
16: Continuous Joint 
Distributions
Lisa Yan and Jerry Cain
October 19, 2020

1



Lisa Yan and Jerry Cain, CS109, 2020

Quick slide reference

2

3 Continuous joint distributions 16a_cont_joint

18 Joint CDFs 16b_joint_CDF

23 Independent continuous RVs 16c_indep_cont_rvs

28 Multivariate Gaussian RVs 16d_sum_normal

32 Exercises LIVE

59 Extra: Double integrals 16f_extra



Continuous 
joint 
distributions

3

16a_cont_joint



Lisa Yan and Jerry Cain, CS109, 2020

Remember target?

4

Good times…
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CS109 logo with darts

5

Quick check: What is the probability that a dart
hits at (456.2344132343, 532.1865739012)?

The CS109 logo was created by 
throwing 500,000 darts according to a 
joint distribution.

If we throw another dart according to 
the same distribution, what is 
P(dart hits within 𝑟 pixels of center)?



Lisa Yan and Jerry Cain, CS109, 2020

CS109 logo with darts

6

1 pixel = 1 dart thrown
at screen

Possible dart counts (in 100x100 boxes)

P(dart hits within 𝑟 pixels of center)?
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CS109 logo with darts

7

Possible dart counts (in 50x50 boxes)

P(dart hits within 𝑟 pixels of center)?
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CS109 logo with darts

8

Possible dart counts
(in infinitesimally small boxes)

P(dart hits within 𝑟 pixels of center)?
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Continuous joint probability density functions
If two random variables 𝑋 and 𝑌 are jointly continuous, then there exists a 
joint probability density function 𝑓!,# defined over −∞ < 𝑥, 𝑦 < ∞ such that:

𝑃 𝑎$ ≤ 𝑋 ≤ 𝑎%, 𝑏$≤ 𝑌 ≤ 𝑏% = 0
&!

&"
0
'!

'"
𝑓!,# 𝑥, 𝑦 𝑑𝑦 𝑑𝑥

9
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From one continuous RV to jointly continuous RVs
Single continuous RV 𝑋

• PDF 𝑓! such that ∫()
) 𝑓! 𝑥 𝑑𝑥 = 1

• Integrate to get probabilities

Jointly continuous RVs 𝑋 and 𝑌

• PDF 𝑓!,# such that∫()
) ∫()

) 𝑓!,# 𝑥, 𝑦 𝑑𝑦 𝑑𝑥 = 1
• Double integrate to get probabilities

10

Probability for jointly continuous RVs is volume under a surface.

0 … 44 52 60 … 90
!

Probability = area
under curve
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Double integrals without tears
Let 𝑋 and 𝑌 be two continuous random variables.
• Support: 0 ≤ 𝑋 ≤ 1, 0 ≤ 𝑌 ≤ 2.

Is 𝑔 𝑥, 𝑦 = 𝑥𝑦 a valid joint PDF over 𝑋 and 𝑌?

Write down the definite double integral that
must integrate to 1:

🤔
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Double integrals without tears
Let 𝑋 and 𝑌 be two continuous random variables.
• Support: 0 ≤ 𝑋 ≤ 1, 0 ≤ 𝑌 ≤ 2.

Is 𝑔 𝑥, 𝑦 = 𝑥𝑦 a valid joint PDF over 𝑋 and 𝑌?

Write down the definite double integral that
must integrate to 1:

0
*+,

%
0
-+,

$
𝑥𝑦 𝑑𝑥 𝑑𝑦 = 1 or 0

-+,

$
0
*+,

%
𝑥𝑦 𝑑𝑦 𝑑𝑥 = 1

(used in next slide)
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Double integrals without tears
Let 𝑋 and 𝑌 be two continuous random variables.
• Support: 0 ≤ 𝑋 ≤ 1, 0 ≤ 𝑌 ≤ 2.

Is 𝑔 𝑥, 𝑦 = 𝑥𝑦 a valid joint PDF over 𝑋 and 𝑌?

13

1 = #
!"

"
#
!"

"
𝑔 𝑥, 𝑦 𝑑𝑥 𝑑𝑦 = #

#$%

&
#
'$%

(
𝑥𝑦 𝑑𝑥 𝑑𝑦

#
#$%

&
#
'$%

(
𝑥𝑦 𝑑𝑥 𝑑𝑦 = #

#$%

&
𝑦 #

'$%

(
𝑥 𝑑𝑥 𝑑𝑦 = #

#$%

&
𝑦
𝑥&

2 %

(

𝑑𝑦 = #
#$%

&
𝑦
1
2
𝑑𝑦

#
#$%

&
𝑦
1
2
𝑑𝑦 =

𝑦&

4 #$%

&

= 1 − 0 = 1

1. Evaluate inside integral by treating 𝑦 as a constant:

2. Evaluate remaining (single) integral:

Yes, 𝑔 𝑥, 𝑦 is a valid joint PDF
because it integrates to 1.

0. Set up integral:
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Marginal distributions
Suppose 𝑋 and 𝑌 are continuous random
variables with joint PDF:

The marginal density functions (marginal PDFs) are therefore:

𝑓! 𝑎 = 0
()

)
𝑓!,# 𝑎, 𝑦 𝑑𝑦 𝑓# 𝑏 = 0

()

)
𝑓!,# 𝑥, 𝑏 𝑑x

14

𝑓) 𝑥 𝑓* 𝑦#
!"

"
#
!"

"
𝑓),* 𝑥, 𝑦 𝑑𝑦 𝑑𝑥 = 1
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Back to darts!
Match 𝑋 and 𝑌 to their respective marginal PDFs:

15

(top-down)

(side view)

🤔
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Back to darts!
Match 𝑋 and 𝑌 to their respective marginal PDFs:

16

pixel x pixel y

(top-down)

(side view)
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Extra slides

If you want more practice with double integrals,
I’ve included two exercises at the end of this lecture.

17



Joint CDFs

18

16b_joint_cdfs
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An observation: Connecting CDF to PDF
For a continuous random variable 𝑋 with PDF 𝑓, the CDF (cumulative 
distribution function) is

𝐹 𝑎 = 𝑃 𝑋 ≤ 𝑎 = 0
()

&
𝑓 𝑥 𝑑𝑥

The density 𝑓 is therefore the derivative of the CDF, 𝐹:

𝑓 𝑎 =
𝑑
𝑑𝑎

𝐹 𝑎

19

(Fundamental Theorem 
of Calculus)
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Joint cumulative distribution function

For two random variables 𝑋 and 𝑌, there can be a joint cumulative 
distribution function 𝐹!,#:

𝐹!,# 𝑎, 𝑏 = 𝑃 𝑋 ≤ 𝑎, 𝑌 ≤ 𝑏

20

For continuous 𝑋 and 𝑌:

𝐹!,# 𝑎, 𝑏 = 0
()

&
0
()

'
𝑓!,# 𝑥, 𝑦 𝑑𝑦 𝑑𝑥

𝑓!,# 𝑎, 𝑏 = 1"

1& 1'
𝐹!,# 𝑎, 𝑏

For discrete 𝑋 and 𝑌:

𝐹!,# 𝑎, 𝑏 = :
-2&

:
*2'

𝑝!,#(𝑥, 𝑦)
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Single variable CDF, graphically

21

lim
'→!"

𝐹- 𝑥 = 0

lim
'→."

𝐹) 𝑥 = 1

𝐹! 𝑥 = 𝑃 𝑋 ≤ 𝑥𝑓! 𝑥

Review
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Joint CDF, graphically

22

lim
',#→!"

𝐹),* 𝑥, 𝑦 = 0

lim
',#→."

𝐹),* 𝑥, 𝑦 = 1

𝐹!,# 𝑥, 𝑦 = 𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦𝑓!,# 𝑥, 𝑦



Independent 
Continuous RVs

23

16c_indep_cont_rvs
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Independent continuous RVs
Two continuous random variables 𝑋 and 𝑌 are independent if:

𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = 𝑃 𝑋 ≤ 𝑥 𝑃 𝑌 ≤ 𝑦
Equivalently:

𝐹!,# 𝑥, 𝑦 = 𝐹! 𝑥 𝐹# 𝑦
𝑓!,# 𝑥, 𝑦 = 𝑓! 𝑥 𝑓# 𝑦

Proof of PDF:

24

𝑓),* 𝑥, 𝑦 =
𝜕&

𝜕𝑥 𝜕𝑦
𝐹),* 𝑥, 𝑦 =

𝜕&

𝜕𝑥 𝜕𝑦
𝐹) 𝑥 𝐹* 𝑦

=
𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝐹) 𝑥 𝐹* 𝑦

= 𝑓) 𝑥 𝑓* 𝑦

=
𝜕
𝜕𝑥

𝐹) 𝑥
𝜕
𝜕𝑦

𝐹* 𝑦
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Independent continuous RVs
Two continuous random variables 𝑋 and 𝑌 are independent if:

𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = 𝑃 𝑋 ≤ 𝑥 𝑃 𝑌 ≤ 𝑦
Equivalently:

𝐹!,# 𝑥, 𝑦 = 𝐹! 𝑥 𝐹# 𝑦
𝑓!,# 𝑥, 𝑦 = 𝑓! 𝑥 𝑓# 𝑦

More generally, 𝑋 and 𝑌 are independent if joint density factors separately:

𝑓!,# 𝑥, 𝑦 = 𝑔 𝑥 ℎ 𝑦 , where−∞ < 𝑥, 𝑦 < ∞

25
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Pop quiz! (just kidding)
Are 𝑋 and 𝑌 independent in the following cases?

26

independent
𝑋 and 𝑌

𝑓!,# 𝑥, 𝑦 = 𝑔 𝑥 ℎ 𝑦 ,
where−∞ < 𝑥, 𝑦 < ∞

1. 𝑓!,# 𝑥, 𝑦 = 6𝑒(3-𝑒(%*
where 0 < 𝑥, 𝑦 < ∞

2. 𝑓!,# 𝑥, 𝑦 = 4𝑥𝑦
where 0 < 𝑥, 𝑦 < 1

3. 𝑓!,# 𝑥, 𝑦 = 24𝑥𝑦
where 0 < 𝑥 + 𝑦 < 1

🤔
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Pop quiz! (just kidding)
Are 𝑋 and 𝑌 independent in the following cases?

27

1. 𝑓!,# 𝑥, 𝑦 = 6𝑒(3-𝑒(%*
where 0 < 𝑥, 𝑦 < ∞

2. 𝑓!,# 𝑥, 𝑦 = 4𝑥𝑦
where 0 < 𝑥, 𝑦 < 1

3. 𝑓!,# 𝑥, 𝑦 = 24𝑥𝑦
where 0 < 𝑥 + 𝑦 < 1

𝑔 𝑥 = 3𝑒!:'
ℎ 𝑦 = 2𝑒!&#

𝑔 𝑥 = 2𝑥
ℎ 𝑦 = 2𝑦

Cannot capture constraint on 𝑥 + 𝑦
into factorization!

❌

✅

✅

independent
𝑋 and 𝑌

𝑓!,# 𝑥, 𝑦 = 𝑔 𝑥 ℎ 𝑦 ,
where−∞ < 𝑥, 𝑦 < ∞

Separable functions:

Separable functions:

If you can factor densities over all of the 
support, you have independence.



Bivariate 
Normal 
Distribution

28

16d_bivariate_normal
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Bivariate Normal Distribution
𝑋$ and 𝑋% follow a bivariate normal distribution if their joint PDF 𝑓 is

𝑓 𝑥!, 𝑥" =
1

2𝜋𝜎!𝜎" 1 − 𝜌"
𝑒
# !
" !#$!

%"#&" !

'"!
# "$ %"#&" %!# &!

'"'!
( %!#&! !

'!!

Can show that 𝑋$~𝒩 𝜇$, 𝜎$% , 𝑋%~𝒩 𝜇%, 𝜎%%

Often written as: 𝑿~𝒩(𝝁, 𝚺)
• Vector 𝑿 = 𝑋$, 𝑋%
• Mean vector 𝝁 = 𝜇(, 𝜇& , Covariance matrix: 𝚺 =

𝜎(& 𝜌𝜎(𝜎&
𝜌𝜎(𝜎& 𝜎&&

29

We will focus on understanding the 
shape of a bivariate Normal RV.Recall correlation: 𝜌 = Cov !!,!"

4!4"

(Ross chapter 6, example 5d)
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Back to darts

30

(top-down)

(side view)

These darts were actually thrown according
to a bivariate normal distribution:

𝝁 = 450, 600

𝚺 = 900&/4 0
0 900&/25

𝑋, 𝑌 ~𝒩 𝝁, 𝚺

pixel x pixel y

Marginal 
PDFs:

𝑋~𝒩 450,
900&

4 𝑌~𝒩 600,
900&

25
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A diagonal covariance matrix
Let 𝑿 = 𝑋$, 𝑋% follow a bivariate normal distribution 𝑿~𝒩(𝝁, 𝚺), where 

𝝁 = 𝜇$, 𝜇% , 𝚺 =
𝜎$% 0
0 𝜎%%

Are 𝑋$ and 𝑋% independent?

31
✅

𝑓 𝑥(, 𝑥& =
1

2𝜋𝜎(𝜎& 1 − 𝜌&
𝑒
! (
& (!;!

'"!<" !

="!
!&; '"!<" '!!<!

="=!
. '!!<! !

=!!

=
1

2𝜋𝜎(𝜎&
𝑒
! (
&

'"!<" !

="!
. '!!<! !

=!!
(Note covariance: 𝜌𝜎(𝜎& = 0)

=
1

𝜎( 2𝜋
𝑒! '"!<" !/&="!

1
𝜎& 2𝜋

𝑒! '!!<! !/&=!!

𝑋( and 𝑋& are independent  
with marginal distributions 
𝑋(~𝒩 𝜇( 𝜎(& , 𝑋&~𝒩(𝜇& 𝜎&&)



(live)
16: Continuous Joint 
Distributions (I)
Lisa Yan and Jerry Cain
October 19, 2020
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Jointly continuous RVs
𝑋 and 𝑌 are jointly continuous if they have a joint PDF:

𝑓!,# 𝑥, 𝑦 such that 0
()

)
0
()

)
𝑓!,# 𝑥, 𝑦 𝑑𝑦 𝑑𝑥 = 1

Most things we’ve learned about discrete joint distributions translate:

33

Marginal 
distributions

𝑓) 𝑎 = #
!"

"
𝑓),* 𝑎, 𝑦 𝑑𝑦

Independent RVs 𝑝),* 𝑥, 𝑦 = 𝑝) 𝑥 𝑝* 𝑦 𝑓),* 𝑥, 𝑦 = 𝑓) 𝑥 𝑓* 𝑦

𝑝) 𝑎 =K
#

𝑝),* 𝑎, 𝑦

Expectation
(e.g., LOTUS) 𝐸 𝑔 𝑋, 𝑌 =9

!

9
"

𝑔 𝑥, 𝑦 𝑝#,% 𝑥, 𝑦 𝐸 𝑔 𝑋, 𝑌 = ;
&'

'
;
&'

'
𝑔 𝑥, 𝑦 𝑓#,% 𝑥, 𝑦 𝑑𝑦 𝑑𝑥

…etc.

Review
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Big ideas today
Basics of jointly continuous RVs
• Independence, marginal PDFs
• Compute probability (i.e., definite double integrals)

Jointly distributed normal RVs
• Bivariate Normal
• Sum of independent Normals (part of next class’s pre-lecture 17b)

34



Think
Slide 36 has a question to go over by 
yourself.

Post any clarifications here or in Zoom chat!
https://us.edstem.org/courses/2678/discussion/153770

Think by yourself: 2 min

35

🤔(by yourself)

https://us.edstem.org/courses/2678/discussion/153770
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Warmup exercise
𝑋 and 𝑌 have the following joint PDF:

1. Are 𝑋 and 𝑌 independent?

2. What is the marginal
PDF of 𝑋? Of 𝑌?

3. What is 𝐸 𝑋 + 𝑌 ?

36

🤔(by yourself)

𝑓),* 𝑥, 𝑦 = 3𝑒!:'
where 0 < 𝑥 < ∞, 1 < 𝑦 < 2
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Warmup exercise
𝑋 and 𝑌 have the following joint PDF:

1. Are 𝑋 and 𝑌 independent?

2. What is the marginal
PDF of 𝑋? Of 𝑌?

3. What is 𝐸 𝑋 + 𝑌 ?

37

𝑔 𝑥 = 3𝐶𝑒!:', 0 < 𝑥 < ∞
ℎ 𝑦 = 1/𝐶, 1 < 𝑦 < 2

𝐶 is a 
constant

✅

𝑓),* 𝑥, 𝑦 = 3𝑒!:'
where 0 < 𝑥 < ∞, 1 < 𝑦 < 2

𝑥
𝑦

𝑓 )
,*
𝑥,
𝑦
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Warmup exercise
𝑋 and 𝑌 have the following joint PDF:

1. Are 𝑋 and 𝑌 independent?

2. What is the marginal
PDF of 𝑋? Of 𝑌?

3. What is 𝐸 𝑋 + 𝑌 ?

38

𝑓),* 𝑥, 𝑦 = 3𝑒!:'
where 0 < 𝑥 < ∞, 1 < 𝑦 < 2

𝑔 𝑥 = 3𝐶𝑒!:', 0 < 𝑥 < ∞
ℎ 𝑦 = 1/𝐶, 1 < 𝑦 < 2

𝐶 is a 
constant

✅



Breakout 
Rooms

Check out the question on the next slide 
(Slide 40). Post any clarifications here!
https://us.edstem.org/courses/2678/discussion/153770

Breakout rooms: 4 min. Introduce yourself!

39

🤔

https://us.edstem.org/courses/2678/discussion/153770
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The joy of meetings
Two people set up a meeting time. Each arrives independently at a time uniformly 
distributed between 12pm and 12:30pm.
Define 𝑋 = # minutes past 12pm that person 1 arrives.  𝑋~Unif 0, 30

𝑌 = # minutes past 12pm that person 2 arrives. 𝑌~Unif 0, 30
What is the probability that the first to arrive waits >10 mins for the other?

Compute: 𝑃 𝑋 + 10 < 𝑌 + 𝑃 𝑌 + 10 < 𝑋 = 2𝑃 𝑋 + 10 < 𝑌
1. What is “symmetry” here?
2. How do we integrate to compute this probability?

40

🤔

(by symmetry)
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Double integrals: A guide

41

(by symmetry, 
independence)= 2 ⋅ N

'.(%?#,
%@',#,@:%

1/30 &𝑑𝑥𝑑𝑦

=
2
30&

#
(%

:%
#
%

#!(%
𝑑𝑥𝑑𝑦

=
2
30&

#
(%

:%
𝑦 − 10 𝑑𝑦 = ⋯ =

4
9

2𝑃 𝑋 + 10 < 𝑌

Steps:
1. Draw a picture.
2. Set bounds “from outside in.”
• Outer integral bounds should

be full range possible
• Inner integral can depend on 

integration variable of outer 
integral

From last slide:



Interlude for 
jokes/announcements

42
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Announcements

43

Mid-quarter feedback form

link
Open until: this Friday 10/23

Python tutorial #3

When: Today (Mon) 6-7pm PT
Recorded? Yes
Covers: PS4-PS6 content
Notes: to be posted online
Zoom link: link

https://forms.gle/poskurHZjavx2Sxw8
http://web.stanford.edu/class/cs109/handouts/python.html
https://stanford.zoom.us/j/4962796881?pwd=ZVN3R0xPeThtbnFpVUppNjBldCtYdz09
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Even when you shift the probability far left or far 
right, the opposing candidate still gets some wins. 
That doesn’t mean a forecast was wrong. That’s just 
randomness and uncertainty at play.

Interesting probability news

44

https://flowingdata.com/2016/07/28/
what-that-election-probability-means/

What That Election 
Probability Means

Frequentist definition of probability!

https://flowingdata.com/2016/07/28/what-that-election-probability-means/
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Big ideas today
Basics of continuous RVs
• Independence, marginal PDFs
• Compute probability (i.e., definite double integrals)

Jointly distributed normal RVs
• Bivariate Normal
• Sum of independent Normals (part of next class’s pre-lecture 17b)

45
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Bivariate normal distribution
The bivariate normal distribution of 𝑿 = 𝑋$, 𝑋% :

𝑿~𝒩(𝝁, 𝚺)
• Mean vector 𝝁 = 𝜇(, 𝜇&

• Covariance matrix: 𝚺 =
𝜎(& 𝜌𝜎(𝜎&

𝜌𝜎(𝜎& 𝜎&&

• Marginal distributions: 𝑋$~𝒩 𝜇$, 𝜎$% , 𝑋%~𝒩 𝜇%, 𝜎%%

• For bivariate normals in particular, Cov 𝑋(, 𝑋& = 0 implies 𝑋(, 𝑋& independent.

46

We will focus on understanding the 
shape of a bivariate Normal RV.

Cov 𝑋(, 𝑋) = Cov 𝑋), 𝑋( = 𝜌𝜎(𝜎)

Review



Think

Check out the question on the next slide 
(Slide 47). Post any clarifications here!
https://us.edstem.org/courses/2678/discussion/153770

Think by yourself: 1 min

47

🤔(by yourself)

https://us.edstem.org/courses/2678/discussion/153770
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𝑋,𝑌 Matching (all have 𝝁 = 0, 0 )

48

🤔

x
y

PD
F

x

y

1.

x
y

PD
F

x

y

3.

x
y

PD
F

x

y

2.

x
y

PD
F

x

y

4.

A. 1 0
0 1 B. 1 0

0 2

C. 1 0.5
0.5 1 D. 1 −0.5

−0.5 1

(by yourself)
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𝑋,𝑌 Matching (all have 𝝁 = 0, 0 )
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A. 1 0
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0.5 1 D. 1 −0.5

−0.5 1
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Why are joint PDFs useful?

50

• How 2 continuous RVs 
vary with each other

• How continuous RV is 
distributed given 
evidence (next time)

• How a continuous RV 
can be decomposed 
into 2 RVs (or vice versa)

𝑥
𝑦

Independence
2-D support

Joint PDF
Joint CDF

Marginal PDF
(next time) Conditional PDF

𝑃 𝑋 < 𝑌 ,
Cov 𝑋, 𝑌 , 𝜌(𝑋, 𝑌)

Given 𝑌 = 𝑦, the 
distribution of 𝑋

Distribution of 𝑍 = 𝑋 + 𝑌
(which is a 1-D RV!)
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Sum of independent Normals

51

𝑋$~𝒩 𝜇$, 𝜎$% ,
𝑋%~𝒩 𝜇%, 𝜎%%
𝑋, 𝑋% independent

𝑋0 + 𝑋1~𝒩(𝜇0 + 𝜇1, 𝜎01 + 𝜎11)

(proof left to Wikipedia)

(covered more in
pre-lecture video 17b)

Wait, how is this related to linear transformations of Normals?
Recall:

If 𝑌 = 𝑎𝑋 + 𝑏, then 𝑌~𝒩 𝑎𝜇 + 𝑏, 𝑎!𝜎!

https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
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Linear transforms vs. independence
Let 𝑋~𝒩(𝜇, 𝜎%) and 𝑌 = 𝑋 + 𝑋. What is the distribution of 𝑌?
• Are both approaches valid?

52

Independent RVs approach

⚠

Let 𝑋~𝒩(𝜇, 𝜎&).
If 𝑌 = 𝑎𝑋 + 𝑏,

then 𝑌~𝒩(𝑎𝜇 + 𝑏, 𝑎&𝜎&).

Let 𝑋(~𝒩 𝜇(, 𝜎(& , 𝑋&~𝒩 𝜇&, 𝜎&&
be independent.

Then 𝑌 = 𝑋( + 𝑋&~𝒩(𝜇( + 𝜇&, 𝜎(& + 𝜎&&)

Linear transform approach

🤔
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Linear transforms vs. independence
Let 𝑋~𝒩(𝜇, 𝜎%) and 𝑌 = 𝑋 + 𝑋. What is the distribution of 𝑌?
• Are both approaches valid?

53

𝑋 is NOT 
independent 

of 𝑋!

Independent RVs approach ❌

𝑌 = 𝑋 + 𝑋
𝑋 + 𝑋~𝒩 𝜇 + 𝜇, 𝜎% + 𝜎% ?
𝑌~𝒩 2𝜇, 2𝜎% ?

⚠

Let 𝑋~𝒩(𝜇, 𝜎&).
If 𝑌 = 𝑎𝑋 + 𝑏,

then 𝑌~𝒩(𝑎𝜇 + 𝑏, 𝑎&𝜎&).

Let 𝑋(~𝒩 𝜇(, 𝜎(& , 𝑋&~𝒩 𝜇&, 𝜎&&
be independent.

Then 𝑌 = 𝑋( + 𝑋&~𝒩(𝜇( + 𝜇&, 𝜎(& + 𝜎&&)

𝑌 = 2𝑋

Linear transform approach

𝑌~𝒩(2𝜇, 4𝜎%)

✅

For independent 𝑋(~𝒩 𝜇(, 𝜎(& , 𝑋&~𝒩 𝜇&, 𝜎&& ,
𝑎𝑋( + 𝑏𝑋& + 𝑐~𝒩 𝑎𝜇( + 𝑏𝜇& + 𝑐, 𝑎&𝜎(& + 𝑏&𝜎&&



Check out the question on the next slide 
(Slide 55). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/153770

Breakout rooms: 4 min. Introduce yourself!

54

🤔

Breakout 
Rooms

(If time, otherwise we’ll get to it next time)

https://us.edstem.org/courses/2678/discussion/153770
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Virus infections
Suppose you are working with the WHO to plan a response to the initial 
conditions of a virus. There are two exposed groups:
• G1: 200 people, each independently infected with 𝑝( = 0.1
• G2: 100 people, each independently infected with 𝑝& = 0.4

What is 𝑃 people infected ≥ 55 ? An approximation is okay.

55

Strategy:
A. Sum of indep. Binomials
B. (approximate) Sum of indep. Poissons
C. (approximate) Sum of indep. Normals
D. None/other

Let 𝐴 = # infected in G1.
𝐴~Bin 200,0.1
𝐵 = # infected in G2.
𝐵~Bin 100,0.4

Want: 𝑃 𝐴 + 𝐵 ≥ 55

1. Define RVs
& state goal

🤔
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Virus infections
Suppose you are working with the WHO to plan a response to the initial 
conditions of a virus. There are two exposed groups:
• G1: 200 people, each independently infected with 𝑝( = 0.1
• G2: 100 people, each independently infected with 𝑝& = 0.4

What is 𝑃 people infected ≥ 55 ? An approximation is okay.

56

Strategy:
A. Sum of indep. Binomials
B. (approximate) Sum of indep. Poissons
C. (approximate) Sum of indep. Normals
D. None/other

Let 𝐴 = # infected in G1.
𝐴~Bin 200,0.1
𝐵 = # infected in G2.
𝐵~Bin 100,0.4

Want: 𝑃 𝐴 + 𝐵 ≥ 55

1. Define RVs
& state goal
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Virus infections
Suppose you are working with the WHO to plan a response to the initial 
conditions of a virus. There are two exposed groups:
• G1: 200 people, each independently infected with 𝑝( = 0.1
• G2: 100 people, each independently infected with 𝑝& = 0.4

What is 𝑃 people infected ≥ 55 ? 

57

2. Approximate as sum of Normals

Let 𝐴 = # infected in G1.
𝐴~Bin 200,0.1
𝐵 = # infected in G2.
𝐵~Bin 100,0.4

Want: 𝑃 𝐴 + 𝐵 ≥ 55

𝐴 ≈ 𝑋 ~𝒩 20,18 𝐵 ≈ 𝑌 ~𝒩 40,24
1. Define RVs

& state goal
𝑃 𝐴 + 𝐵 ≥ 55 ≈ 𝑃 𝑋 + 𝑌 ≥ 54.5 continuity 

correction

3. Solve
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Virus infections
Suppose you are working with the WHO to plan a response to the initial 
conditions of a virus. There are two exposed groups:
• G1: 200 people, each independently infected with 𝑝( = 0.1
• G2: 100 people, each independently infected with 𝑝& = 0.4

What is 𝑃 people infected ≥ 55 ? 

58

2. Approximate as sum of Normals

Let 𝐴 = # infected in G1.
𝐴~Bin 200,0.1
𝐵 = # infected in G2.
𝐵~Bin 100,0.4

Want: 𝑃 𝐴 + 𝐵 ≥ 55

𝐴 ≈ 𝑋 ~𝒩 20,18 𝐵 ≈ 𝑌 ~𝒩 40,24
1. Define RVs

& state goal
𝑃 𝐴 + 𝐵 ≥ 55 ≈ 𝑃 𝑋 + 𝑌 ≥ 54.5 continuity 

correction

3. Solve
Let 𝑊 = 𝑋 + 𝑌~𝒩 20 + 40 = 60, 18 + 24 = 42

≈ 0.8023
= 1 −Φ

54.5 − 60
42

≈ 1 − Φ −0.85𝑃 𝑊 ≥ 54.5



Extra

59

16f_extra
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1. Integral practice
Let 𝑋 and 𝑌 be two continuous random 
variables with joint PDF:
What is 𝑃 𝑋 ≤ 𝑌 ?

60

𝑃 𝑋 ≤ 𝑌 = N
'@#,

%@',#@(

4𝑥𝑦 𝑑𝑥 𝑑𝑦 = #
#$%

(

#
'@#

4𝑥𝑦 𝑑𝑥 𝑑𝑦 = #
#$%

(

#
'$%

#

4𝑥𝑦 𝑑𝑥 𝑑𝑦

= #
#$%

(

4𝑦
𝑥&

2 %

#

𝑑𝑦 = #
#$%

(

2𝑦:𝑑𝑦 =
2
4
𝑦A

%

(
=
1
2

𝑓 𝑥, 𝑦 = U4𝑥𝑦 0 ≤ 𝑥, 𝑦 ≤ 1
0 otherwise
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2. How do you integrate over a circle?

61

𝑃 𝑥% + 𝑦% ≤ 10% = 00𝑓!,# 𝑥, 𝑦 𝑑𝑦 𝑑𝑥
𝑥) + 𝑦) ≤ 10)

P(dart hits within 𝑟 = 10 pixels of center)?

Let’s try an example that doesn’t 
involve integrating a Normal RV 
J
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2. Imperfection on Disk
You have a disk surface, a circle of radius 𝑅. 
Suppose you have a single point imperfection 
uniformly distributed on the disk.
What are the marginal distributions of 𝑋 and 𝑌? 
Are 𝑋 and 𝑌 independent?

62

𝑓),* 𝑥, 𝑦 = ]
1
𝜋𝑅&

𝑥& + 𝑦& ≤ 𝑅&

0 otherwise

𝑓) 𝑥 = #
!"

"
𝑓),* 𝑥, 𝑦 𝑑𝑦 =

1
𝜋𝑅&

#
'!.#!@B!

𝑑𝑦

=
1
𝜋𝑅&

#
#$! B!!'!

B!!'!

𝑑𝑦

where −𝑅 ≤ 𝑥 ≤ 𝑅

=
2 𝑅& − 𝑥&

𝜋𝑅&

𝑓* 𝑦 =
2 𝑅& − 𝑦
𝜋𝑅&

where −𝑅 ≤ 𝑦 ≤ 𝑅, by symmetry
No, 𝑋 and 𝑌 are dependent.

𝑓),* 𝑥, 𝑦 ≠ 𝑓) 𝑥 𝑓* 𝑦


