝑋' = 𝑥' =6
()%

'

𝑃 𝑋( = 𝑥(

14

for 𝑟 = 1,… , 𝑛:
for every subset 𝐸!, 𝐸", … , 𝐸#: 

𝑃 𝐸!, 𝐸", … , 𝐸# = 𝑃 𝐸! 𝑃 𝐸" ⋯𝑃 𝐸#

Errata (edited May 3): Removed the independent RV requirement for 
all subsets of size 𝑟 = 1,… , 𝑛. Do you see why this requirement is 
unnecessary?
(Hint: independence of RVs implies independence of all events)

Errata



Bayesian 
Networks
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15b_bayes_nets
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A simpler WebMD

Great! Just specify 2* = 16 joint 
probabilities…?

𝑃 𝐹+, = 𝑎, 𝐹"- = 𝑏, 𝑈 = 𝑐, 𝑇 = 𝑑

What would a Stanford flu expert do?

16

Flu Under-
grad

TiredFever

Describe the joint distribution using 
causality!!!
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Constructing a Bayesian Network
What would a Stanford flu expert do?
1. Describe the joint distribution using 

causality.

2. Assume   
conditional 
independence.

17

Flu Under-
grad

TiredFever
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Constructing a Bayesian Network
In a Bayesian Network,
Each random variable is 
conditionally independent of its 
non-descendants, given its parents. 

• Node: random variable
• Directed edge: conditional dependency

Examples:
• 𝑃 𝐹!" = 1|𝑇 = 0, 𝐹#$ = 1 = 𝑃 𝐹!" = 1|𝐹#$ = 1
• 𝑃 𝐹#$ = 1,𝑈 = 0 = 𝑃 𝐹#$ = 1 𝑃 𝑈 = 0

18

Flu Under-
grad

TiredFever
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Constructing a Bayesian Network
What would a Stanford flu expert do?
1. Describe the joint distribution using 

causality.
2. Assume conditional independence.
3. Provide 𝑃 values|parents for each 

random variable

What conditional probabilities
should our expert specify?

19

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑈 = 1 = 0.8

🤔

✅
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Constructing a Bayesian Network
What would a Stanford flu expert do?
1. Describe the joint distribution using 

causality.
2. Assume conditional independence.
3. Provide 𝑃 values|parents for each 

random variable

What conditional probabilities
should our expert specify?

20

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑈 = 1 = 0.8

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1
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What would a CS109 student do?
1. Populate a Bayesian network by 

asking a Stanford flu expert
or

by using reasonable assumptions

2. Answer inference questions

Using a Bayes Net

21

Our focus
today

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑈 = 1 = 0.8

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0



Inference (I): 
Math

22

15c_inference_math
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Bayes Nets: Conditional independence
In a Bayesian Network,
Each random variable is 
conditionally independent of its 
non-descendants, given its parents. 

• Node: random variable
• Directed edge: conditional dependency

23

Flu Under-
grad

TiredFever

Review
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Inference via math

24

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

1. 𝑃 𝐹+, = 0,𝑈 = 1, 𝐹"- = 0, 𝑇 = 1 ?

Compute joint probabilities
using chain rule.
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Inference via math
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Flu Under-
grad

TiredFever

𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

1. Compute joint probabilities

2. Definition of conditional probability

𝑃 𝐹01 = 1, 𝐹23 = 0,𝑈 = 0, 𝑇 = 1
𝑃 𝐹01 = 0, 𝐹23 = 0,𝑈 = 0, 𝑇 = 1

𝑃 𝐹01 = 1, 𝐹23 = 0,𝑈 = 0, 𝑇 = 1
∑4𝑃 𝐹01 = 𝑥, 𝐹23 = 0,𝑈 = 0, 𝑇 = 1

2. 𝑃 𝐹+, = 1|𝐹"- = 0,𝑈 = 0, 𝑇 = 1 ?
𝑃 𝐹!" = 1 = 0.1

= 0.095
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Inference via math

3. 𝑃 𝐹+, = 1|𝑈 = 1, 𝑇 = 1 ?

26

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0 🤔
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Inference via math

3. 𝑃 𝐹+, = 1|𝑈 = 1, 𝑇 = 1 ?

27

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

1. Compute joint probabilities

2. Definition of conditional probability

𝑃 𝐹01 = 1,𝑈 = 1, 𝐹23 = 1, 𝑇 = 1
…

𝑃 𝐹01 = 0,𝑈 = 1, 𝐹23 = 0, 𝑇 = 1 ?

∑5𝑃 𝐹01 = 1,𝑈 = 1, 𝐹23 = 𝑦, 𝑇 = 1
∑4∑5𝑃 𝐹01 = 𝑥,𝑈 = 1, 𝐹23 = 𝑦, 𝑇 = 1

= 0.122
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Inference via math
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Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

Solving inference questions 
precisely is possible, but 
sometimes tedious.

Can we use sampling
to do approximate 
inference?

Yes.
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Constructing a Bayesian Network
In a Bayesian Network,
Each random variable is 
conditionally independent of its 
non-descendants, given its parents. 

• Node: random variable
• Directed edge: conditional dependency

Examples:
• 𝑃 𝐹!" = 1|𝑇 = 0, 𝐹#$ = 1 = 𝑃 𝐹!" = 1|𝐹#$ = 1
• 𝑃 𝐹#$ = 1,𝑈 = 0 = 𝑃 𝐹#$ = 1 𝑃 𝑈 = 0

30

Flu Under-
grad

TiredFever

Review



Breakout 
Rooms

Check out the question on the next slide 
(Slide 32). Post any clarifications here!
https://us.edstem.org/courses/2678/discussion/146234

Breakout rooms: 4 min. Introduce yourself!

31

🤔

https://us.edstem.org/courses/2678/discussion/146234
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Inference via math

𝑃 𝐹+, = 1|𝐹"- = 1,𝑈 = 1, 𝑇 = 1 ?

32

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0 🤔
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Inference via math

𝑃 𝐹+, = 1|𝐹"- = 1,𝑈 = 1, 𝑇 = 1 ?

33

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0
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Inference via math

34

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

Solving inference questions 
precisely is possible, but 
sometimes tedious.

Can we use sampling
to do approximate 
inference?

Yes.
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Inference via math

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?

= 0.122

35

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

Review

(from pre-lecture video)
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Rejection sampling algorithm

Step 0:
Have a fully specified
Bayesian Network

36

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0
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Rejection sampling algorithm

37

def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = …

# number of samples with 𝑈 = 1, 𝑇 = 1
samples_event =

# number of samples with 𝐹01 = 1,𝑈 = 1, 𝑇 = 1
return len(samples_event)/len(samples_observation)

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question: [flu, und, fev, tir]
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Rejection sampling algorithm

38

def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = …

# number of samples with 𝑈 = 1, 𝑇 = 1
samples_event =

# number of samples with 𝐹01 = 1,𝑈 = 1, 𝑇 = 1
return len(samples_event)/len(samples_observation)

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

# samples with 𝐹+, = 1,𝑈 = 1, 𝑇 = 1
# samples with 𝑈 = 1, 𝑇 = 1

Approximate
Probability =



Lisa Yan and Jerry Cain, CS109, 2020

Rejection sampling algorithm

39

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

# samples with 𝐹+, = 1,𝑈 = 1, 𝑇 = 1
# samples with 𝑈 = 1, 𝑇 = 1

Approximate
Probability =

🤔

Why would this definition of approximate probability make sense?



Think
Slide 41 has a question to go over by 
yourself.

Post any clarifications here!
https://us.edstem.org/courses/2678/discussion/146234

Think by yourself: 2 min

40

🤔(by yourself)

https://us.edstem.org/courses/2678/discussion/146234
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Why would this approximate probability make sense?

41

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

# samples with 𝐹+, = 1,𝑈 = 1, 𝑇 = 1
# samples with 𝑈 = 1, 𝑇 = 1

Approximate
Probability =

Recall our definition of 
probability as a frequency:

𝑃 𝐸 = lim
'→<

𝑛(𝐸)
𝑛

𝑛 = # of total trials
𝑛(𝐸) = # trials where 𝐸 occurs
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Why would this approximate probability make sense?

42

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

# samples with 𝐹+, = 1,𝑈 = 1, 𝑇 = 1
# samples with 𝑈 = 1, 𝑇 = 1

Approximate
Probability =

Recall our definition of 
probability as a frequency:

𝑃 𝐸 = lim
'→<

𝑛(𝐸)
𝑛

𝑛 = # of total trials
𝑛(𝐸) = # trials where 𝐸 occurs
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Rejection sampling algorithm

43

def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = …

# number of samples with 𝑈 = 1, 𝑇 = 1
samples_event =

# number of samples with 𝐹01 = 1,𝑈 = 1, 𝑇 = 1
return len(samples_event)/len(samples_observation)

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question: [flu, und, fev, tir]
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Rejection sampling algorithm

N_SAMPLES = 100000
# Method: Sample a ton
# -------------------
# create N_SAMPLES with likelihood proportional
# to the joint distribution
def sample_a_ton():

samples = []
for i in range(N_SAMPLES):

sample = make_sample() # a particle
samples.append(sample)

return samples

44

How do we make a sample
𝐹01 = 𝑎,𝑈 = 𝑏, 𝐹23 = 𝑐, 𝑇 = 𝑑

according to the
joint probability?

Create a sample using the Bayesian Network!!
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Rejection sampling algorithm

45

Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

# Method: Make Sample
# -------------------
# create a single sample from the joint distribution
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else:        fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)
# 
# TODO: fill in
# 
# 

# a sample from the joint has an
# assignment to *all* random variables
return [flu, und, fev, tir]
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Rejection sampling algorithm
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Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

# Method: Make Sample
# -------------------
# create a single sample from the joint distribution
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else:        fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)
# 
# TODO: fill in
# 
# 

# a sample from the joint has an
# assignment to *all* random variables
return [flu, und, fev, tir]
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Rejection sampling algorithm
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Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

# Method: Make Sample
# -------------------
# create a single sample from the joint distribution
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else:        fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)
# 
# TODO: fill in
# 
# 

# a sample from the joint has an
# assignment to *all* random variables
return [flu, und, fev, tir]



Lisa Yan and Jerry Cain, CS109, 2020

# Method: Make Sample
# -------------------
# create a single sample from the joint distribution
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else:        fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)
# 
# TODO: fill in
# 
# 

# a sample from the joint has an
# assignment to *all* random variables
return [flu, und, fev, tir]

Rejection sampling algorithm
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Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05
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Rejection sampling algorithm
# Method: Make Sample
# -------------------
# create a single sample from the joint distribution
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else:        fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)
if flu == 0 and und == 0: tir = bernoulli(0.1)
elif flu == 0 and und == 1: tir = bernoulli(0.8)
elif flu == 1 and und == 0: tir = bernoulli(0.9)
else:                       tir = bernoulli(1.0)

# a sample from the joint has an
# assignment to *all* random variables
return [flu, und, fev, tir] 49

Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0
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Rejection sampling algorithm
# Method: Make Sample
# -------------------
# create a single sample from the joint distribution
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else:        fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)
if flu == 0 and und == 0: tir = bernoulli(0.1)
elif flu == 0 and und == 1: tir = bernoulli(0.8)
elif flu == 1 and und == 0: tir = bernoulli(0.9)
else:                       tir = bernoulli(1.0)

# a sample from the joint has an
# assignment to *all* random variables
return [flu, und, fev, tir] 50

Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0



Interlude for 
jokes/announcements

51
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Announcements

52

Problem Set 4

Out: Today!
Due: Monday 10/26 1pm
Covers: Up to and including today

Mid-quarter feedback form

link
Open until: next Friday

Python tutorial #3

When: Mon 10/19 6-7pm PT
Recorded? Yes
Covers: PS4-PS6 content
Notes: to be posted online

https://forms.gle/poskurHZjavx2Sxw8
http://web.stanford.edu/class/cs109/handouts/python.html
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Announcements: CS109 contest

53

Do something cool and creative
with probability

Grand Prize:
Two lowest quizzes replaced with 100%

Finalists:
Lowest quiz replaced with 100%

Optional Proposal: Mon. 11/2, 11:59pm
Due: Sat. 11/14, 11:59pm

https://web.stanford.edu/class/cs109/psets/cs109_contest.pdf

https://web.stanford.edu/class/cs109/psets/cs109_contest.pdf
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Rejection sampling algorithm

54

def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = …

# number of samples with 𝑈 = 1, 𝑇 = 1
samples_event =

# number of samples with 𝐹01 = 1,𝑈 = 1, 𝑇 = 1
return len(samples_event)/len(samples_observation)

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question: [flu, und, fev, tir]
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Rejection sampling algorithm
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def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = …

# number of samples with 𝑈 = 1, 𝑇 = 1
samples_event =

# number of samples with 𝐹01 = 1,𝑈 = 1, 𝑇 = 1
return len(samples_event)/len(samples_observation)

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:
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Rejection sampling algorithm
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def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = 

reject_inconsistent(samples, observation)
samples_event =

# number of samples with 𝐹01 = 1,𝑈 = 1, 𝑇 = 1
return len(samples_event)/len(samples_observation)

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:
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Rejection sampling algorithm

57

def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = 

reject_inconsistent(samples, observation)
samples_event =

# number of samples with 𝐹01 = 1,𝑈 = 1, 𝑇 = 1
return len(samples_event)/len(samples_observation)

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

Keep only samples that are consistent
with the observation 𝑈 = 1, 𝑇 = 1 .
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Rejection sampling algorithm
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def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation =

reject_inconsistent(samples, observation)
samples_event =

reject_inconsistent(samples_observation, event)
return len(samples_event)/len(samples_observation)

Keep only samples that are consistent
with the observation 𝑇 = 1, 𝑈 = 0 .

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

# Method: Reject Inconsistent
# -------------------
# Rejects all samples that do not align with the outcome.
# Returns a list of consistent samples.
def reject_inconsistent(samples, outcome):

consistent_samples = []
for sample in samples:

if check_consistent(sample, outcome):
consistent_samples.append(sample)

return consistent_samples

𝑈 = 1, 𝑇 = 1



Lisa Yan and Jerry Cain, CS109, 2020

Rejection sampling algorithm
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def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation =

reject_inconsistent(samples, observation)
samples_event =

reject_inconsistent(samples_observation, event)
return len(samples_event)/len(samples_observation)

Conditional event = samples with 𝐹+, = 1,𝑈 = 1, 𝑇 = 1 .

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:
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Rejection sampling algorithm
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def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation =

reject_inconsistent(samples, observation)
samples_event =

reject_inconsistent(samples_observation, event)
return len(samples_event)/len(samples_observation)

Conditional event = samples with 𝐹+, = 1,𝑈 = 1, 𝑇 = 1 .

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

def reject_inconsistent(samples, outcome):

...

return consistent_samples

𝐹01 = 1𝐹01 = 𝑥,𝑈 = 1, 𝐹23 = 𝑦, 𝑇 = 1
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Rejection sampling algorithm

61

def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation =

reject_inconsistent(samples, observation)
samples_event =

reject_inconsistent(samples_observation, event)
return len(samples_event)/len(samples_observation)

# samples with 𝐹+, = 1,𝑈 = 1, 𝑇 = 1

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

# samples with 𝑈 = 1, 𝑇 = 1

Approximate
Probability =
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To the code!

62
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Rejection sampling

With enough samples, you can correctly compute:
• Probability estimates
• Conditional probability estimates
• Expectation estimates

Because your samples are a representation
of the joint distribution!

63

[flu, und, fev, tir]

P(has flu | undergrad and is tired) = 0.122

If you can sample enough from the joint distribution, 
you can answer any probability inference question.
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Other applications

64

Chemical 
present?

Chemical 
detected?

Trajectory 
deviation

Solar 
panel 
failure

Electrical 
system 
failure

Battery 
failure

Communi-
cation loss

Take CS238/AA228: Decision Making under Uncertainty!
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Challenge with Bayesian Networks

65

Flu Under-
grad

Tired
Fever

What if we don’t know the structure?

Take CS228: Probabilistic Graphical Models!

? ?

?

?
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Disadvantages of rejection sampling

What if we never encounter 
some samples?

66

Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝐹!" = 1|𝐹#$ = 1 ?

[flu=0, und, fev=1, tir]
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Disadvantages of rejection sampling

What if we never 
encounter some samples?

What if random variables 
are continuous?

67

Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

𝐹#$|𝐹!" = 1 ~𝒩(100,1.81)
𝐹#$|𝐹!" = 0~𝒩 98.25,0.73

𝑃 𝐹!" = 1|𝐹#$ = 99.4 ?



Gibbs sampling 
(extra)

68

(no video)
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Gibbs Sampling (not covered)

Basic idea:
• Fix all observed events
• Incrementally sample a new value

for each random variable
• Difficulty: More coding for computing

different posterior probabilities

Learn in extra slides/extra notebook!
(or by taking CS228/CS238)

69

https://drive.google.com/file/d/1qhdUHBefRx6V9lA8rfFuTlQ8vkReBrOF/view?usp=sharing

