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Convolution:
Sum of
independent

Uniform RVs

17a_cont_conv



Today’s lecture

Take what we've seen in discrete joint distributions...
...and translate them to continuous joint distributions!

For the most part, this Marginal o) =N @) @ = [ ferayay
is easy. For example: distributions Z -
Independent RVs  pxy(x,¥) = px(Opr () fry(xy) = fx()fr (¥)

But some concepts, while mathematically straightforward to write,
are harder to implement in practice.

We'll focus on these today.

Goal of CS109 continuous
joint distributions unit:
build mathematical maturity
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Independent X, Y

Recall that for independent discrete random variables X and Y:

Dance, Dance, Convolution

FXN



Dance, Dance, Convolution

For independent continuous random variables X and Y:

(0.0)
the convolution
fx+y (@) = J_oofx(x)fy(“ — x)dx of fy and fy
fx(x) fr(&)
-

1 1 — — S
+ Bl %1/2 ~ ?

X

0l Tl x 0l Tl y 0 1i2 i 3i/2 |2
Independent X, Y ° / !
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Dance, Dance, Convolution Extreme
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Sum of independent Uniforms

Let X~Uni(0,1) and Y~Uni(0,1) be independent RVs. .
What is the distribution of X + Y, fy,y(a)? Frery (@) = f £ 0Oy (@ — x)dox

fx () fr (x)

- X

™\ 7\
Not so fast... (7—1
I
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Sum of independent Uniforms

Let X~Uni(0,1) and Y~Uni(0,1) be independent RVs.

What is the distribution of X + Y, fyy(a)? foay(@) = f £ GO f (@ — x)dx
fx (x) fy(a —x)
1— 1
?
0l 11 X X
1 o0 1 (1 if0< <1 TAETIEVS
if0<x< f0<a—x<
= e —X) = oL=VE X £ ok
fx(%) {0 otherwise frla =) 10 otherwise
) a is a constant
_J1 ifa-1<x<a |intheintegral
0 otherwise w.r.t. x.
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XandY

Sum of independent Uniforms . ominuoss 7@ " | pomta—xax

Let X~Uni(0,1) and Y~Uni(0,1) be independent RVs. () = (1 ifo<x <1
What is the distribution of X +Y, fx,y(a)? (0 otherwise
<0 fy(a—x)=<1 ifa—le_Sa
a = O 0 otherwise
fx(x)

I_ I 1 - — fy(a—x)

I I

l L X

oL 7\ X 0l 11
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XandY

Sum of independent Uniforms . ominuoss <™ | pomta—xax

Let X~Uni(0,1) and Y~Uni(0,1) be independent RVs. () = (1 ifo<x <1
What is the distribution of X +Y, fx,y(a)? (0 otherwise
_[1 fa-1<x<a
0 frla=x) = 10 otherwise
a=1/2
I_ ! | - — fy(a—x)
I |
"\}z 0 oi'!‘/z 1 ¥

Integral = area under the curve
This curve = product of 2 functions of x
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Sum of independent Uniforms

XandY

independent fy .y (a) =

+ continuous

J_ fx () fy (@ — x) dx

Let X~Uni(0,1) and Y~Uni(0,1) be independent RVs. () = |
What is the distribution of X + Y, fy,y(a)?

3. a=1
A. a=3/2
. a =2

0

1/2
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fr(a —x) =]

(1
0
r
1
0

fo<x<1
otherwise

fa—1<x<a
otherwise

W2
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XandY

Sum of independent Uniforms . ominuoss <™ | pomta—xax

Let X~Uni(0,1) and Y~Uni(0,1) be independent RVs. () = (1 ifo<x <1
What is the distribution of X +Y, fx,y(a)? (0 otherwise
_[1 fa-1<x<a
0 frla=x) = 10 otherwise
- — fy(a—x)
3. a=1 1
X
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XandY

Sum of independent Uniforms . ominuoss <™ | pomta—xax

Let X~Uni(0,1) and Y~Uni(0,1) be independent RVs. () = (1 ifo<x <1
What is the distribution of X +Y, fx,y(a)? (0 otherwise
_[1 fa-1<x<a
0 frla=x) = 10 otherwise
- | | o fla-®
1 | I
| 1 x
0 o= | 1 ®32/,

4. a=3/2 1/2
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XandY

Sum of independent Uniforms . ominuoss <™ | pomta—xax

Let X~Uni(0,1) and Y~Uni(0,1) be independent RVs. () = (1 ifo<x <1
What is the distribution of X + Y, fy,y(a)? 0 otherwise
_[1 fa-1<x<a
0 fr(a=x) = 10 otherwise
fx(x)
1/2 - — frl@a—x)
1 _
[ I
1 I I
| 1 x
0 11 X~ n
1/2
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XandY 0
Sum of independent Uniforms independent fyy(a) = | fxGOfy(a—x) dx

Let X~Uni(0,1) and Y~Uni(0,1) be independent RVs.
What is the distribution of X + Y, fy,y(a)?

1. a<0 0

2. a=1/2 1/2

3. a=1 1 \

(
A a=3/2 1/2 a 0<ac<l
/ / fx+y(a)=<2—a 1<a<?

J . 0 otherwise

5. a>2 0
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Dance, Dance, Convolution Extreme

fx(x

3/2 2

1

1/2

0

Independent X, Y

Stanford University 17
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Dance, Dance, Convolution Extreme

Phew....that was a mental workout.

In practice, we try to avoid convolution where possible,
by choosing “nice” distributions.

Ready for something truly useful? Stay tuned!
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Sums of

independent
Normal RVs




Sum of independent Normals

XNN(.“l’O-lz);
Y~ (i, 02) X+Y~N(u + uy 0f +05)

X, Y independent

(proof left to Wikipedia)

Holds in general case:

n
Xi~]\f(ui, aiz)
E X;~N E , E o2
X; independentfori =1, ...,n Hi i

1= =1
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https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables

Back for another playoffs game

P(Ay > Ag)

This is a probability of an event
involving two random variables!

\

!

\1% .

t . A;

L

i

N 0

We will compute:

What is the probabiliy that the Warriors win? P ( Ay — Ag > 0)

How do you model zero-sum games?

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul’liVeI‘Sity 21




Motivating idea: Zero sum games

S70 AN e
AN 7??‘;"’ PN

Want: P(Warriors win) = P(4,, — Ag > 0) Warriors Ay~ (§ = 1657,200%)
0.0025 - 4=1657
Assume Ay, Ag are independent. oo :
Let D = Ay, — Ap. i
0.0005 A :
01000 ZI.5IOOl 2OIOO 25IOO
What is the distribution of D? 0_0(355"‘_’”6“5 Ap~N (S = 1470,200%)
D~N (1657 — 1470, 200% — 200%) 0.002 1
D~N (1657 — 1470, 200% + 2002) 0001 |
D~N (1657 + 1470, 200% + 2007) 00008 |
Dance, Dance, Convolution 1000 1500 2000 2500

None/other -
&/
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Motivating idea: Zero sum games

S70 AN e
AN 7??‘;"’ PN

Want: P(Warriors win) = P(Ay,, — Az > 0) Ovc\)/;r;iors AW~N1(6SS7= 1657, 2002)
0025 - -
Assume Ay, Ag are independent. oo :
LetD :AW _AB' 0.001 + i
— 0.0005 A !
L— :
X~ A g N N (~l({2’-}0, +‘2’OD?/S O1ooo 1500 2000 2500
What is the distribution of D? 0_0(355"‘_’”6“5 Ap~N'(S = 1470, 2007)
D~N (1657 — 1470, 200% — 200%) o002
D~N (1657 — 1470, 200% + 200%) 0.001 |
D~N (1657 + 1470, 200% + 2002) 00008 | . . .
Dance, Dance, Convolution 1000 1500 2000 2500
None/other If X~ (i, 02),

then (=X)~N(—pu, (—1)%?c? = ¢?).
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Motivating idea: Zero sum games

Want: P(Warriors win) = P(Ay, — Ag > 0) Warriors Ayw~N'(S = 1657,200%)

0.0025 - u=1657
0.002 -

Assume Ay, Ap are independent. 0.0015 -
Let D — AW — AB' 0.001 -

0.0005 A

O T T |
1000 1500 2000 2500

DNN(1657 — 1470, 2002 +2002) Opponents Ag~N(S = 1470, 2002)
0.0025 -

~N(187, 2 2002) o~ 283 0.002 -

0.0015 A
0.001 A

0 — 187) 0.0005
283

P(D>0)=1—F,(0) = 1—c1>(
~ 0.7454
Compare with 0.7488, calculated by sampling!

1000 1500 2000 2500
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17c_ratio_pdfs

Ratio of PDFs




Relative probabilities of continuous random variables

Let X = time to finish problem set 4.
Suppose X~N(10,2).

How much more likely are you to
complete in 10 hours than 5 hours? I

f(x)

5 10 X
I;(éz_ls? _ 0/0 = undefined
- £(10)
f(5)

stay healthy

\2)
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Relative probabilities of continuous random variables

Let X = time to finish problem set 4.
Suppose X~N(10,2).

How much more likely are you to
complete in 10 hours than 5 hours?

’;(éz_ls? _ 0/0 = undefined
- £(10)
f(5)

stay healthy
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f(x)

10
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Relative probabilities of continuous random variables

Let X = time to finish problem set 4. o
Suppose X~N(10,2). R
How much more likely are you to =
complete in 10 hours than 5 hours? I
5 10 X

P(X =10) f(10) ats
_ £ £ 2
PX=5)  f(5 P(X=a)=P(a—§SX §a+§) =L_£ Fx)dx ~ ef (@)

PX=a) _ef@ _fl@) .
POX=b) ef®) _ f&) oo oV

Therefore

5 e~ 20 _ (10 -10)? 00
OV LTl e 2:2 :
= e T e © —~ = 518 Ratios of I'DDI]:SHI
e 2072 T T 22 e 4 are meaningrul!l
oV 2T ¢ &
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17d_cond_distributions

Continuous
conditional
distributions




Continuous conditional distributions

For continuous RVs X and Y, the conditional PDF of X given Y is

fX,Y (X, y)
fxiy (x1y) = o) where fy(y) > 0 @gm[«w
R
PX=xY=y) fxy(x,y)exey
Intuition: P(X =x|Y =y) = = =
ntuition: P( | y) P(Y =vy) <:> fXW(jly;f%( fr(¥)ey
Note that conditional PDF fyy is a “true” density: . " e 4

> _ © fxy(xy) _fY(Y)_ _
| _pvteinax= | =< ?Wﬂ@ t

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 30
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Why sums of random variables? K+

Sometimes modeling and understanding a complex X is hard.

But if we can decompose X into the sum of independent simpler RVs,
We can then compute distributions on X.

We can then to understand how X changes when its parts change.

What can we model m

with a triangular PDF? Sum of uniforms!
1 fx, (x1)
1470 We’'re covering the
of U reverse direction for
1/2- fr, (x2) 1 now; the forward
0 — + 7 direction will come
o 1/2 1 3/2 2 X A 1 next time

X2

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 32



Discussion

“

Slide 36 has a question to discuss together.

Post any clarifications here or in chat!

https://us.edstem.org/courses/2678/discussion/153772

Think by yourself: 1 min
Discuss (as a class, in chat): 3 min

()

33


https://us.edstem.org/courses/2678/discussion/153772

Virus infections

Suppose you are working with the WHO to plan a response to the initial
conditions of a virus. There are two exposed groups:

G1: 200 people, each independently infected with p; = 0.1
G2: 100 people, each independently infected with p, = 0.4

What is P(people infected = 55)7? An approximation is okay.

Define RVs
& state goal

Let A = # infected in G1.

A~Bin(200,0.1)

B = # infected in G2.

B~Bin(100,0.4)
Want: P(A + B = 55)

Lt Fuale
Strategy: o Beo wom MO LR

. A.‘Dance, Dance, Convolution Z?@T("’ A
Sum of indep. Binomials NM.,,») + Bl (12,

(approximate) Sum of indep. Poissons"’;éfﬁ?P

@ (approximate) Sum of indep. Normals

\o—?{ s\ oy te
None/other ap (1-p)>10 &

S
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Virus infections

Suppose you are working with the WHO to plan a response to the initial
conditions of a virus. There are two exposed groups:

G1: 200 people, each independently infected with p; = 0.1
G2: 100 people, each independently infected with p, = 0.4

What is P(people infected = 55)7? An approximation is okay.

Define RVs
& state goal

Let A = # infected in G1.

A~Bin(200,0.1)

B = # infected in G2.

B~Bin(100,0.4)
Want: P(A + B = 55)

Lisa

Strategy:
Dance, Dance, Convolution
Sum of indep. Binomials
(approximate) Sum of indep. Poissons

(approximate) Sum of indep. Normals
None/other

Yan and Jerry Cain, C$109, 2020 Stanford University 35



. . . DY DN Ny
Virus lnfeCthHS ﬁm) &KSU{;R / — ww%-‘swoﬁ) e din

Suppose you are working with the WHO to plan a response to the initial
conditions of a virus. There are two exposed groups:

G1: 200 people, each independently infected with p; = 0.1 A
G2: 100 people, each independently infected with p, = 0.4 mﬂ%
A

What is P(people infected > 55)7? o 5§

Approximate as sum of Normals
A= X~N(20,18) B=Y ~N(40,24)
P(A+ B >55)~ P(X+Y > 54.5) contnulty

correction

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 36




Virus infections

Suppose you are working with the WHO to plan a response to the initial
conditions of a virus. There are two exposed groups:

G1: 200 people, each independently infected with p; = 0.1
G2: 100 people, each independently infected with p, = 0.4

What is P(people infected > 55)7?

Solve
Let W =X + Y~N(20 + 40 = 60,18 + 24 = 42)

54.5 — 60
P(W > 54.5) = 1—c1>( =
% 08023

) ~1— ®d(-0.85)

Stanford University 37




A conceptual
review




Everything® in probability is a sum or a product (or both)

*except conditional probability (a ratio)

ElX] = Exp(x) E[X|Y =y] = fooxfx|y(x|y)dx

Sum of values that can o |
be considered separately L, et weight
n
(possibly weighted by P(E) = 2 P(EIFP(F.
prob. of happening) () , (EIF)P(F) P(E) = EP(EL')
=1 weight i=1
Law of Total Probability Axiom 3,E = E;U--UE,

E Nt = ;75

P(ENFNG)=P(E)P(F|E)P(G|EF)

Product of values that Chain Rule

h idered
can ee_ac be considere fX,Y(x' V) = fx(X)fy ()
in sequence

PX+Y=n)= PX=kPY =n—-—k)
2.

Sum of indep. discrete RVs
Independent cont. RVs (convolution)
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Conditional probability and Bayes’ Theorem

Definition Independence
P(E N F) E, F independent

PUFIE) = =5 hy P(F|E) = P(F)

‘ r —r—

Sample space doesn’t need
to be scaled

Bayes’ Theorem we prob. of event F ]

P(F|E) = P(F)P(E|F)ﬁ Likelihood ]

Posterior: prob. of ‘P (E) I
F knowing that E SI e t |
happened caling to the correct sample space

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 40
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Multiple Bayes’ Theorems

\

©
- ] P(F)P(E|F
e D=

b
T PY()’)PXW(XD’)

with PY|X()’|X) =
discrete RVs px (x)
isvalue. (a>) .
o fr(y fX|Y x|y
with x) =
continuous RVs leX(%‘]l ) fx (x) Really a!ldthe'
— same idea!

...S0 this is just a scalar
Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul’liVeI‘Sity 41




Extra fun in lecture today

We've gotten very far in our ability to model different situations.
Let’s test our mettle to analyze an important application that involves:
Conditional densities
Bayes’ Theorem
A computer
Normalization constants

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 42




Tracklng in 2-D space

v"":@#"%w 2\ Last known possible position of
!%u\ \@- MH370 based on satellite data
B\

Lisa Yan and Jerry Cain, CS109, 2020

You want to know
the 2-D location of
an object.

Your satellite ping
gives you a noisy 1-D
measurement of the
distance of the object
from the satellite (0,0).

Using the satellite

measurement,
where is the object?

Stanford University 43



Interlude for <@7

jokes/announcements




Announcements

4 N

Quiz #2

Time frame: Wednesday 10/28 2:00pm - Friday 10/30 12:59pm PT
Covers: Up to end of Week 5 (including Lecture 15). PS3+PS4
Info and practice: (to be posted soon)

- . N .
Homework parties Office Hours/Mid-quarter feedback update
Saturdays Q9am-11am PT Thanks for your feedback! We are working
Sundays 2pm-4pm PT on updating our OH to help more students
Designated student group | \ @M Leodloeehe Friddes S’LW/

Qvork time on Nooks (no CAS)/

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 45




Accessing old concept checks

PDF released after
late deadline passes
Week 5

MONOCT 12 13 Joint RV Statistics all Concept Check
e Coupon Collecting Problems

I Lecture Notes

e Covariance
» Variance for Independent RVs

e Correlation

Week 4
G Slides (Blank) (Annotated)

ead: Ch 6.4-6.5

WED 0CT 14 14 Conditional Expectation ‘ il Concept Check ‘

Conditional distributions

‘ B Lecture Notes

» Conditional expectation
» Law of Total Expectation

* Analyzing Recursive Code Stl” ||Ve on
(& Slides (Blank) (Annotated) G radeSCO pe
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New handout

— A summary of allllllllIII the things we’ve
IR e learned so far.
Calculation Ref *  Many equations look the same.
Python for Probability * ...because they're all built on the same
LaTeX Guides principles!
Latex Cheat Sheet * QOverleaf, so LaTeX-friendly

Full Probability Reference (Overleaf) <@— Also recommended:

* Lecture Notes (generally
shorter than slides)
A previous CA's midterm review

Standard Normal Table

Normal CDF Calculator

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 47



http://web.stanford.edu/class/cs109/exams/MidtermReview.pdf
https://www.overleaf.com/project/5f650a577489e90001f065be

Tracking in 2-D space (>3)

o

* Before measuring, we have some Top-down view

prior belief about the 2-D location
of an object, (X,Y).

i Satellite at (0, 0)

- We observe some noisy  \V<E -
measurement D = 4, the Euclidean

distance of the object to a satellite. ~-
D=4
* After the measurement, what is our , : f>
updated (posterior) belief of the 2-D :

location of the object?

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 48




Tracking in 2-D space

* You have a prior belief about the 2-D location of an object, (X,Y).
* You observe a noisy distance measurement, D = 4.

* What is your updated (posterior) belief of the 2-D location of the object
after observing the measurement?

likelihood prior
| i belief
et of evidence) beller
o fDIX,Y(d|x» )’)fx,y(x; y)
terminology: fX,Y|D(x;:V|d) —
fo(d)

normalization constant

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVeI‘Sity 49



fD|X,Y(d|xt Y)|fX,Y(x; }’)l

fX,Y|D(x» yld) = ()

1. Detine prior

You have a prior belief about the 2-D Iocatlon of an object, (X,Y).

[)z_xt@ 2

Top-down view 3-D view

Let (X,Y) = object’s 2-D location.
(your satellite is at (0,0)

Suppose the prior distribution is a
symmetric bivariate normal distribution:

_ (G324 (y=3)?] [(x-3)2+(y-3)?]
2(22) — Kl o e_ 8

fX,Y(x:y) = 22 e

- normalizing constant

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVCI‘Sity 50




f | G, yld) _| fD|X,Y(d|x»Y) IfX,Y(xry)

fo(d)

>. Define likelihood

You observe a noisy distance measurement, D = 4. eonrn

If you knew your actual location (x, y), you could say /
how likely a measurement D = 4 is: X

Let D = distance from the satellite (radially).

Suppose you knew your actual position: (x, y). h

* D is still noisy! Suppose noise is standard normal.

e Di Euclidean di 2oz R e
n average, D Is your true tuclidean distance: \/x +y

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 51




Think

Check out the question on the next slide
(Slide 54). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/153772

Think by yourself: 2 min

Post your interpretation in the chat.


https://us.edstem.org/courses/2678/discussion/153772

f | G, yld) _| fD|X,Y(d|x»3’) IfX,Y(xry)

fo(d)

Define likelihood

You observe a noisy distance measurement, D = 4. s

If you knew your actual location (x,y), you could say o -
now likely a measurement D = 4 is:

Let D = distance from the satellite (radially).
Suppose you knew your actual position: (x, y). h
D is still noisy! Suppose noise is standard normal. v

On average, D Is your true Euclidean distance: /x2 4 y2

D|X,Y~N(u = g2 = )

foixy(D =d|X =x,Y =y) = A 2\
Ve (oyYoissern

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 53




T | (x, y|d) MfXY(x y)

fo(d)

>. Define likelihood

You observe a noisy distance measurement, D = 4. o

If you knew your actual location (x,y), you could say - -
how likely a measurement D = 4 is: X

Let D = distance from the satellite (radially).

Suppose you knew your actual position: (x, y). h

* D is still noisy! Suppose noise is standard normal.

e Di Euclidean di 2 - .
n average, D Is your true tuclidean distance: \/x + y2

e D=l TS, 2N 7
DIX,Y~N (1 =/x* +y% 0% =1)

1 —(d—dx“yz)z (4T
foixy(D=dlX =xY =y) = 2-1% _ K, . >
12w - f2c €
normalizing constant

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 54




| Lo @) Ty e )

fo(d)

3. Compute posterior

What is your updated (posterior) belief of the 2-D location of the object
after observing the measurement?

Compute:

Posterior

. fX,Y|D(x;)’|4) = fX,Y|D(X =x,Y =y|D =4)
belief

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVCI‘Sity 55




Check out the question on the next slide
(Slide 58). Post any clarifications here!

Bl'eakOUt https://us.edstem.org/courses/2678/discussion/153772
Rooms

Breakout rooms: 3 min

56



https://us.edstem.org/courses/2678/discussion/153772

_ fD|X,Y(d|x»Y) fxy(x,y)

3. Compute posterior i@ y19) o

What is your updated (posterior) belief of the 2-D location of the object
after observing the measurement?

Compute:
Posterior
. fX,Y|D(x;Y|4) = fX,Y|D(X =x,Y =y|D =4)
belief
Know:
Prior  [a-32+(y-3)?] Observation ~(a-yxT32)”
belief frr(xy) =K -€ 8 likelihood foixy(dlx,y) =K; -e 2
Tips
* Use Bayes’ Theorem!

* fp(4) is just a scaling constant. Why? A
- How can we approximate the final Kl?j
scaling constant with a computer? o
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Deep breath




Tracking in 2-D space

What is your updated (posterior) belief of the 2-D location of the object
after observing the measurement?

Key: Once we know the
part dependent on x, y, we
can computationally
approximate K, such that
fxy|p is a valid PDF.

likelihood of D = 4 prior belief

. foixy(D = 41X =xY = y)fxy (%, ¥) gayes

Theorem

f(D=4)
- (4—\/x2+y2) _ [(x—3)2+(y—3)2]
K, -e 2 -K{- e 8
f(D=4)

[(4—,/x2+y2)2 [(x_3)2+(y_3)2]]
B K; - e 2 + 8

f(D = 4=

4— [x2+y2
I< JZ )+[(x‘3)2;(y‘3)2]‘ For your notes...

=K4’e_
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. . Z ‘52 = 3 = -2
Tracking in 2-D space R

2, 2
=

3-D view

Top-down view,

With this continuous version of Bayes’
theorem, we can explore new domains. 5

* Before measuring, we have some prior
belief about the 2-D location of an 5 —

object, (X,Y). :

Top-down view 3-D view </l>
* After the measurement, what is our

updated (posterior) belief of the 2-D
location of the object?

3 5 '5
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Tracking in 2-D space: Posterior belief

Prior belief Posterior belief

Top-down view 3-D view Top-down view 3-D view

(G5 +0-57) ferp (o y14) =

fX,Y(x» )’) =K -e 8
[(4—\/x2+y2)2 . [(x_3)2+(y_3)2]
2 8

K4' e_

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul’liVeI‘Sity 61




How'd you compute that K,?

To be a valid conditional PDF, j j fxyip(x,y|4) dxdy =1

2

0 0 [(4—\/x2+y2)2 [(x_3)2+(y_3)2]]
j J Ky-e ¥ 8 dxdy =1

_ x2+y) [(x—3)2+(y—3)2]]
f j i 8 dx dy (pull out K,, divide)
Approxmate 4’7‘_@;\ rg(j ( ?f@:\m

[ N x2+y [(x—3>2+<y—3>2]]
K. 2 2 8 AxAy Use a computer!
4

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 62




74

!

0

. Giveyourself a pat
on the back after this

ourself a

Y

leé— .



(no video)

Extra slides




Conditional densities

Let Xand Y be continuous RVs Fer(y) = {1—52x(2 —x—y) 0<xy<l

with joint PDF:
1. What is the conditional density fxy (x|y)?
2. Are X and Y independent?

0 otherwise

(&gg;é)
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Conditional densities

Let Xand Y be continuous RVs oy (i y) = 1—52x(2 —x—y) 0<xy<l
with joint PDF: | 0 otherwise
What is the conditional density fyy (x|y)?
Are X and Y independent?
oy PG | fy)  SrCoxoy) | a@-x-y
X frv) folfx,y(x, y)dx fol%x(z —x—ydx Jp ¥@—x = y)dx
3 x(2—x—1y) _x(2-x-y) _x(2-x—-y)
- 1 2y - _
L s R

Follow up:
No, X and Y are dependent. What is fx|y (x| %)’?
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