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Today’s lecture
Take what we’ve seen in discrete joint distributions…

…and translate them to continuous joint distributions!

For the most part, this
is easy. For example:

But some concepts, while mathematically straightforward to write,
are harder to implement in practice.
We’ll focus on these today.
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Marginal 
distributions

𝑓! 𝑎 = $
"#

#
𝑓!,% 𝑎, 𝑦 𝑑𝑦

Independent RVs 𝑝!,% 𝑥, 𝑦 = 𝑝! 𝑥 𝑝% 𝑦 𝑓!,% 𝑥, 𝑦 = 𝑓! 𝑥 𝑓% 𝑦

𝑝! 𝑎 =*
&

𝑝!,% 𝑎, 𝑦

Goal of CS109 continuous 
joint distributions unit:
build mathematical maturity
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Dance, Dance, Convolution
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the convolution
of 𝑝+ and 𝑝,

Recall that for independent discrete random variables 𝑋 and 𝑌:

𝑃 𝑋 + 𝑌 = 𝑛 ='
!

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘

Review
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Independent 𝑋, 𝑌
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Dance, Dance, Convolution

6

the convolution 
of 𝑝+ and 𝑝,

Recall that for independent discrete random variables 𝑋 and 𝑌:

𝑃 𝑋 + 𝑌 = 𝑛 ='
!

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘

the convolution
of 𝑓+ and 𝑓,

For independent continuous random variables 𝑋 and 𝑌:

𝑓"#$ 𝛼 = ,
%&

&
𝑓" 𝑥 𝑓$ 𝛼 − 𝑥 𝑑𝑥
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& !
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Independent 𝑋, 𝑌
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Dance, Dance, Convolution Extreme
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0 1 !

"! !
1

Sum of independent Uniforms
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🤔😤

Isn’t this just 
one??

𝑓+-, 𝛼 = (
./

/
𝑓+ 𝑥 𝑓, 𝛼 − 𝑥 𝑑𝑥

Let 𝑋~Uni 0,1 and 𝑌~Uni 0,1 be independent RVs.
What is the distribution of 𝑋 + 𝑌, 𝑓+-, 𝛼 ?

Not so fast…

𝑓, 𝑥
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Sum of independent Uniforms
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𝑓+-, 𝛼 = (
./

/
𝑓+ 𝑥 𝑓, 𝛼 − 𝑥 𝑑𝑥

0 1 𝑥

𝑓+ 𝑥
1

𝑓+ 𝑥 = 01 if 0 ≤ 𝑥 ≤ 1
0 otherwise

𝑥

𝑓, 𝛼 − 𝑥
1

Let 𝑋~Uni 0,1 and 𝑌~Uni 0,1 be independent RVs.
What is the distribution of 𝑋 + 𝑌, 𝑓+-, 𝛼 ?

𝑓, 𝛼 − 𝑥 = 01 if 0 ≤ 𝛼 − 𝑥 ≤ 1
0 otherwise

?

= 01 if 𝛼 − 1 ≤ 𝑥 ≤ 𝛼
0 otherwise

𝛼 is a constant 
in the integral 
w.r.t. 𝑥.
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Let 𝑋~Uni 0,1 and 𝑌~Uni 0,1 be independent RVs.
What is the distribution of 𝑋 + 𝑌, 𝑓+-, 𝛼 ?

1. 𝛼 ≤ 0

Sum of independent Uniforms

10

𝑓!'% 𝛼 = $
"#

#
𝑓! 𝑥 𝑓% 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

𝑓! 𝛼 − 𝑥 = .1 if 𝛼 − 1 ≤ 𝑥 ≤ 𝛼
0 otherwise

0 1
𝑥

1

𝑓" 𝑥 = .1 if 0 ≤ 𝑥 ≤ 1
0 otherwise

𝑓% 𝛼 − 𝑥

𝑓! 𝑥

0
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0 1
𝑥

1

Sum of independent Uniforms
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𝑓!'% 𝛼 = $
"#

#
𝑓! 𝑥 𝑓% 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

Let 𝑋~Uni 0,1 and 𝑌~Uni 0,1 be independent RVs.
What is the distribution of 𝑋 + 𝑌, 𝑓+-, 𝛼 ?

1. 𝛼 ≤ 0

2. 𝛼 = 1/2

𝑓! 𝛼 − 𝑥 = .1 if 𝛼 − 1 ≤ 𝑥 ≤ 𝛼
0 otherwise

𝑓" 𝑥 = .1 if 0 ≤ 𝑥 ≤ 1
0 otherwise

𝑓% 𝛼 − 𝑥

𝑓! 𝑥1/2

0

Integral = area under the curve
This curve = product of 2 functions of 𝑥
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Sum of independent Uniforms
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𝑓!'% 𝛼 = $
"#

#
𝑓! 𝑥 𝑓% 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

Let 𝑋~Uni 0,1 and 𝑌~Uni 0,1 be independent RVs.
What is the distribution of 𝑋 + 𝑌, 𝑓+-, 𝛼 ?

1. 𝛼 ≤ 0

2. 𝛼 = 1/2

3. 𝛼 = 1

4. 𝛼 = 3/2

5. 𝛼 ≥ 2 🤔

1/2

0 𝑓! 𝛼 − 𝑥 = .1 if 𝛼 − 1 ≤ 𝑥 ≤ 𝛼
0 otherwise

𝑓" 𝑥 = .1 if 0 ≤ 𝑥 ≤ 1
0 otherwise
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0 1
!

1

Sum of independent Uniforms
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𝑓!'% 𝛼 = $
"#

#
𝑓! 𝑥 𝑓% 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

Let 𝑋~Uni 0,1 and 𝑌~Uni 0,1 be independent RVs.
What is the distribution of 𝑋 + 𝑌, 𝑓+-, 𝛼 ?

1. 𝛼 ≤ 0

2. 𝛼 = 1/2

3. 𝛼 = 1

4. 𝛼 = 3/2

5. 𝛼 ≥ 2

1/2

1
𝑓% 𝛼 − 𝑥

𝑓! 𝑥

0 𝑓! 𝛼 − 𝑥 = .1 if 𝛼 − 1 ≤ 𝑥 ≤ 𝛼
0 otherwise

𝑓" 𝑥 = .1 if 0 ≤ 𝑥 ≤ 1
0 otherwise
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0 1
!

1 𝑓% 𝛼 − 𝑥

𝑓! 𝑥

Sum of independent Uniforms
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𝑓!'% 𝛼 = $
"#

#
𝑓! 𝑥 𝑓% 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

Let 𝑋~Uni 0,1 and 𝑌~Uni 0,1 be independent RVs.
What is the distribution of 𝑋 + 𝑌, 𝑓+-, 𝛼 ?

1. 𝛼 ≤ 0

2. 𝛼 = 1/2

3. 𝛼 = 1

4. 𝛼 = 3/2

5. 𝛼 ≥ 2

1/2

1

1/2

0 𝑓! 𝛼 − 𝑥 = .1 if 𝛼 − 1 ≤ 𝑥 ≤ 𝛼
0 otherwise

𝑓" 𝑥 = .1 if 0 ≤ 𝑥 ≤ 1
0 otherwise
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0 1
!

1

Sum of independent Uniforms
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𝑓!'% 𝛼 = $
"#

#
𝑓! 𝑥 𝑓% 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

Let 𝑋~Uni 0,1 and 𝑌~Uni 0,1 be independent RVs.
What is the distribution of 𝑋 + 𝑌, 𝑓+-, 𝛼 ?

1. 𝛼 ≤ 0

2. 𝛼 = 1/2

3. 𝛼 = 1

4. 𝛼 = 3/2

5. 𝛼 ≥ 2

0

1/2

1

1/2

0

𝑓! 𝛼 − 𝑥 = .1 if 𝛼 − 1 ≤ 𝑥 ≤ 𝛼
0 otherwise

𝑓" 𝑥 = .1 if 0 ≤ 𝑥 ≤ 1
0 otherwise

𝑓% 𝛼 − 𝑥

𝑓! 𝑥
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Sum of independent Uniforms
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𝑓!'% 𝛼 = $
"#

#
𝑓! 𝑥 𝑓% 𝛼 − 𝑥 𝑑𝑥

𝑋 and 𝑌
independent
+ continuous

Let 𝑋~Uni 0,1 and 𝑌~Uni 0,1 be independent RVs.
What is the distribution of 𝑋 + 𝑌, 𝑓+-, 𝛼 ?

1. 𝛼 ≤ 0

2. 𝛼 = 1/2

3. 𝛼 = 1

4. 𝛼 = 3/2

5. 𝛼 ≥ 2

0

1/2

1

1/2

0

𝑓+-, 𝛼 = 2
𝛼 0 ≤ 𝛼 ≤ 1

2 − 𝛼 1 ≤ 𝛼 ≤ 2
0 otherwise

0

1/2

𝛼

𝑓 "
#
!
𝛼

1/2 1 3/2 2

1

0
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Dance, Dance, Convolution Extreme
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2 3 4 5 6 7 8 9 10 11 12

6/36

0

% + ' = )

5/36
4/36
3/36
2/36
1/36.

%
+
'
=
)

1 2 3 4 5 6

! = #

$
!
=
#

1 2 3 4 5 6

! = #

$
!
=
#+ =

0

1/2

%

& !
"#

%

1/2 1 3/2 2

1

00 1 !

"! !
1

0 1 !

"! !
1 + =

Independent 𝑋, 𝑌

Independent 𝑋, 𝑌
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Dance, Dance, Convolution Extreme

Phew….that was a mental workout.

In practice, we try to avoid convolution where possible,
by choosing “nice” distributions.

Ready for something truly useful? Stay tuned!

18



Sums of 
independent 
Normal RVs

19

17b_sum_normal
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Sum of independent Normals

20

𝑋~𝒩 𝜇!, 𝜎!" ,
𝑌~𝒩 𝜇", 𝜎""
𝑋, 𝑌 independent

𝑋 + 𝑌 ~𝒩(𝜇, + 𝜇-, 𝜎,- + 𝜎--)

(proof left to Wikipedia)

Holds in general case:

𝑋4~𝒩 𝜇4, 𝜎45

𝑋4 independent for 𝑖 = 1,… , 𝑛 '
345

6

𝑋3 ~𝒩 '
345

6

𝜇3 ,'
345

6

𝜎37

https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
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Back for another playoffs game

What is the probability that the Warriors win?
How do you model zero-sum games?

𝑃 𝐴! > 𝐴"
This is a probability of an event 
involving two random variables!

We will compute: 

𝑃 𝐴! − 𝐴" > 0
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Motivating idea: Zero sum games
Want: 𝑃 Warriors win = 𝑃 𝐴8 − 𝐴9 > 0

Assume 𝐴8 , 𝐴9 are independent.
Let 𝐷 = 𝐴8 − 𝐴9.

22

What is the distribution of 𝐷?

0
0.0005

0.001
0.0015

0.002

0.0025

1000 1500 2000 2500

!=1470

0
0.0005

0.001
0.0015

0.002

0.0025

1000 1500 2000 2500

!=1657
Warriors )*~, - = 1657, 2000

Opponents )1~, - = 1470, 2000

🤔

A. 𝐷~𝒩 1657 − 1470, 2007 − 2007
B. 𝐷~𝒩 1657 − 1470, 2007 + 2007
C. 𝐷~𝒩 1657 + 1470, 2007 + 2007
D. Dance, Dance, Convolution
E. None/other
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Motivating idea: Zero sum games
Want: 𝑃 Warriors win = 𝑃 𝐴8 − 𝐴9 > 0

Assume 𝐴8 , 𝐴9 are independent.
Let 𝐷 = 𝐴8 − 𝐴9.

23

0
0.0005

0.001
0.0015

0.002

0.0025

1000 1500 2000 2500

!=1470

0
0.0005

0.001
0.0015

0.002

0.0025

1000 1500 2000 2500

!=1657
Warriors )*~, - = 1657, 2000

Opponents )1~, - = 1470, 2000

A. 𝐷~𝒩 1657 − 1470, 2007 − 2007
B. 𝐷~𝒩 1657 − 1470, 2007 + 2007
C. 𝐷~𝒩 1657 + 1470, 2007 + 2007
D. Dance, Dance, Convolution
E. None/other

What is the distribution of 𝐷?

If 𝑋~𝒩 𝜇, 𝜎5 ,
then −𝑋 ~𝒩 −𝜇, −1 5𝜎5 = 𝜎5 .
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Motivating idea: Zero sum games
Want: 𝑃 Warriors win = 𝑃 𝐴8 − 𝐴9 > 0

Assume 𝐴8 , 𝐴9 are independent.
Let 𝐷 = 𝐴8 − 𝐴9.

24

𝐷~𝒩 1657 − 1470, 2007+2007

~𝒩 187, 2 ⋅ 2007 𝜎 ≈ 283

𝑃 𝐷 > 0 = 1 − 𝐹: 0 = 1 − Φ
0 − 187
283

≈ 0.7454
Compare with 0.7488, calculated by sampling!

0
0.0005

0.001
0.0015

0.002

0.0025

1000 1500 2000 2500

!=1470

0
0.0005

0.001
0.0015

0.002

0.0025

1000 1500 2000 2500

!=1657
Warriors )*~, - = 1657, 2000

Opponents )1~, - = 1470, 2000



Ratio of PDFs

25

17c_ratio_pdfs
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Relative probabilities of continuous random variables
Let 𝑋 = time to finish problem set 4.
Suppose 𝑋~𝒩 10,2 .
How much more likely are you to 
complete in 10 hours than 5 hours?

26

𝑃 𝑋 = 10
𝑃 𝑋 = 5

= A. 0/0 = undefined
B.

C. stay healthy 

𝑓 10
𝑓 5

5             10 !

"(
!)

🤔
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Relative probabilities of continuous random variables
Let 𝑋 = time to finish problem set 4.
Suppose 𝑋~𝒩 10,2 .
How much more likely are you to 
complete in 10 hours than 5 hours?

27

𝑃 𝑋 = 10
𝑃 𝑋 = 5

= A. 0/0 = undefined
B.

C. stay healthy 

𝑓 10
𝑓 5

5             10 !

"(
!)
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Ratios of PDFs 
are meaningful!!

Relative probabilities of continuous random variables

28

𝑃 𝑋 = 𝑎 = 𝑃 𝑎 −
𝜀
2
≤ 𝑋 ≤ 𝑎 +

𝜀
2

𝑃 𝑋 = 10
𝑃 𝑋 = 5

=
𝑓 10
𝑓 5

𝑃 𝑋 = 𝑎
𝑃 𝑋 = 𝑏 =

𝜀𝑓 𝑎
𝜀𝑓 𝑏 =

𝑓 𝑎
𝑓 𝑏Therefore

= A
$%&'

$#&'
𝑓 𝑥 𝑑𝑥 ≈ 𝜀𝑓(𝑎)

=

1
𝜎 2𝜋

𝑒"
() " * !

+,!

1
𝜎 2𝜋

𝑒"
- " * !

+,!
=
𝑒"

() "() !

+⋅+

𝑒"
- " () !
+⋅+

=
𝑒(

𝑒%
')
*

= 518

5             10 !

"(
!)

Let 𝑋 = time to finish problem set 4.
Suppose 𝑋~𝒩 10,2 .
How much more likely are you to 
complete in 10 hours than 5 hours?



Continuous 
conditional 
distributions

29

17d_cond_distributions
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Continuous conditional distributions
For continuous RVs 𝑋 and 𝑌, the conditional PDF of 𝑋 given 𝑌 is

𝑓"|$ 𝑥|𝑦 =
𝑓",$ 𝑥, 𝑦
𝑓$ 𝑦

Intuition:

Note that conditional PDF 𝑓+|, is a “true” density: 

30

𝑃 𝑋 = 𝑥 𝑌 = 𝑦 =
𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

𝑃 𝑌 = 𝑦 𝑓+|, 𝑥 𝑦 𝜀+ =
𝑓+,, 𝑥, 𝑦 𝜀+𝜀,
𝑓, 𝑦 𝜀,

(
./

/
𝑓+|, 𝑥|𝑦 𝑑𝑥 = (

./

/ 𝑓+,, 𝑥, 𝑦
𝑓, 𝑦

𝑑𝑥 =
𝑓, 𝑦
𝑓, 𝑦

= 1

where 𝑓! 𝑦 > 0
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Why sums of random variables?
Sometimes modeling and understanding a complex 𝑋 is hard.
But if we can decompose 𝑋 into the sum of independent simpler RVs,
• We can then compute distributions on 𝑋.
• We can then to understand how 𝑋 changes when its parts change.

32

We’re covering the 
reverse direction for 
now; the forward 
direction will come 
next time

What can we model 
with a triangular PDF?

0

1/2

𝑥

𝑓 𝑥

1/2 1 3/2 2

1

0

Sum of uniforms!

0 1 𝑥(

𝑓!" 𝑥(1

0 1 𝑥+

𝑓!! 𝑥+1+



Discussion
Slide 36 has a question to discuss together.

Post any clarifications here or in chat!
https://us.edstem.org/courses/2678/discussion/153772

Think by yourself: 1 min
Discuss (as a class, in chat): 3 min

33

🤔(discuss)

https://us.edstem.org/courses/2678/discussion/153772
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Virus infections
Suppose you are working with the WHO to plan a response to the initial 
conditions of a virus. There are two exposed groups:
• G1: 200 people, each independently infected with 𝑝< = 0.1
• G2: 100 people, each independently infected with 𝑝5 = 0.4

What is 𝑃 people infected ≥ 55 ? An approximation is okay.

34

Strategy:
A. Dance, Dance, Convolution
B. Sum of indep. Binomials
C. (approximate) Sum of indep. Poissons
D. (approximate) Sum of indep. Normals
E. None/other

Let 𝐴 = # infected in G1.
𝐴~Bin 200,0.1
𝐵 = # infected in G2.
𝐵~Bin 100,0.4

Want: 𝑃 𝐴 + 𝐵 ≥ 55

1. Define RVs
& state goal

🤔(discuss)
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Virus infections
Suppose you are working with the WHO to plan a response to the initial 
conditions of a virus. There are two exposed groups:
• G1: 200 people, each independently infected with 𝑝< = 0.1
• G2: 100 people, each independently infected with 𝑝5 = 0.4

What is 𝑃 people infected ≥ 55 ? An approximation is okay.

35

Strategy:
A. Dance, Dance, Convolution
B. Sum of indep. Binomials
C. (approximate) Sum of indep. Poissons
D. (approximate) Sum of indep. Normals
E. None/other

Let 𝐴 = # infected in G1.
𝐴~Bin 200,0.1
𝐵 = # infected in G2.
𝐵~Bin 100,0.4

Want: 𝑃 𝐴 + 𝐵 ≥ 55

1. Define RVs
& state goal



Lisa Yan and Jerry Cain, CS109, 2020

Virus infections
Suppose you are working with the WHO to plan a response to the initial 
conditions of a virus. There are two exposed groups:
• G1: 200 people, each independently infected with 𝑝< = 0.1
• G2: 100 people, each independently infected with 𝑝5 = 0.4

What is 𝑃 people infected ≥ 55 ? 

36

2. Approximate as sum of Normals

Let 𝐴 = # infected in G1.
𝐴~Bin 200,0.1
𝐵 = # infected in G2.
𝐵~Bin 100,0.4

Want: 𝑃 𝐴 + 𝐵 ≥ 55

𝐴 ≈ 𝑋 ~𝒩 20,18 𝐵 ≈ 𝑌 ~𝒩 40,24
1. Define RVs

& state goal
𝑃 𝐴 + 𝐵 ≥ 55 ≈ 𝑃 𝑋 + 𝑌 ≥ 54.5 continuity 

correction

3. Solve
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Virus infections
Suppose you are working with the WHO to plan a response to the initial 
conditions of a virus. There are two exposed groups:
• G1: 200 people, each independently infected with 𝑝< = 0.1
• G2: 100 people, each independently infected with 𝑝5 = 0.4

What is 𝑃 people infected ≥ 55 ? 

37

2. Approximate as sum of Normals

Let 𝐴 = # infected in G1.
𝐴~Bin 200,0.1
𝐵 = # infected in G2.
𝐵~Bin 100,0.4

Want: 𝑃 𝐴 + 𝐵 ≥ 55

𝐴 ≈ 𝑋 ~𝒩 20,18 𝐵 ≈ 𝑌 ~𝒩 40,24
1. Define RVs

& state goal
𝑃 𝐴 + 𝐵 ≥ 55 ≈ 𝑃 𝑋 + 𝑌 ≥ 54.5 continuity 

correction

3. Solve
Let 𝑊 = 𝑋 + 𝑌~𝒩 20 + 40 = 60, 18 + 24 = 42

≈ 0.8023
= 1 −Φ

54.5 − 60
42

≈ 1 − Φ −0.85𝑃 𝑊 ≥ 54.5



A conceptual 
review

38
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Everything* in probability is a sum or a product (or both)

39

Sum of values that can 
be considered separately 

(possibly weighted by 
prob. of happening)

Product of values that 
can each be considered 

in sequence

𝐸 𝑋|𝑌 = 𝑦 = (
./

/
𝑥𝑓+|, 𝑥|𝑦 𝑑𝑥𝐸 𝑋 =J

=

𝑥𝑝 𝑥

Law of Total Probability

𝑃(𝐸) =J
4><

?

𝑃 𝐸|𝐹4 𝑃 𝐹4
weight

weightweight

Axiom 3, 𝐸 = 𝐸+ ∪⋯∪ 𝐸,

𝑃 𝐸 =J
4><

?

𝑃 𝐸4

Chain Rule
𝑃(𝐸 ∩ 𝐹 ∩ 𝐺) = 𝑃 𝐸 𝑃 𝐹|𝐸 𝑃 𝐺|𝐸𝐹

𝑓+,, 𝑥, 𝑦 = 𝑓+ 𝑥 𝑓, 𝑦
Independent cont. RVs 

*except conditional probability (a ratio)

𝑃 𝑋 + 𝑌 = 𝑛 =*
/

𝑃 𝑋 = 𝑘 𝑃 𝑌 = 𝑛 − 𝑘

Sum of indep. discrete RVs 
(convolution)
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Conditional probability and Bayes’ Theorem

40

𝑃 𝐹|𝐸 =
𝑃 𝐹 𝑃 𝐸|𝐹

𝑃 𝐸

𝑃 𝐹|𝐸 =
𝑃 𝐸 ∩ 𝐹
𝑃 𝐸

Definition

Bayes’ Theorem Prior: some prob. of event 𝐹

Posterior: prob. of 
𝐹 knowing that 𝐸

happened

Likelihood

Scaling to the correct sample space

Scaling to the correct sample space

Independence

𝑃 𝐹|𝐸 = 𝑃 𝐹

Sample space doesn’t need
to be scaled

𝐸, 𝐹 independent
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Multiple Bayes’ Theorems

41

𝑝#|% 𝑦|𝑥 =
𝑝# 𝑦 𝑝%|# 𝑥|𝑦

𝑝% 𝑥

𝑃 𝐹|𝐸 =
𝑃 𝐹 𝑃 𝐸|𝐹

𝑃 𝐸

𝑓#|% 𝑦|𝑥 =
𝑓# 𝑦 𝑓%|# 𝑥|𝑦

𝑓% 𝑥

with 
events

with
discrete RVs

with
continuous RVs Really all the 

same idea!

You are given 
this value…

…so this is just a scalar
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Extra fun in lecture today
We’ve gotten very far in our ability to model different situations.
Let’s test our mettle to analyze an important application that involves:
• Conditional densities
• Bayes’ Theorem
• A computer
• Normalization constants

42
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Tracking in 2-D space

43

You want to know
the 2-D location of
an object.

Your satellite ping
gives you a noisy 1-D
measurement of the
distance of the object
from the satellite (0,0).

Using the satellite
measurement,
where is the object?



Interlude for 
jokes/announcements

44
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Announcements

45

Quiz #2

Time frame: Wednesday 10/28 2:00pm – Friday 10/30 12:59pm PT
Covers: Up to end of Week 5 (including Lecture 15). PS3+PS4
Info and practice: (to be posted soon)

Homework parties

Saturdays 9am-11am PT
Sundays 2pm-4pm PT

Designated student group 
work time on Nooks (no CAs)

Office Hours/Mid-quarter feedback update

Thanks for your feedback! We are working 
on updating our OH to help more students 
learn
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Accessing old concept checks

46

PDF released after 
late deadline passes

Still live on 
Gradescope
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New handout

47

Also recommended:
• Lecture Notes (generally 

shorter than slides)
• A previous CA’s midterm review

A summary of alllllllllllllll the things we’ve 
learned so far.
• Many equations look the same.
• …because they’re all built on the same 

principles!
• Overleaf, so LaTeX-friendly

http://web.stanford.edu/class/cs109/exams/MidtermReview.pdf
https://www.overleaf.com/project/5f650a577489e90001f065be
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• Before measuring, we have some 
prior belief about the 2-D location
of an object, 𝑋, 𝑌 .

• We observe some noisy 
measurement 𝐷 = 4, the Euclidean 
distance of the object to a satellite.

• After the measurement, what is our 
updated (posterior) belief of the 2-D 
location of the object?

48

Tracking in 2-D space
Top-down view

Satellite at (0, 0)

?
𝐷 = 4
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Tracking in 2-D space
• You have a prior belief about the 2-D location of an object, 𝑋, 𝑌 .
• You observe a noisy distance measurement, 𝐷 = 4.
• What is your updated (posterior) belief of the 2-D location of the object 

after observing the measurement?

49

posterior
belief

likelihood
(of evidence)

prior
belief

normalization constant

Recall 
Bayes 
terminology: 𝑓%,#|' 𝑥, 𝑦|𝑑 =

𝑓'|%,# 𝑑|𝑥, 𝑦 𝑓%,# 𝑥, 𝑦
𝑓' 𝑑
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Top-down view

1. Define prior
You have a prior belief about the 2-D location of an object, 𝑋, 𝑌 .

50

Let 𝑋, 𝑌 = object’s 2-D location.
(your satellite is at (0,0)

Suppose the prior distribution is a
symmetric bivariate normal distribution:

𝑥

𝑦

𝑓 !
,%
𝑥,
𝑦

3-D view

𝑓+,, 𝑥, 𝑦 =
1

2𝜋25
𝑒
.

=.F !- G.F !

5 5!

normalizing constant

= 𝐾5 ⋅ 𝑒
% !"# $% &"# $

'

𝑓!,%|1 𝑥, 𝑦|𝑑 =
𝑓1|!,% 𝑑|𝑥, 𝑦 𝑓!,% 𝑥, 𝑦

𝑓1 𝑑
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2. Define likelihood
You observe a noisy distance measurement, 𝐷 = 4.

51

Let 𝐷 = distance from the satellite (radially).
Suppose you knew your actual position: 𝑥, 𝑦 .
• 𝐷 is still noisy! Suppose noise is standard normal.
• On average, 𝐷 is your true Euclidean distance: 𝑥5 + 𝑦5

If you knew your actual location 𝑥, 𝑦 , you could say
how likely a measurement 𝐷 = 4 is:

𝑓!,%|1 𝑥, 𝑦|𝑑 =
𝑓1|!,% 𝑑|𝑥, 𝑦 𝑓!,% 𝑥, 𝑦

𝑓1 𝑑



Think

Check out the question on the next slide 
(Slide 54). Post any clarifications here!
https://us.edstem.org/courses/2678/discussion/153772

Think by yourself: 2 min

Post your interpretation in the chat.

52

🤔(by yourself)

https://us.edstem.org/courses/2678/discussion/153772
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2. Define likelihood
You observe a noisy distance measurement, 𝐷 = 4.

53

Let 𝐷 = distance from the satellite (radially).
Suppose you knew your actual position: 𝑥, 𝑦 .
• 𝐷 is still noisy! Suppose noise is standard normal.
• On average, 𝐷 is your true Euclidean distance: 𝑥5 + 𝑦5

If you knew your actual location 𝑥, 𝑦 , you could say
how likely a measurement 𝐷 = 4 is:

𝑓!,%|1 𝑥, 𝑦|𝑑 =
𝑓1|!,% 𝑑|𝑥, 𝑦 𝑓!,% 𝑥, 𝑦

𝑓1 𝑑

𝐷|𝑋, 𝑌~𝑁 𝜇 = 𝐴 , 𝜎" = 𝐵

🤔(by yourself)

𝑓H|+,, 𝐷 = 𝑑|𝑋 = 𝑥, 𝑌 = 𝑦 =
1

𝐶 2𝜋
𝑒 H
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2. Define likelihood
You observe a noisy distance measurement, 𝐷 = 4.

54

Let 𝐷 = distance from the satellite (radially).
Suppose you knew your actual position: 𝑥, 𝑦 .
• 𝐷 is still noisy! Suppose noise is standard normal.
• On average, 𝐷 is your true Euclidean distance: 𝑥5 + 𝑦5

If you knew your actual location 𝑥, 𝑦 , you could say
how likely a measurement 𝐷 = 4 is:

𝑓!,%|1 𝑥, 𝑦|𝑑 =
𝑓1|!,% 𝑑|𝑥, 𝑦 𝑓!,% 𝑥, 𝑦

𝑓1 𝑑

𝐷|𝑋, 𝑌~𝑁 𝜇 = 𝐴 , 𝜎" = 𝐵

𝑓H|+,, 𝐷 = 𝑑|𝑋 = 𝑥, 𝑌 = 𝑦 =
1

𝐶 2𝜋
𝑒 H

𝐷|𝑋, 𝑌~𝑁 𝜇 = 𝑥" + 𝑦", 𝜎" = 1

𝑓H|+,, 𝐷 = 𝑑|𝑋 = 𝑥, 𝑌 = 𝑦 =
1
2𝜋

𝑒
. I. =!-G!

!

5 = 𝑒
. I. =!-G!

!

5

normalizing constant

𝐾7 ⋅
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3. Compute posterior
What is your updated (posterior) belief of the 2-D location of the object 
after observing the measurement?

55

𝑓",$|: 𝑥, 𝑦|4 = 𝑓",$|: 𝑋 = 𝑥, 𝑌 = 𝑦|𝐷 = 4Posterior
belief

Compute:

𝑓!,%|1 𝑥, 𝑦|𝑑 =
𝑓1|!,% 𝑑|𝑥, 𝑦 𝑓!,% 𝑥, 𝑦

𝑓1 𝑑



Breakout 
Rooms

Check out the question on the next slide 
(Slide 58). Post any clarifications here!
https://us.edstem.org/courses/2678/discussion/153772

Breakout rooms: 3 min

56

🤔

https://us.edstem.org/courses/2678/discussion/153772
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3. Compute posterior
What is your updated (posterior) belief of the 2-D location of the object 
after observing the measurement?

57

𝑓",$|: 𝑥, 𝑦|4 = 𝑓",$|: 𝑋 = 𝑥, 𝑌 = 𝑦|𝐷 = 4Posterior
belief

Compute:

🤔

Tips
• Use Bayes’ Theorem!
• 𝑓H 4 is just a scaling constant. Why?
• How can we approximate the final 

scaling constant with a computer?

𝑓-|",! 𝑑|𝑥, 𝑦 = 𝐾' ⋅ 𝑒
% 0% 1!#2!

!

'

Know:

Prior 
belief

Observation 
likelihood𝑓!,% 𝑥, 𝑦 = 𝐾( ⋅ 𝑒.

"#$ !% &#$ !

'

𝑓!,%|1 𝑥, 𝑦|𝑑 =
𝑓1|!,% 𝑑|𝑥, 𝑦 𝑓!,% 𝑥, 𝑦

𝑓1 𝑑



Deep breath

58
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Tracking in 2-D space
What is your updated (posterior) belief of the 2-D location of the object 
after observing the measurement?

59

𝑓",$|: 𝑋 = 𝑥, 𝑌 = 𝑦|𝐷 = 4 =
𝑓:|",$ 𝐷 = 4|𝑋 = 𝑥, 𝑌 = 𝑦 𝑓",$ 𝑥, 𝑦

𝑓(𝐷 = 4)
Bayes’
Theorem

=
𝐾5 ⋅ 𝑒

.
L. =!-G!

!

5 ⋅ 𝐾< ⋅ 𝑒
.

=.F !- G.F !

M

𝑓(𝐷 = 4)

likelihood of 𝐷 = 4 prior belief

=
𝐾F ⋅ 𝑒

.
L. =!-G!

!

5 -
=.F !- G.F !

M

𝑓(𝐷 = 4)

= 𝐾L ⋅ 𝑒
.

(# "!%&!
!

! - "#$ !% &#$ !

' For your notes…

Key: Once we know the 
part dependent on 𝑥, 𝑦, we 
can computationally 
approximate 𝐾L such that 
𝑓+,,|H is a valid PDF.
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With this continuous version of Bayes’ 
theorem, we can explore new domains.

• Before measuring, we have some prior 
belief about the 2-D location of an 
object, 𝑋, 𝑌 .

• We observe some noisy measurement of 
the distance of the object to a satellite.

• After the measurement, what is our 
updated (posterior) belief of the 2-D 
location of the object?

60

Tracking in 2-D space
Top-down view

!

3-D view

"

Top-down view 3-D view

0.08     
0.04
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Tracking in 2-D space: Posterior belief

61

𝑓+,, 𝑥, 𝑦 = 𝐾< ⋅ 𝑒
. "#$ !% &#$ !

'

Prior belief Posterior belief
Top-down view

𝑦

3-D view

𝑥

𝑦

𝑥

Top-down view 3-D view

𝑓+,,|H 𝑥, 𝑦|4 =

𝐾L⋅ 𝑒
.

L. =!-G!
!

5 -
=.F !- G.F !

M

0.08     
0.04
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How’d you compute that 𝐾$?

To be a valid conditional PDF,

62

(
./

/
(
./

/
𝑓+,,|H 𝑥, 𝑦|4 𝑑𝑥 𝑑𝑦 = 1

1
𝐾L

≈J
=

J
G

𝑒.
L. =!-G!

!

5 -
=.F !- G.F !

M ∆𝑥∆𝑦

(
./

/
(
./

/
𝐾L ⋅ 𝑒

.
L. =!-G!

!

5 -
=.F !- G.F !

M 𝑑𝑥 𝑑𝑦 = 1

Approximate:

1
𝐾L

= (
./

/
(
./

/
𝑒.

L. =!-G!
!

5 -
=.F !- G.F !

M 𝑑𝑥 𝑑𝑦 (pull out 𝐾*, divide)

Use a computer!
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Give yourself a pat
on the back after this!



Extra slides

64

(no video)
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Conditional densities
Let X and Y be continuous RVs
with joint PDF:
1. What is the conditional density 𝑓"|$ 𝑥|𝑦 ?
2. Are 𝑋 and 𝑌 independent?

65

𝑓",! 𝑥, 𝑦 = S
12
5 𝑥 2 − 𝑥 − 𝑦 0 < 𝑥, 𝑦 < 1

0 otherwise

🤔(discuss)
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Conditional densities
Let X and Y be continuous RVs
with joint PDF:
1. What is the conditional density 𝑓"|$ 𝑥|𝑦 ?
2. Are 𝑋 and 𝑌 independent?

66

𝑓",! 𝑥, 𝑦 = S
12
5 𝑥 2 − 𝑥 − 𝑦 0 < 𝑥, 𝑦 < 1

0 otherwise

𝑓+|, 𝑥|𝑦 =
𝑓+,, 𝑥, 𝑦
𝑓, 𝑦

=
𝑓+,, 𝑥, 𝑦

∫N
<𝑓+,, 𝑥, 𝑦 𝑑𝑥

=
12
5 𝑥 2 − 𝑥 − 𝑦

∫(
+12
5 𝑥 2 − 𝑥 − 𝑦 𝑑𝑥

=
𝑥 2 − 𝑥 − 𝑦

∫(
+𝑥 2 − 𝑥 − 𝑦 𝑑𝑥

=
𝑥 2 − 𝑥 − 𝑦

𝑥' − 𝑥
3

3 − 𝑥
'𝑦
2 (

+ =
𝑥 2 − 𝑥 − 𝑦

2
3 −

𝑦
2

=
6𝑥 2 − 𝑥 − 𝑦

4 − 3𝑦

Follow up:
What is 𝑓+|, 𝑥| <5 ?

1.

2. No, 𝑋 and 𝑌 are dependent.


