17: Continuous Joint Distributions (II)

Lisa Yan and Jerry Cain October 21, 2020

Quick slide reference

- 3 Convolution: Sum of independent Uniform RVs 17a_cont_conv
- 19Sum of independent Normal RVs17b_sum_normal
- 25 Ratio of PDFs 17c_ratio_pdfs
- 29 Continuous conditional distributions 17d_cont_cond_distr
- 31 Exercises

LIVE

17a_cont_conv

Convolution: Sum of independent Uniform RVs

Today's lecture

Take what we've seen in discrete joint distributions...

...and translate them to continuous joint distributions!

For the most part, this is easy. For example:

Marginal
distributions
$$p_X(a) = \sum_y p_{X,Y}(a, y)$$
 $f_X(a) = \int_{-\infty}^{\infty} f_{X,Y}(a, y) dy$
Independent RVs $p_{X,Y}(x, y) = p_X(x)p_Y(y)$ $f_{X,Y}(x, y) = f_X(x)f_Y(y)$

But some concepts, while mathematically straightforward to write, are harder to implement in practice.

We'll focus on these today.

Goal of CS109 continuous joint distributions unit: **build mathematical maturity**

Recall that for independent discrete random variables *X* and *Y*:

$$P_{X+Y}(n) = \sum_{k} P(X = k)P(Y = n - k) \quad \text{the convolution} \\ f_{X} \text{ and } p_{Y}$$

$$(1 + 2) = 3 + 4 + 5 + 6 = \sum_{k} P(X = k)P(Y = n - k) \quad \text{the convolution} \\ f_{X} \text{ and } p_{Y}$$

$$(1 + 2) = 3 + 4 + 5 + 6 = \sum_{k} P(X = k)P(Y = n - k) \quad \text{the convolution} \\ f_{X} \text{ and } p_{Y}$$

$$(1 + 2) = 3 + 4 + 5 + 6 = \sum_{k} P(X = k)P(Y = n - k) \quad \text{the convolution} \\ f_{X} \text{ and } p_{Y}$$

$$(1 + 2) = 3 + 4 + 5 + 6 = \sum_{k} P(X = k)P(Y = n - k) \quad \text{the convolution} \\ f_{X} \text{ and } p_{Y}$$

 $Y = \overline{\text{Lise}} Y_{\text{Yan and Jerry Cain, CS109, 2020}}$

Stanford University 5

Review

Recall that for independent discrete random variables *X* and *Y*:

$$P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)$$
 the
of γ

the convolution of p_X and p_Y

For independent continuous random variables *X* and *Y*:

Dance, Dance, Convolution Extreme

Let $X \sim \text{Uni}(0,1)$ and $Y \sim \text{Uni}(0,1)$ be independent RVs. What is the distribution of X + Y, $f_{X+Y}(\alpha)$?

$$f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$$

Let $X \sim \text{Uni}(0,1)$ and $Y \sim \text{Uni}(0,1)$ be independent RVs. What is the distribution of X + Y, $f_{X+Y}(\alpha)$?

$$f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$$

Lisa Yan and Jerry Cain, CS109, 2020

1. $\alpha \leq 0$

X and Y independent $f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$ + continuous

Let $X \sim \text{Uni}(0,1)$ and $Y \sim \text{Uni}(0,1)$ be independent RVs. What is the distribution of X + Y, $f_{X+Y}(\alpha)$? $f_X(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$ $f_Y(\alpha - x) = \begin{cases} 1 & \text{if } \alpha - 1 \le x \le \alpha \\ 0 & \text{otherwise} \end{cases}$

1. $\alpha \leq 0$

X and Y independent $f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$ + continuous

Let $X \sim \text{Uni}(0,1)$ and $Y \sim \text{Uni}(0,1)$ be independent RVs. What is the distribution of X + Y, $f_{X+Y}(\alpha)$? $f_X(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$ $f_Y(\alpha - x) = \begin{cases} 1 & \text{if } \alpha - 1 \le x \le \alpha \\ 0 & \text{otherwise} \end{cases}$

Integral = area under the curve This curve = product of 2 functions of *x*

X and Y independent $f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$ + continuous

Let $X \sim \text{Uni}(0,1)$ and $Y \sim \text{Uni}(0,1)$ be independent RVs. What is the distribution of X + Y, $f_{X+Y}(\alpha)$? $f_X(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$ $f_Y(\alpha - x) = \begin{cases} 1 & \text{if } \alpha - 1 \le x \le \alpha \\ 0 & \text{otherwise} \end{cases}$

2. $\alpha = 1/2$ 1/2

1. $\alpha \le 0$ ()

3. $\alpha = 1$

4. $\alpha = 3/2$

X and Y independent $f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$ + continuous

Let $X \sim \text{Uni}(0,1)$ and $Y \sim \text{Uni}(0,1)$ be independent RVs. What is the distribution of X + Y, $f_{X+Y}(\alpha)$? $f_X(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$ $f_Y(\alpha - x) = \begin{cases} 1 & \text{if } \alpha - 1 \le x \le \alpha \\ 0 & \text{otherwise} \end{cases}$

4. $\alpha = 3/2$

1. $\alpha \leq 0$ ()

X and Y independent $f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$ + continuous

Let $X \sim \text{Uni}(0,1)$ and $Y \sim \text{Uni}(0,1)$ be independent RVs. What is the distribution of X + Y, $f_{X+Y}(\alpha)$? $f_X(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$ $f_Y(\alpha - x) = \begin{cases} 1 & \text{if } \alpha - 1 \le x \le \alpha \\ 0 & \text{otherwise} \end{cases}$

1. $\alpha \leq 0$ ()

X and Y independent $f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$ + continuous

Let $X \sim \text{Uni}(0,1)$ and $Y \sim \text{Uni}(0,1)$ be independent RVs. What is the distribution of X + Y, $f_{X+Y}(\alpha)$?

4. $\alpha = 3/2$ 1/2

5. $\alpha \geq 2$

1. $\alpha \leq 0$ ()

X and Y independent $f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$ + continuous

Let $X \sim \text{Uni}(0,1)$ and $Y \sim \text{Uni}(0,1)$ be independent RVs. What is the distribution of X + Y, $f_{X+Y}(\alpha)$?

Dance, Dance, Convolution Extreme

Stanford University 17

Phew....that was a mental workout.

In practice, we try to avoid convolution where possible, by choosing "nice" distributions.

Ready for something truly useful? Stay tuned!

17b_sum_normal

Sums of independent Normal RVs

Sum of independent Normals

$$X \sim \mathcal{N}(\mu_1, \sigma_1^2),$$

 $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$
 X, Y independent

$$X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

(proof left to Wikipedia)

Holds in general case:

$$X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$$

X_i independent for $i = 1, ..., n$

$$\sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)$$

Back for another playoffs game

What is the probability that the Warriors win?

 $P(A_W > A_B)$

This is a probability of an event involving *two* random variables!

We will compute:

 $P(A_W - A_B > 0)$

How do you model zero-sum games?

Motivating idea: Zero sum games

Want:
$$P(\text{Warriors win}) = P(A_W - A_B > 0)$$

Assume A_W , A_B are independent. Let $D = A_W - A_B$.

What is the distribution of *D*?

A.
$$D \sim \mathcal{N}(1657 - 1470, \ 200^2 - 200^2)$$

B.
$$D \sim \mathcal{N}(1657 - 1470, \ 200^2 + 200^2)$$

C.
$$D \sim \mathcal{N}(1657 + 1470, \ 200^2 + 200^2)$$

- D. Dance, Dance, Convolution
- E. None/other

Motivating idea: Zero sum games

Want:
$$P(\text{Warriors win}) = P(A_W - A_B > 0)$$

Assume A_W, A_B are independent. Let $D = A_W - A_B$. $-A_B \sim N(-1430, +200^2)$

What is the distribution of *D*?

A.
$$D \sim \mathcal{N}(1657 - 1470, 200^2 - 200^2)$$

B. $D \sim \mathcal{N}(1657 - 1470, 200^2 + 200^2)$
C. $D \sim \mathcal{N}(1657 + 1470, 200^2 + 200^2)$
D. Dance, Dance, Convolution

E. None/other

If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $(-X) \sim \mathcal{N}(-\mu, (-1)^2 \sigma^2 = \sigma^2)$.

Motivating idea: Zero sum games

Want:
$$P(\text{Warriors win}) = P(A_W - A_B > 0)$$

Assume A_W , A_B are independent. Let $D = A_W - A_B$.

 $D \sim \mathcal{N}(1657 - 1470, 200^2 + 200^2)$ $\sim \mathcal{N}(187, 2 \cdot 200^2) \quad \sigma \approx 283$

$$P(D > 0) = 1 - F_D(0) = 1 - \Phi\left(\frac{0 - 187}{283}\right)$$

\$\approx 0.7454\$

Compare with 0.7488, calculated by sampling!

17c_ratio_pdfs

Ratio of PDFs

Relative probabilities of continuous random variables

Let X = time to finish problem set 4. Suppose $X \sim \mathcal{N}(10,2)$.

How much *more likely* are you to complete in 10 hours than 5 hours?

$$\frac{P(X=10)}{P(X=5)} =$$

A. 0/0 = undefined B. $\frac{f(10)}{f(5)}$ C. stay healthy

Relative probabilities of continuous random variables

Let X = time to finish problem set 4. Suppose $X \sim \mathcal{N}(10,2)$.

How much *more likely* are you to complete in 10 hours than 5 hours?

$$\frac{P(X=10)}{P(X=5)} =$$

A. 0/0 = undefined B. f(10) f(5)(C.) stay healthy

Relative probabilities of continuous random variables

Let X = time to finish problem set 4. Suppose $X \sim \mathcal{N}(10,2)$.

How much *more likely* are you to complete in 10 hours than 5 hours?

$$\frac{P(X=10)}{P(X=5)} = \frac{f(10)}{f(5)}$$

$$P(X=a) = P\left(a - \frac{\varepsilon}{2} \le X \le a + \frac{\varepsilon}{2}\right) = \int_{a-\frac{\varepsilon}{2}}^{a+\frac{\varepsilon}{2}} f(x)dx \approx \varepsilon f(a)$$

$$Therefore \quad \frac{P(X=a)}{P(X=b)} = \frac{\varepsilon f(a)}{\varepsilon f(b)} = \frac{f(a)}{f(b)}$$

$$\lim_{\varepsilon \to 0} \frac{\varepsilon f(a)}{\varepsilon f(b)} = \frac{f(a)}{f(b)}$$

$$Ratios of PDFs$$

$$are meaningful!!$$

Lisa Yan and Jerry Cain, CS109, 2020

17d_cond_distributions

Continuous conditional distributions

Continuous conditional distributions

For continuous RVs X and Y, the conditional PDF of X given Y is

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} \quad \text{where } f_Y(y) > 0$$

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y) + f_{X|Y}(x|y)}{f_{Y}(y) + f_{Y}(y)}$$

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y) + f_{X|Y}(x|y)}{f_{Y}(y) + f_{Y}(y)}$$

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y) + f_{Y}(y)}{f_{Y}(y) + f_{Y}(y)}$$
Note that conditional PDF $f_{X|Y}$ is a "true" density:
$$\int_{-\infty}^{\infty} f_{X|Y}(x|y) dx = \int_{-\infty}^{\infty} \frac{f_{X,Y}(x,y)}{f_{Y}(y)} dx = \frac{f_{Y}(y)}{f_{Y}(y)} = 1$$

$$f_{X|Y}(x|y) = \frac{f_{X|Y}(x|y) + f_{X|Y}(x|y)}{f_{Y}(y)} = \frac{f_{X|Y}(x|y) + f_{Y|Y}(x|y)}{f_{Y}(x|y)} = \frac{f_{X|Y}(x|y) + f_{X|Y}(x|y)}{f_{Y}(x|y)} = \frac{f_{X|Y}(x|y) + f_{Y|Y}(x|y)}{f_{Y}(x|y)} = \frac{f_{X|Y}(x|y)}{f_{Y}(x|y)} = \frac{f_{X|Y}(x|y)}{f_{Y}($$

(live) 17: Continuous Joint Distributions (II)

Lisa Yan and Jerry Cain October 21, 2020

Why sums of random variables?

Sometimes modeling and <u>understanding</u> a complex *X* is hard.

But if we can decompose *X* into the sum of independent simpler RVs,

- We can then compute distributions on X.
- We can then to understand how X changes when its parts change.

We're covering the reverse direction for now; the forward direction will come next time

 $X, +X_{2}$

Discussion

Slide 36 has a question to discuss together.

Post any clarifications here or in chat!

https://us.edstem.org/courses/2678/discussion/153772

Think by yourself: 1 min Discuss (as a class, in chat): 3 min

Virus infections

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_1 = 0.1$
- G2: 100 people, each independently infected with $p_2 = 0.4$

What is $P(\text{people infected} \ge 55)$? An approximation is okay.

1. Define RVs & state goal

Let A = # infected in G1. $A \sim Bin(200,0.1)$ B = # infected in G2. $B \sim Bin(100,0.4)$

Want: $P(A + B \ge 55)$

Strategy: A. Dance, Dance, Convolution $\sum_{p(k)} p(n-k)$ B. Sum of indep. Binomials $\Re(n, p) + B\Re(n_2, p)$ C. (approximate) Sum of indep. Poissons $\sum_{s=0}^{h-sen} p$ D. (approximate) Sum of indep. Normals E. None/other

Virus infections

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_1 = 0.1$
- G2: 100 people, each independently infected with $p_2 = 0.4$

What is $P(\text{people infected} \ge 55)$? An approximation is okay.

1. Define RVs & state goal

Let A = # infected in G1. $A \sim Bin(200,0.1)$ B = # infected in G2. $B \sim Bin(100,0.4)$

Want: $P(A + B \ge 55)$

Strategy:

- A. Dance, Dance, Convolution
- B. Sum of indep. Binomials
- C. (approximate) Sum of indep. Poissons
- D. (approximate) Sum of indep. Normals
- E. None/other

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_1 = 0.1$
- G2: 100 people, each independently infected with $p_2 = 0.4$

What is $P(\text{people infected} \ge 55)$?

Define RVs
 & state goal

Virus infections

Let A = # infected in G1. $A \sim Bin(200,0.1)$ B = # infected in G2. $B \sim Bin(100,0.4)$

Want: $P(A + B \ge 55)$

2. Approximate as sum of Normals $A \approx X \sim \mathcal{N}(20,18)$ $B \approx Y \sim \mathcal{N}(40,24)$ $P(A + B \ge 55) \approx P(X + Y \ge 54.5)$ continuity correction 3. Solve

approx Bin w/ Normal discrete -> continuity correction

Virus infections

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_1 = 0.1$
- G2: 100 people, each independently infected with $p_2 = 0.4$

What is $P(\text{people infected} \ge 55)$?

Define RVs
 & state goal

Let A = # infected in G1. $A \sim Bin(200,0.1)$ B = # infected in G2. $B \sim Bin(100,0.4)$

Want: $P(A + B \ge 55)$

2. Approximate as sum of Normals $A \approx X \sim \mathcal{N}(20,18)$ $B \approx Y \sim \mathcal{N}(40,24)$ $P(A + B \ge 55) \approx P(X + Y \ge 54.5)$ continuity correction

3. Solve

Let $W = X + Y \sim \mathcal{N}(20 + 40 = 60, 18 + 24 = 42)$ $P(W \ge 54.5) = 1 - \Phi\left(\frac{54.5 - 60}{\sqrt{42}}\right) \approx 1 - \Phi(-0.85)$ ≈ 0.8023 Lis ≈ 0.8023 20 Stanford University 37

A conceptual review

Everything* in probability is a sum or a product (or both)

*except conditional probability (a ratio)

Sum of values that can be considered separately (possibly weighted by prob. of happening)

$$P(E \cap F \cap G) = P(E)P(F|E)P(G|EF)$$

Chain Rule

Product of values that can each be considered in sequence

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

Independent cont. RVs

$$P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)$$

Sum of indep. discrete RVs (convolution)

Lisa Yan and Jerry Cain, CS109, 2020

Conditional probability and Bayes' Theorem

Scaling to the correct sample space

Independence

E, F independent

$$P(F|E) = P(F)$$

Sample space doesn't need to be scaled

Bayes' Theorem

Multiple Bayes' Theorems

with events

with discrete RVs

 $P(F|E) = \frac{P(F)P(E|F)}{P(E)}$ $p_{Y|X}(y|x) = \frac{p_Y(y)p_{X|Y}(x|y)}{p_X(x)}$

You are given this value...

with continuous RVs

this value... $f_{Y|X}(y|x) = \frac{f_Y(y)f_{X|Y}(x|y)}{f_X(x)}$

...so this is just a scalar

Really all the same idea!

Lisa Yan and Jerry Cain, CS109, 2020

Extra fun in lecture today

We've gotten very far in our ability to model different situations.

Let's test our mettle to analyze an important application that involves:

- Conditional densities
- Bayes' Theorem
- A computer
- Normalization constants

Tracking in 2-D space

You want to know the 2-D location of an object.

Your satellite ping gives you a noisy 1-D measurement of the distance of the object from the satellite (0,0).

Using the satellite measurement, where is the object?

Interlude for *for* jokes/announcements

<u>Quiz #2</u>

Time frame: Covers: Info and practice: Wednesday 10/28 2:00pm – Friday 10/30 12:59pm PT Up to end of Week 5 (including Lecture 15). PS3+PS4 (to be posted soon)

Homework parties

Saturdays9am-11am PTSundays2pm-4pm PT

Designated student group work time on Nooks (no CAs) Office Hours/Mid-quarter feedback update

Thanks for your feedback! We are working on updating our OH to help more students learn feature Friday for

Accessing old concept checks

Stanford University 46

New handout

Resources/Demos 👻 Quizzes

Calculation Ref

Python for Probability

LaTeX Guides

Latex Cheat Sheet

Full Probability Reference (Overleaf)

Standard Normal Table

Normal CDF Calculator

<u>A summary of all lill the things we've</u> learned so far.

- Many equations look the same.
- ...because they're all built on the same principles!
- Overleaf, so LaTeX-friendly

Also recommended:

- Lecture Notes (generally shorter than slides)
- <u>A previous CA's midterm review</u>

Tracking in 2-D space

- Before measuring, we have some prior belief about the 2-D location of an object, (X, Y).
- We observe some noisy $\sqrt[3]{X^2+Y^2}$ measurement D = 4, the Euclidean distance of the object to a satellite.

 After the measurement, what is our updated (posterior) belief of the 2-D location of the object?

Tracking in 2-D space

- You have a prior belief about the 2-D location of an object, (X, Y).
- You observe a noisy distance measurement, D = 4.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

1. Define prior

$$f_{X,Y|D}(x,y|d) = \frac{f_{D|X,Y}(d|x,y) f_{X,Y}(x,y)}{f_D(d)}$$

You have a prior belief about the 2-D location of an object, (X, Y).

Let (X, Y) = object's 2-D location. (your satellite is at (0,0)

Suppose the prior distribution is a symmetric bivariate normal distrib

$$\mathcal{M} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \underbrace{\mathcal{K}} = \begin{bmatrix} 2^2 & 6 \\ 2 & 2^2 \end{bmatrix}$$

Top-down view
satellite is at (0,0)
Suppose the prior distribution is a
symmetric bivariate normal distribution:
$$f_{X,Y}(x,y) = \frac{1}{2\pi^2}e^{-\frac{\left[(x-3)^2 + (y-3)^2\right]}{2(2^2)}} = K_1 \cdot e^{-\frac{\left[(x-3)^2 + (y-3)^2\right]}{8}}$$

normalizing constant

If you knew your actual location (x, y), you could say

how likely a measurement D = 4 is:

Let D = distance from the satellite (radially). Suppose you knew your actual position: (x, y).

- *D* is still noisy! Suppose noise is **standard normal**.
- On average, D is your true Euclidean distance: $\sqrt{\chi^2 + \gamma^2}$

You observe a noisy distance measurement, D = 4.

 $f_{X,Y|D}(x,y|d) = \frac{f_{D|X,Y}(d|x,y)}{f_{X,Y}(x,y)}$

Think

Check out the question on the next slide (Slide 54). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/153772

Think by yourself: 2 min

Post your interpretation in the chat.

2. Define likelihood

You observe a noisy distance measurement, D = 4. If you knew your actual location (x, y), you could say how likely a measurement D = 4 is:

Let D = distance from the satellite (radially). Suppose you knew your actual position: (x, y).

- *D* is still noisy! Suppose noise is **standard normal**.
- On average, D is your true Euclidean distance: $\sqrt{\chi^2 + \gamma^2}$

$$D|X, Y \sim N(\mu = (A), \sigma^{2} = (B))$$

$$f_{D|X,Y}(D = d|X = x, Y = y) = \frac{1}{(C)} \sqrt{2\pi} e^{\{(D)\}}$$

Stanford University 53

Let D = distance from the satellite (radially). Suppose you knew your actual position: (x, y).

- D is still noisy! Suppose noise is standard normal.
- On average, *D* is your true Euclidean distance: $\sqrt{x^2 + y^2}$ $D = \sqrt{x^2 + y^2}$, $Z \land N(O_1)$ $D | X, Y \sim N \left(\mu = \sqrt{x^2 + y^2}, \sigma^2 = 1 \right)$ $f_{D|X,Y}(D=d|X=x,Y=y) = \frac{1}{\sqrt{2\pi}} e^{\frac{-\left(d-\sqrt{x^2+y^2}\right)^2}{2\cdot 1^2}} = K_2 \cdot e^{\frac{-\left(d-\sqrt{x^2+y^2}\right)^2}{2}}$

normalizing constant

3. Compute posterior

 $f_{X,Y|D}(x,y|d) = \frac{f_{D|X,Y}(d|x,y) f_{X,Y}(x,y)}{f_D(d)}$

What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

Compute:

Posterior belief

$$f_{X,Y|D}(x,y|4) = f_{X,Y|D}(X = x, Y = y|D = 4)$$

Breakout Rooms

Check out the question on the next slide (Slide 58). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/153772

Breakout rooms: 3 min

3. Compute posterior

 $f_{X,Y|D}(x,y|d) = \frac{f_{D|X,Y}(d|x,y) f_{X,Y}(x,y)}{f_D(d)}$

What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

Compute:

Posterior
belief
$$f_{X,Y|D}(x,y|4) = f_{X,Y|D}(X = x, Y = y|D = 4)$$

Know:

Prior belief $f_{X,Y}(x,y) = K_1 \cdot e^{-\frac{[(x-3)^2 + (y-3)^2]}{8}}$ Observation likelihood $f_{D|X,Y}(d|x,y) = K_2 \cdot e^{\frac{-(d-\sqrt{x^2+y^2})^2}{2}}$

<u>Tips</u>

- Use Bayes' Theorem!
- $f_D(4)$ is just a scaling constant. Why?
- How can we approximate the final scaling constant with a computer?

Deep breath

Tracking in 2-D space

What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

$$f_{X,Y|D}(X = x, Y = y|D = 4) = \frac{f_{D|X,Y}(D = 4|X = x, Y = y)f_{X,Y}(x, y)}{f(D = 4)}$$

$$f_{X,Y|D}(X = x, Y = y|D = 4) = \frac{f_{D|X,Y}(D = 4|X = x, Y = y)f_{X,Y}(x, y)}{f(D = 4)}$$
Bayes' Theorem
$$f_{X,Y|D}(x) = \lambda e^{-\lambda x}$$

$$f$$

Lisa Yan and Jerry Cain, CS109, 2020

Tracking in 2-D space

With this continuous version of Bayes' theorem, we can explore new domains.

- Before measuring, we have some prior belief about the 2-D location of an object, (X, Y).
- We observe some noisy **measurement** of the distance of the object to a satellite.
- After the measurement, what is our updated (posterior) belief of the 2-D location of the object?

Tracking in 2-D space: Posterior belief

Prior belief

$$f_{X,Y|D}(x,y|4) = K_4 \cdot e^{-\left[\frac{\left(4-\sqrt{x^2+y^2}\right)^2}{2} + \frac{\left[(x-3)^2+(y-3)^2\right]}{8}\right]}$$

Lisa Yan and Jerry Cain, CS109, 2020

How'd you compute that *K*₄?

To be a valid conditional PDF,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y|D}(x,y|4) \, dx \, dy = 1$$

500-

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} K_4 \cdot e^{-\left[\frac{\left(4 - \sqrt{x^2 + y^2}\right)^2}{2} + \frac{\left[(x - 3)^2 + (y - 3)^2\right]}{8}\right]} dx \, dy = 1$$

$$\frac{1}{K_4} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left[\frac{\left(4 - \sqrt{x^2 + y^2}\right)^2}{2} + \frac{\left[(x - 3)^2 + (y - 3)^2\right]}{8}\right]} dx \, dy \qquad \text{(pull out } K_4\text{, divide)}$$

Approximate:

$$\frac{1}{K_4} \approx \sum_x \sum_y e^{-\left[\frac{\left(4 - \sqrt{x^2 + y^2}\right)^2}{2} + \frac{\left[(x - 3)^2 + (y - 3)^2\right]}{8}\right]} \Delta x \Delta y \qquad \text{Use a computer!}$$

Give yourself a pat on the back after this!

(no video)

Extra slides

Conditional densities

Let X and Y be continuous RVs with joint PDF:

$$f_{X,Y}(x,y) = \begin{cases} \frac{12}{5}x(2-x-y) & 0 < x, y < 1\\ 0 & \text{otherwise} \end{cases}$$

- **1.** What is the conditional density $f_{X|Y}(x|y)$?
- 2. Are X and Y independent?

J

Conditional densities

Let X and Y be continuous RVs with joint PDF:

$$f_{X,Y}(x,y) = \begin{cases} \frac{12}{5}x(2-x-y) & 0 < x, y < 1\\ 0 & \text{otherwise} \end{cases}$$

- **1.** What is the conditional density $f_{X|Y}(x|y)$?
- 2. Are *X* and *Y* independent?

$$1. \quad f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{f_{X,Y}(x,y)}{\int_0^1 f_{X,Y}(x,y) dx} = \frac{\frac{12}{5}x(2-x-y)}{\int_0^1 \frac{12}{5}x(2-x-y) dx} = \frac{x(2-x-y)}{\int_0^1 x(2-x-y) dx}$$
$$= \frac{x(2-x-y)}{\left[x^2 - \frac{x^3}{3} - \frac{x^2y}{2}\right]_0^1} = \frac{x(2-x-y)}{\frac{2}{3} - \frac{y}{2}} = \frac{6x(2-x-y)}{4-3y}$$

Follow up: What is $f_{X|Y}\left(x|\frac{1}{2}\right)$? Stanford University 66

2. No, *X* and *Y* are dependent.