17: Continuous Joint Distributions (II)

Lisa Yan and Jerry Cain October 21, 2020

Quick slide reference

3	Convolution: Sum of independent Uniform RVs	17a_cont_conv
19	Sum of independent Normal RVs	17b_sum_normal
25	Ratio of PDFs	17c_ratio_pdfs
29	Continuous conditional distributions	17d_cont_cond_distr
31	Exercises	LIVE

Convolution: Sum of independent Uniform RVs

Today's lecture

Take what we've seen in discrete joint distributions...

...and translate them to continuous joint distributions!

For the most part, this is easy. For example:

$$p_X(a) = \sum_{y} p_{X,Y}(a,y) \qquad f_X(a) = \int_{-\infty}^{\infty} f_{X,Y}(a,y) dy$$

$$f_X(a) = \int_{-\infty}^{\infty} f_{X,Y}(a,y) dy$$

Independent RVs
$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$
 $f_{X,Y}(x,y) = f_X(x)f_Y(y)$

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

But some concepts, while mathematically straightforward to write, are harder to implement in practice.

We'll focus on these today.

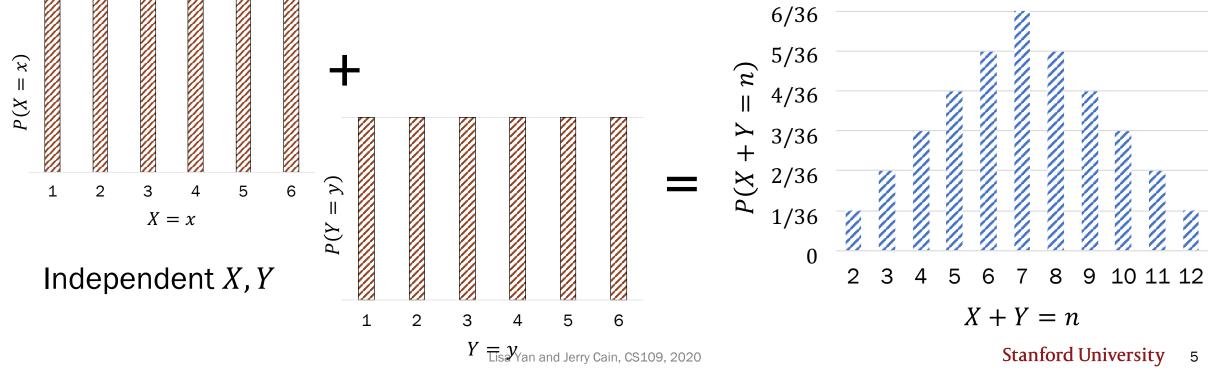
Goal of CS109 continuous joint distributions unit: build mathematical maturity

Dance, Dance, Convolution

Recall that for independent discrete random variables *X* and *Y*:

$$P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)$$

the convolution of p_X and p_Y



Dance, Dance, Convolution

Recall that for independent discrete random variables *X* and *Y*:

$$P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)$$

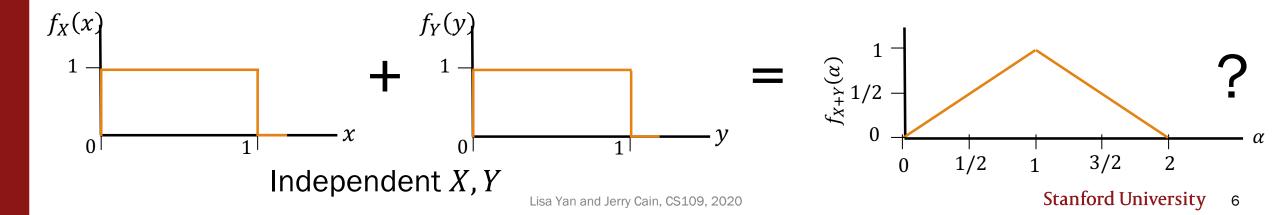
For independent continuous random variables *X* and *Y*:

$$f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$$

the convolution of f_X and f_Y

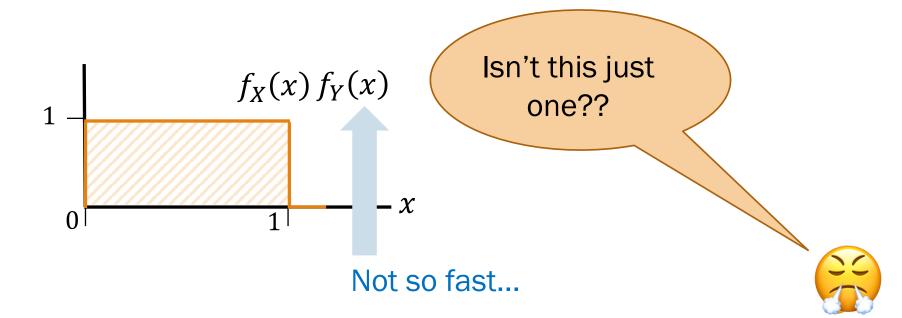
the convolution

of p_X and p_Y



Dance, Dance, Convolution Extreme

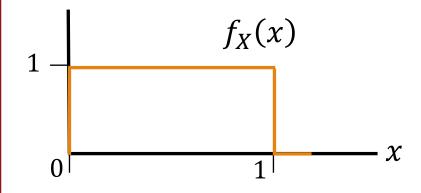
$$f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$$



Let $X \sim \text{Uni}(0,1)$ and $Y \sim \text{Uni}(0,1)$ be independent RVs.

What is the distribution of X + Y, $f_{X+Y}(\alpha)$?

$$f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$$



$$f_X(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

$$f_{Y}(\alpha - x)$$
?

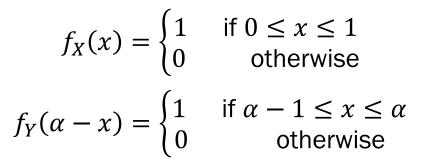
$$f_Y(\alpha - x) = \begin{cases} 1 & \text{if } 0 \le \alpha - x \le 1 \\ 0 & \text{otherwise} \end{cases}$$
$$= \begin{cases} 1 & \text{if } \alpha - 1 \le x \le \alpha \\ 0 & \text{otherwise} \end{cases}$$

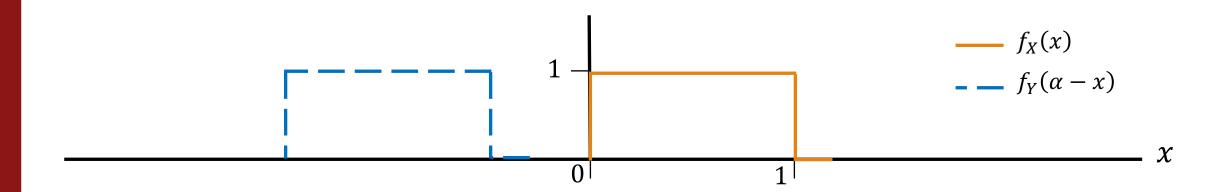
 α is a constant in the integral w.r.t. x.

independent $f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$ + continuous

$$1. \quad \alpha \leq 0$$

$$\mathbf{0}$$





X and Yindependent $f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$ + continuous

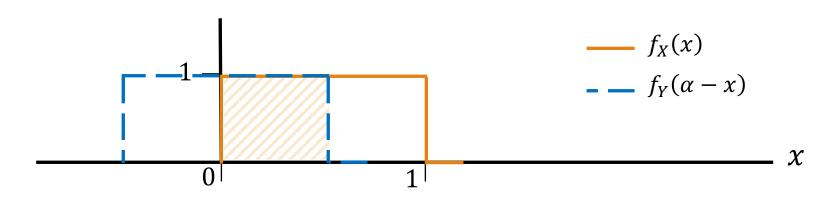
Let $X \sim \text{Uni}(0,1)$ and $Y \sim \text{Uni}(0,1)$ be independent RVs. What is the distribution of X + Y, $f_{X+Y}(\alpha)$?

1.
$$\alpha \leq 0$$

$$f_X(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

$$f_Y(\alpha - x) = \begin{cases} 1 & \text{if } \alpha - 1 \le x \le \alpha \\ 0 & \text{otherwise} \end{cases}$$

2.
$$\alpha = 1/2$$
 1/2



Integral = area under the curve This curve = product of 2 functions of x

X and Yindependent $f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$ + continuous

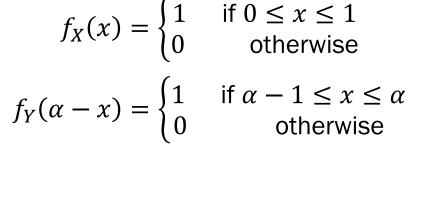
1.
$$\alpha \leq 0$$
 0

2.
$$\alpha = 1/2$$
 1/2

$$\alpha = 1$$

4.
$$\alpha = 3/2$$

$$5. \quad \alpha \geq 2$$



X and Yindependent $f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$ + continuous

1.
$$\alpha \leq 0$$
 0

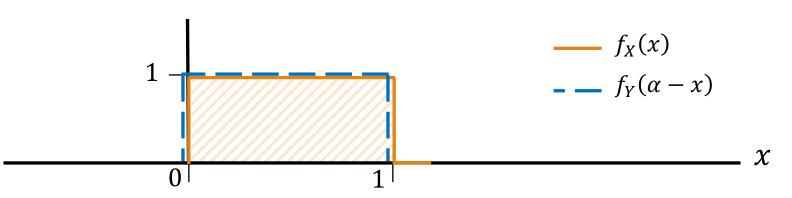
$$\mathbf{0}$$

$$f_X(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

$$f_Y(\alpha - x) = \begin{cases} 1 & \text{if } \alpha - 1 \le x \le \alpha \\ 0 & \text{otherwise} \end{cases}$$

2.
$$\alpha = 1/2$$
 1/2

3.
$$\alpha = 1$$



4.
$$\alpha = 3/2$$

5.
$$\alpha \geq 2$$

X and Yindependent $f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$ + continuous

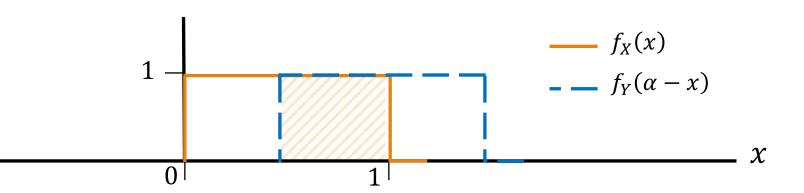
1.
$$\alpha \leq 0$$
 0

$$f_X(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

$$f_Y(\alpha - x) = \begin{cases} 1 & \text{if } \alpha - 1 \le x \le \alpha \\ 0 & \text{otherwise} \end{cases}$$

2.
$$\alpha = 1/2$$
 1/2

3.
$$\alpha = 1$$
 1



4.
$$\alpha = 3/2$$
 1/2

5.
$$\alpha \geq 2$$

X and Yindependent $f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$ + continuous

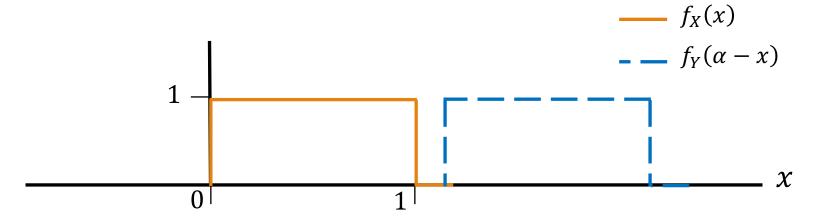
1.
$$\alpha \leq 0$$
 0

$$f_X(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

$$f_Y(\alpha - x) = \begin{cases} 1 & \text{if } \alpha - 1 \le x \le \alpha \\ 0 & \text{otherwise} \end{cases}$$

2.
$$\alpha = 1/2$$
 1/2

3.
$$\alpha = 1$$
 1



4.
$$\alpha = 3/2$$
 1/2

$$5. \quad \alpha \geq 2$$

independent $f_{X+Y}(\alpha) = \int_{-\infty}^{\infty} f_X(x) f_Y(\alpha - x) dx$ + continuous X and Y

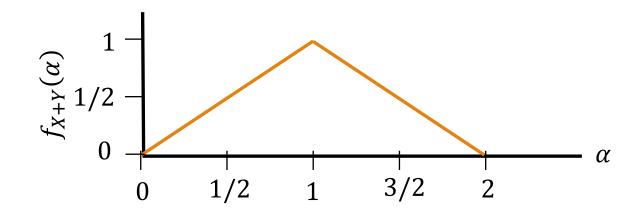
1.
$$\alpha \leq 0$$

2.
$$\alpha = 1/2$$
 1/2

3.
$$\alpha = 1$$
 1

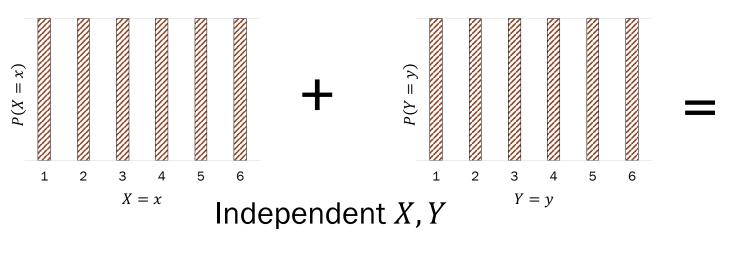
4.
$$\alpha = 3/2$$
 1/2

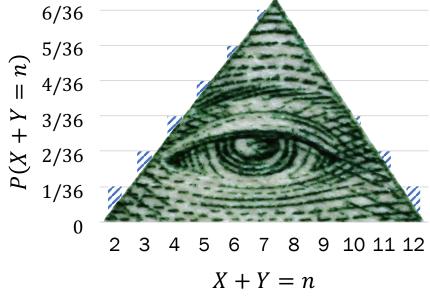
5.
$$\alpha \geq 2$$

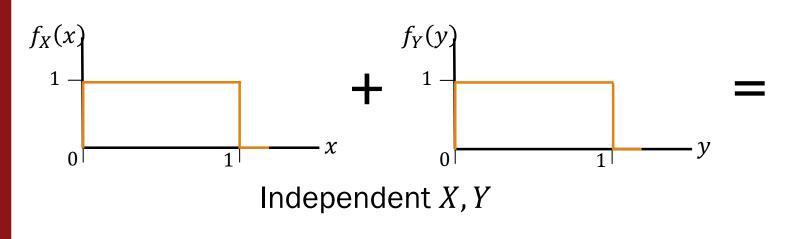


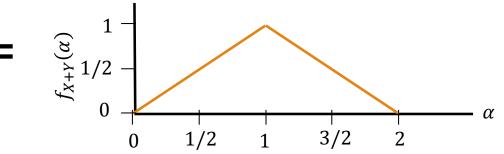
$$f_{X+Y}(\alpha) = \begin{cases} \alpha & 0 \le \alpha \le 1\\ 2 - \alpha & 1 \le \alpha \le 2\\ 0 & \text{otherwise} \end{cases}$$

Dance, Dance, Convolution Extreme









Dance, Dance, Convolution Extreme

Phew....that was a mental workout.

In practice, we try to avoid convolution where possible, by choosing "nice" distributions.

Ready for something truly useful? Stay tuned!

Sums of independent Normal RVs

Sum of independent Normals

$$X \sim \mathcal{N}(\mu_1, \sigma_1^2),$$

$$Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$$

$$X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

$$X, Y \text{ independent}$$

(proof left to Wikipedia)

Holds in general case:

$$X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$$
 X_i independent for $i = 1, ..., n$

$$\sum_{i=1}^n X_i \sim \mathcal{N}\left(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2\right)$$

Back for another playoffs game

What is the probability that the Warriors win? How do you model zero-sum games?

$$P(A_W > A_B)$$

This is a probability of an event involving **two** random variables!

We will compute:

$$P(A_W - A_B > 0)$$

Motivating idea: Zero sum games

Want: $P(Warriors win) = P(A_W - A_R > 0)$

Assume A_W , A_B are independent.

Let
$$D = A_W - A_B$$
.

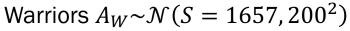
What is the distribution of *D*?

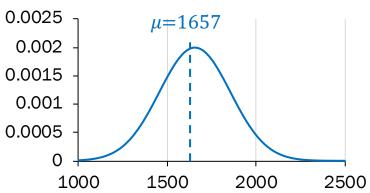
A.
$$D \sim \mathcal{N}(1657 - 1470, 200^2 - 200^2)$$

B.
$$D \sim \mathcal{N}(1657 - 1470, 200^2 + 200^2)$$

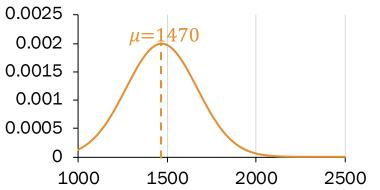
C.
$$D \sim \mathcal{N}(1657 + 1470, 200^2 + 200^2)$$

- D. Dance, Dance, Convolution
- E. None/other





Opponents $A_R \sim \mathcal{N}(S = 1470, 200^2)$



Motivating idea: Zero sum games

2500

Want:
$$P(Warriors win) = P(A_W - A_B > 0)$$

Assume A_W , A_B are independent.

Let
$$D = A_W - A_B$$
.

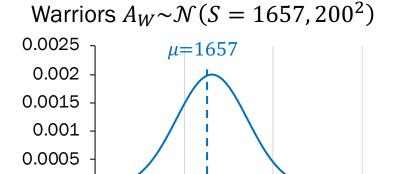
What is the distribution of *D*?

A.
$$D \sim \mathcal{N}(1657 - 1470, 200^2 - 200^2)$$

B.)
$$D \sim \mathcal{N}(1657 - 1470, 200^2 + 200^2)$$

C.
$$D \sim \mathcal{N}(1657 + 1470, 200^2 + 200^2)$$

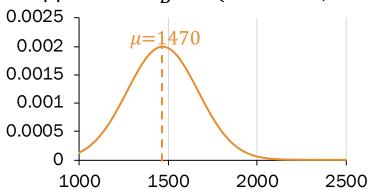
- Dance, Dance, Convolution
- E. None/other



1500

Opponents $A_R \sim \mathcal{N}(S = 1470, 200^2)$

2000



If
$$X \sim \mathcal{N}(\mu_1, \sigma^2)$$
, then $(-X) \sim \mathcal{N}(-\mu, (-1)^2 \sigma^2 = \sigma^2)$.

1000

Motivating idea: Zero sum games

Want: $P(Warriors win) = P(A_W - A_B > 0)$

Assume A_W , A_B are independent.

Let
$$D = A_W - A_B$$
.

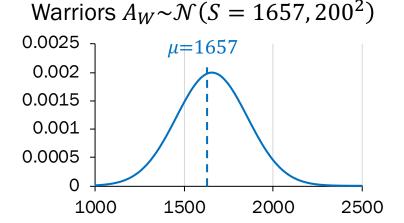
$$D \sim \mathcal{N}(1657 - 1470, 200^2 + 200^2)$$

 $\sim \mathcal{N}(187, 2 \cdot 200^2) \quad \sigma \approx 283$

$$P(D > 0) = 1 - F_D(0) = 1 - \Phi\left(\frac{0 - 187}{283}\right)$$

 ≈ 0.7454

Compare with 0.7488, calculated by sampling!





17c_ratio_pdfs

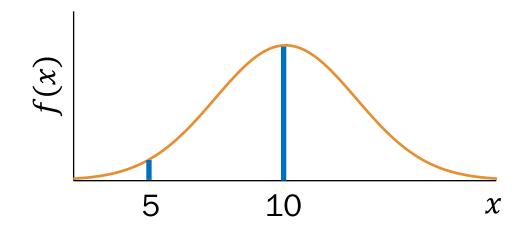
Ratio of PDFs

Relative probabilities of continuous random variables

Let X = time to finish problem set 4.

Suppose $X \sim \mathcal{N}(10,2)$.

How much *more likely* are you to complete in 10 hours than 5 hours?



$$\frac{P(X=10)}{P(X=5)} =$$

A. 0/0 = undefined

B.
$$\frac{f(10)}{f(5)}$$

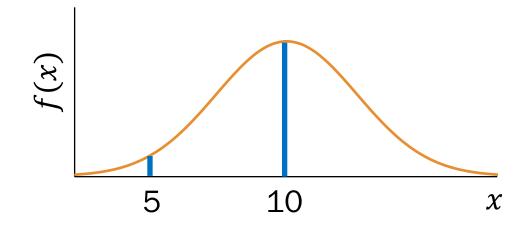
C. stay healthy

Relative probabilities of continuous random variables

Let X = time to finish problem set 4.

Suppose $X \sim \mathcal{N}(10,2)$.

How much *more likely* are you to complete in 10 hours than 5 hours?



$$\frac{P(X=10)}{P(X=5)} =$$

A. 0/0 = undefined

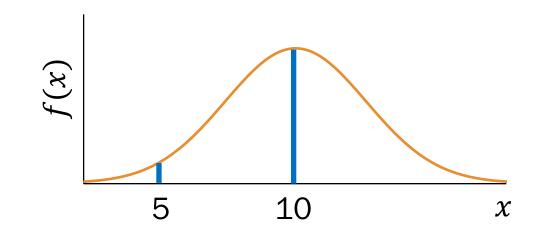
stay healthy

Relative probabilities of continuous random variables

Let X = time to finish problem set 4.

Suppose $X \sim \mathcal{N}(10,2)$.

How much more likely are you to complete in 10 hours than 5 hours?



$$\frac{P(X=10)}{P(X=5)} = \frac{f(10)}{f(5)}$$

$$P(X = a) = P\left(a - \frac{\varepsilon}{2} \le X \le a + \frac{\varepsilon}{2}\right) = \int_{a - \frac{\varepsilon}{2}}^{a + \frac{\varepsilon}{2}} f(x) dx \approx \varepsilon f(a)$$
Therefore
$$\frac{P(X = a)}{P(X = b)} = \frac{\varepsilon f(a)}{\varepsilon f(b)} = \frac{f(a)}{f(b)}$$

$$= \frac{\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(10-\mu)^2}{2\sigma^2}}}{\frac{1}{\sqrt{2\pi}}e^{-\frac{(5-\mu)^2}{2\sigma^2}}} = \frac{e^{-\frac{(10-10)^2}{2\cdot 2}}}{e^{-\frac{(5-10)^2}{2\cdot 2}}} = \frac{e^0}{e^{-\frac{25}{4}}} = 518$$

Ratios of PDFs are meaningful!!

Continuous conditional distributions

Continuous conditional distributions

For continuous RVs X and Y, the conditional PDF of X given Y is

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

where $f_Y(y) > 0$

Intuition:
$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$
 $f_{X|Y}(x|y)\varepsilon_X = \frac{f_{X,Y}(x,y)\varepsilon_X\varepsilon_Y}{f_Y(y)\varepsilon_Y}$

Note that conditional PDF $f_{X|Y}$ is a "true" density:

$$\int_{-\infty}^{\infty} f_{X|Y}(x|y) dx = \int_{-\infty}^{\infty} \frac{f_{X,Y}(x,y)}{f_{Y}(y)} dx = \frac{f_{Y}(y)}{f_{Y}(y)} = 1$$

(live)

17: Continuous Joint Distributions (I)

Lisa Yan and Jerry Cain October 21, 2020

Why sums of random variables?

Sometimes modeling and <u>understanding</u> a complex X is hard.

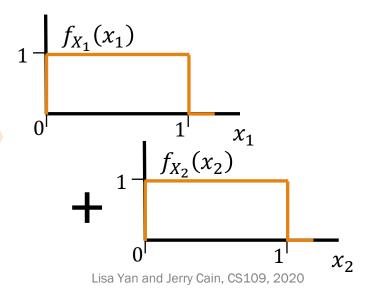
But if we can decompose X into the sum of independent simpler RVs,

- We can then compute distributions on X.
- We can then to understand how X changes when its parts change.

What can we model with a triangular PDF?

f(x)1/2

Sum of uniforms!



We're covering the reverse direction for now; the forward direction will come next time

Discussion

Slide 36 has a question to discuss together.

Post any clarifications here or in chat!

https://us.edstem.org/courses/2678/discussion/153772

Think by yourself: 1 min

Discuss (as a class, in chat): 3 min

Virus infections

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_1 = 0.1$
- G2: 100 people, each independently infected with $p_2 = 0.4$

What is $P(\text{people infected} \geq 55)$? An approximation is okay.

1. Define RVs & state goal

```
Let A = \# infected in G1.
    A \sim Bin(200,0.1)
    B = \# infected in G2.
    B \sim Bin(100,0.4)
```

Want: $P(A + B \ge 55)$

Strategy:

- A. Dance, Dance, Convolution
- B. Sum of indep. Binomials
- C. (approximate) Sum of indep. Poissons
- D. (approximate) Sum of indep. Normals
- E. None/other

Virus infections

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_1 = 0.1$
- G2: 100 people, each independently infected with $p_2 = 0.4$

What is $P(\text{people infected} \geq 55)$? An approximation is okay.

1. Define RVs & state goal

```
Let A = \# infected in G1.
    A \sim Bin(200,0.1)
    B = \# infected in G2.
    B \sim Bin(100,0.4)
```

Want: $P(A + B \ge 55)$

Strategy:

- A. Dance, Dance, Convolution
- B. Sum of indep. Binomials
- C. (approximate) Sum of indep. Poissons
- D. (approximate) Sum of indep. Normals
- E. None/other

Virus infections

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_1 = 0.1$
- G2: 100 people, each independently infected with $p_2 = 0.4$

What is $P(\text{people infected} \geq 55)$?

1. Define RVs & state goal

Let
$$A = \#$$
 infected in G1.
 $A \sim \text{Bin}(200,0.1)$
 $B = \#$ infected in G2.
 $B \sim \text{Bin}(100,0.4)$

Want: $P(A + B \ge 55)$

2. Approximate as sum of Normals

$$A \approx X \sim \mathcal{N}(20,18)$$
 $B \approx Y \sim \mathcal{N}(40,24)$
 $P(A + B \ge 55) \approx P(X + Y \ge 54.5)$ continuity correction

3. Solve

Virus infections

Suppose you are working with the WHO to plan a response to the initial conditions of a virus. There are two exposed groups:

- G1: 200 people, each independently infected with $p_1 = 0.1$
- G2: 100 people, each independently infected with $p_2 = 0.4$

What is $P(\text{people infected} \geq 55)$?

Define RVs
 & state goal

Let
$$A = \#$$
 infected in G1.
 $A \sim \text{Bin}(200,0.1)$
 $B = \#$ infected in G2.
 $B \sim \text{Bin}(100,0.4)$

Want: $P(A + B \ge 55)$

2. Approximate as sum of Normals $A \approx X \sim \mathcal{N}(20,18)$ $B \approx Y \sim \mathcal{N}(40,24)$ $P(A+B \geq 55) \approx P(X+Y \geq 54.5)$ continuity correction

3. Solve

Let
$$W = X + Y \sim \mathcal{N}(20 + 40 = 60, 18 + 24 = 42)$$

$$P(W \ge 54.5) = 1 - \Phi\left(\frac{54.5 - 60}{\sqrt{42}}\right) \approx 1 - \Phi(-0.85)$$

$$\approx 0.8023$$

A conceptual review

Everything* in probability is a sum or a product (or both)

*except conditional probability (a ratio)

Sum of values that can be considered separately (possibly weighted by prob. of happening)

$$E[X] = \sum_{x} xp(x)$$
weight

$$P(E) = \sum_{i=1}^{n} P(E|F_i)P(F_i)$$
weight

Law of Total Probability

$$E[X|Y = y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx$$
weight

$$P(E) = \sum_{i=1}^{n} P(E_i)$$

Axiom 3, $E = E_1 \cup \cdots \cup E_n$

Product of values that can each be considered in sequence

$$P(E \cap F \cap G) = P(E)P(F|E)P(G|EF)$$

Chain Rule

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

Independent cont. RVs

$$P(X + Y = n) = \sum_{k} P(X = k)P(Y = n - k)$$

Sum of indep. discrete RVs (convolution)

Conditional probability and Bayes' Theorem

Definition

$$P(F|E) = \frac{P(E \cap F)}{P(E)}$$

Scaling to the correct sample space

Independence

E, F independent

$$P(F|E) = P(F)$$

Sample space doesn't need to be scaled

Bayes' Theorem

Prior: some prob. of event *F*

$$P(F|E) = \frac{P(F)P(E|F)}{P(E)}$$
 Likelihood

Posterior: prob. of

F knowing that Ehappened

Scaling to the correct sample space

Multiple Bayes' Theorems

with events

$$P(F|E) = \frac{P(F)P(E|F)}{P(E)}$$

with discrete RVs

$$p_{Y|X}(y|x) = \frac{p_Y(y)p_{X|Y}(x|y)}{p_X(x)}$$

with continuous RVs You are given this value...

$$f_{Y|X}(y|x) = \frac{f_Y(y)f_{X|Y}(x|y)}{f_X(x)}$$

...so this is just a scalar

Really all the same idea!

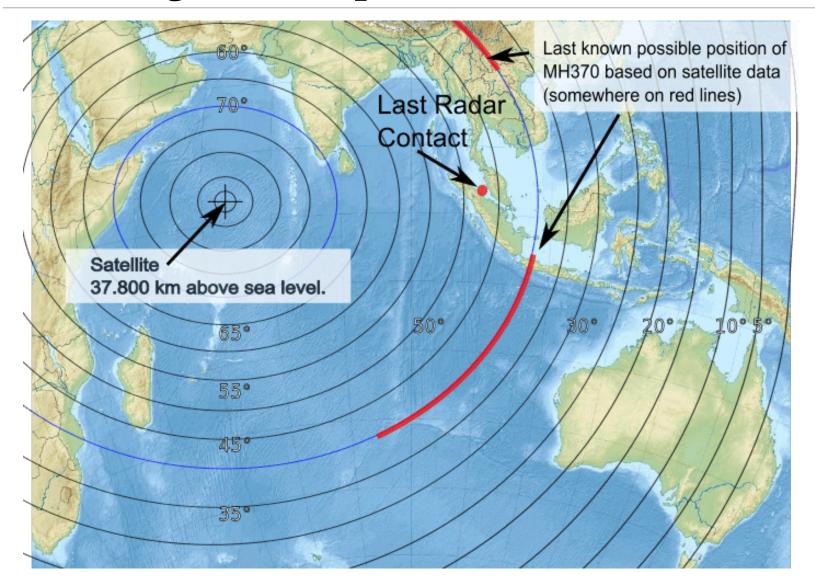
Extra fun in lecture today

We've gotten very far in our ability to model different situations.

Let's test our mettle to analyze an important application that involves:

- Conditional densities
- Bayes' Theorem
- A computer
- Normalization constants

Tracking in 2-D space



You want to know the 2-D location of an object.

Your satellite ping gives you a noisy 1-D measurement of the distance of the object from the satellite (0,0).

Using the satellite measurement, where is the object?

Interlude for jokes/announcements

Announcements

Quiz #2

Time frame: Wednesday 10/28 2:00pm - Friday 10/30 12:59pm PT

Up to end of Week 5 (including Lecture 15). PS3+PS4 Covers:

Info and practice: (to be posted soon)

Homework parties

9am-11am PT Saturdays

2pm-4pm PT Sundays

Designated student group work time on Nooks (no CAs) Office Hours/Mid-quarter feedback update

Thanks for your feedback! We are working on updating our OH to help more students learn

Accessing old concept checks

late deadline passes Week 5 MON OCT 12 13 Joint RV Statistics ... Concept Check · Coupon Collecting Problems Lecture Notes Week 1 Covariance Week 2 Variance for Independent RVs Week 3 Correlation Week 4 ☐ Slides (Blank) (Annotated) Week 5 Read: Ch 6.4-6.5 Week 6 Week 7 WED OCT 14 14 Conditional Expectation ... Concept Check Week 8 · Conditional distributions Lecture Notes Week 9 Conditional expectation Law of Total Expectation Week 10 Still live on Analyzing Recursive Code Gradescope ☐ Slides (Blank) (Annotated) Read: Ch 7.1-7.2

PDF released after

New handout

Resources/Demos ▼ Quizzes

Calculation Ref

Python for Probability

LaTeX Guides

Latex Cheat Sheet

Full Probability Reference (Overleaf)

Standard Normal Table

Normal CDF Calculator

A summary of all lill the things we've learned so far.

- Many equations look the same.
- ...because they're all built on the same principles!
- Overleaf, so LaTeX-friendly

Also recommended:

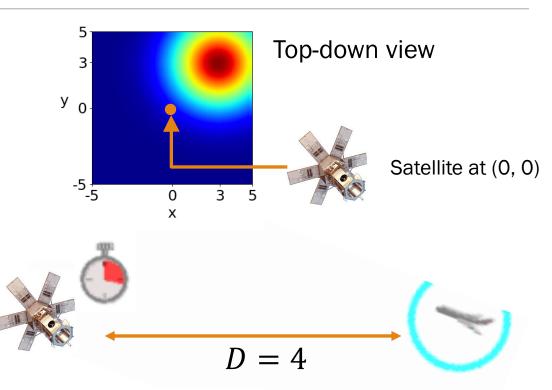
- Lecture Notes (generally shorter than slides)
- A previous CA's midterm review

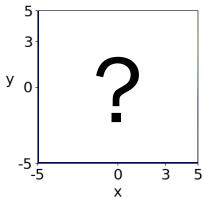
Tracking in 2-D space

Before measuring, we have some prior belief about the 2-D location of an object, (X,Y).

We observe some noisy measurement D = 4, the Euclidean distance of the object to a satellite.

After the measurement, what is our updated (posterior) belief of the 2-D location of the object?





Tracking in 2-D space

- You have a prior belief about the 2-D location of an object, (X, Y).
- You observe a noisy distance measurement, D=4.
- What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

Recall Bayes terminology:

prior likelihood belief posterior (of evidence) belief $f_{X,Y|D}(x,y|d) = \frac{f_{D|X,Y}(d|x,y)f_{X,Y}(x,y)}{d}$

normalization constant

1. Define prior

$$f_{X,Y|D}(x,y|d) = \frac{f_{D|X,Y}(d|x,y)}{f_D(d)} f_{X,Y}(x,y)$$

You have a prior belief about the 2-D location of an object, (X,Y).

Let (X, Y) = object's 2-D location. (your satellite is at (0,0)

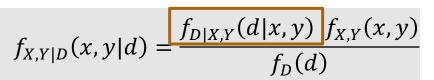
Suppose the prior distribution is a symmetric bivariate normal distribution:

$$f_{X,Y}(x,y) = \frac{1}{2\pi^2} e^{-\frac{\left[(x-3)^2 + (y-3)^2\right]}{2(2^2)}} = K_1 \cdot e^{-\frac{\left[(x-3)^2 + (y-3)^2\right]}{8}}$$

Top-down view 3-D view 0.04 $f_{X,Y}(x,y)$ y 0-

normalizing constant

2. Define likelihood

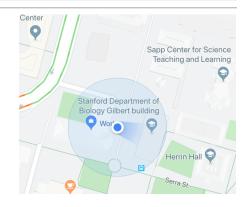


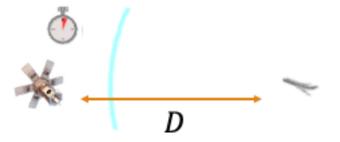
You observe a noisy distance measurement, D=4.

If you knew your actual location (x, y), you could say how likely a measurement D=4 is:

Let D = distance from the satellite (radially). Suppose you knew your actual position: (x, y).

- D is still noisy! Suppose noise is **standard normal**.
- On average, D is your true Euclidean distance: $\sqrt{\chi^2 + \gamma^2}$





Think

Check out the question on the next slide (Slide 54). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/153772

Think by yourself: 2 min

Post your interpretation in the chat.

2. Define likelihood

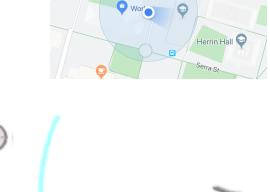
$$f_{X,Y|D}(x,y|d) = \frac{f_{D|X,Y}(d|x,y)}{f_{D}(d)} f_{X,Y}(x,y)$$

You observe a noisy distance measurement, D=4.

If you knew your actual location (x, y), you could say how likely a measurement D=4 is:

Let D = distance from the satellite (radially). Suppose you knew your actual position: (x, y).

- D is still noisy! Suppose noise is **standard normal**.
- On average, D is your true Euclidean distance: $\sqrt{\chi^2 + v^2}$



$$D|X,Y\sim N(\mu = (A), \sigma^2 = (B))$$

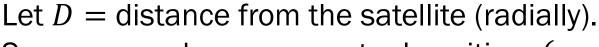
$$f_{D|X,Y}(D=d|X=x,Y=y) = \frac{1}{(C)\sqrt{2\pi}}e^{\{(D)\}}$$

2. Define likelihood

$$f_{X,Y|D}(x,y|d) = \frac{f_{D|X,Y}(d|x,y)}{f_{D}(d)} f_{X,Y}(x,y)$$

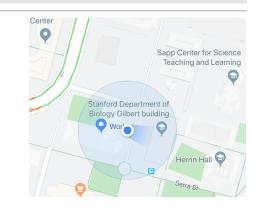
You observe a noisy distance measurement, D=4.

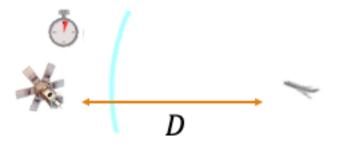
If you knew your actual location (x, y), you could say how likely a measurement D=4 is:



Suppose you knew your actual position: (x, y).

- D is still noisy! Suppose noise is **standard normal**.
- On average, D is your true Euclidean distance: $\sqrt{\chi^2 + v^2}$





$$D|X,Y\sim N\left(\mu=\sqrt{x^2+y^2},\sigma^2=1\right)$$

$$D|X, Y \sim N\left(\mu = \sqrt{x^2 + y^2}, \sigma^2 = 1\right)$$
 $f_{D|X,Y}(D = d|X = x, Y = y) = \frac{1}{\sqrt{2\pi}}e^{\frac{-(d-\sqrt{x^2+y^2})^2}{2}}$

$$= K_2 \cdot e^{-\left(d - \sqrt{x^2 + y^2}\right)^2}$$

normalizing constant

3. Compute posterior

$$f_{X,Y|D}(x,y|d) = \frac{f_{D|X,Y}(d|x,y) f_{X,Y}(x,y)}{f_{D}(d)}$$

What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

Compute:

$$f_{X,Y|D}(x,y|4) = f_{X,Y|D}(X=x,Y=y|D=4)$$

Breakout Rooms

Check out the question on the next slide (Slide 58). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/153772

Breakout rooms: 3 min

3. Compute posterior

$$f_{X,Y|D}(x,y|d) = \frac{f_{D|X,Y}(d|x,y) \ f_{X,Y}(x,y)}{f_{D}(d)}$$

What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

Compute:

$$f_{X,Y|D}(x,y|4) = f_{X,Y|D}(X=x,Y=y|D=4)$$

Know:

Prior belief
$$f_{X,Y}(x,y) = K_1 \cdot e^{-\frac{[(x-3)^2 + (y-3)^2]}{8}}$$

Observation likelihood
$$f_{D|X,Y}(d|x,y) = K_2 \cdot e^{-\left(d-\sqrt{x^2+y^2}\right)^2}$$

Tips

- Use Bayes' Theorem!
- $f_D(4)$ is just a scaling constant. Why?
- How can we approximate the final scaling constant with a computer?

Deep breath

Tracking in 2-D space

What is your updated (posterior) belief of the 2-D location of the object after observing the measurement?

$$f_{X,Y|D}(X = x, Y = y|D = 4)$$

$$f_{X,Y|D}(X=x,Y=y|D=4) = \frac{f_{D|X,Y}(D=4|X=x,Y=y)f_{X,Y}(x,y)}{f(D=4)}$$
 Bayes' Theore

likelihood of D = 4

$$= \frac{K_2 \cdot e^{-\frac{\left(4 - \sqrt{x^2 + y^2}\right)^2}{2}} \cdot K_1 \cdot e^{-\frac{\left[(x - 3)^2 + (y - 3)^2\right]}{8}}$$

$$K_3 \cdot e^{-\left[\frac{\left(4-\sqrt{x^2+y^2}\right)^2}{2}+\frac{\left[(x-3)^2+(y-3)^2\right]}{8}\right]}$$

$$f(D=4)$$

$$= K_4 \cdot e^{-\left[\frac{\left(4 - \sqrt{x^2 + y^2}\right)^2}{2} + \frac{\left[(x - 3)^2 + (y - 3)^2\right]}{8}\right]}$$
 For your notes...

Key: Once we know the part dependent on x, y, we can computationally approximate K_4 such that $f_{X,Y|D}$ is a valid PDF.

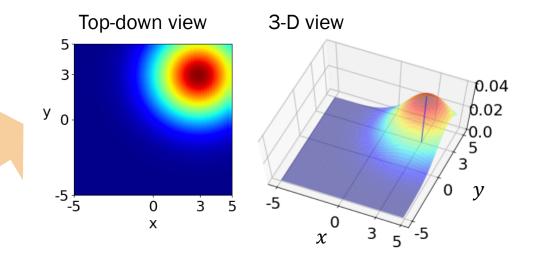
prior belief

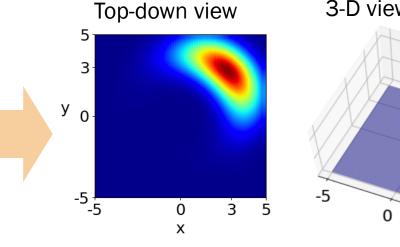
Theorem

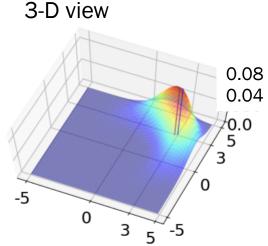
Tracking in 2-D space

With this continuous version of Bayes' theorem, we can explore new domains.

- Before measuring, we have some prior belief about the 2-D location of an object, (X, Y).
- We observe some noisy measurement of the distance of the object to a satellite.
- After the measurement, what is our updated (posterior) belief of the 2-D location of the object?

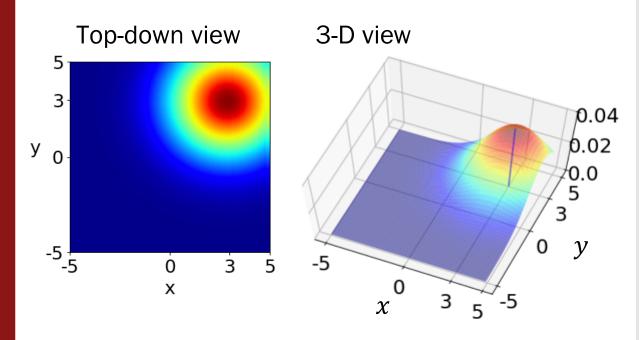






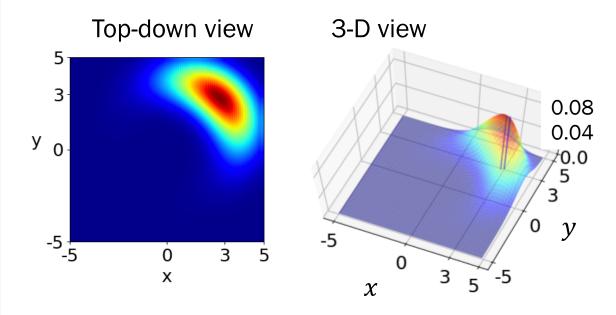
Tracking in 2-D space: Posterior belief

Prior belief



$$f_{X,Y}(x,y) = K_1 \cdot e^{-\frac{[(x-3)^2 + (y-3)^2]}{8}}$$

Posterior belief



$$f_{X,Y|D}(x,y|4) = \frac{\left[\left(4 - \sqrt{x^2 + y^2}\right)^2 + \frac{\left[(x-3)^2 + (y-3)^2\right]}{8}\right]}{2}$$

How'd you compute that K_4 ?

To be a valid conditional PDF,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y|D}(x,y|4) \ dx \ dy = 1$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} K_4 \cdot e^{-\left[\frac{\left(4-\sqrt{x^2+y^2}\right)^2}{2} + \frac{\left[(x-3)^2 + (y-3)^2\right]}{8}\right]} dx \, dy = 1$$

$$\frac{1}{K_4} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left[\frac{\left(4-\sqrt{x^2+y^2}\right)^2}{2} + \frac{\left[(x-3)^2 + (y-3)^2\right]}{8}\right]} dx \, dy \qquad \text{(pull out } K_4, \text{ divide)}$$

Approximate:

$$\frac{1}{K_4} \approx \sum \sum e^{-\left[\frac{\left(4 - \sqrt{x^2 + y^2}\right)^2}{2} + \frac{\left[(x - 3)^2 + (y - 3)^2\right]}{8}\right]_{\Delta x \Delta y}}$$

Use a computer!

(no video)

Extra slides

Conditional densities

Let X and Y be continuous RVs with joint PDF:

$$f_{X,Y}(x,y) = \begin{cases} \frac{12}{5}x(2-x-y) & 0 < x, y < 1\\ 0 & \text{otherwise} \end{cases}$$

- What is the conditional density $f_{X|Y}(x|y)$?
- 2. Are *X* and *Y* independent?

Conditional densities

Let X and Y be continuous RVs with joint PDF:

$$f_{X,Y}(x,y) = \begin{cases} \frac{12}{5}x(2-x-y) & 0 < x, y < 1\\ 0 & \text{otherwise} \end{cases}$$

- 1. What is the conditional density $f_{X|Y}(x|y)$?
- 2. Are *X* and *Y* independent?

1.
$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{f_{X,Y}(x,y)}{\int_0^1 f_{X,Y}(x,y) dx} = \frac{\frac{12}{5}x(2-x-y)}{\int_0^1 \frac{12}{5}x(2-x-y) dx} = \frac{x(2-x-y)}{\int_0^1 x(2-x-y) dx}$$

$$= \frac{x(2-x-y)}{\left[x^2 - \frac{x^3}{3} - \frac{x^2y}{2}\right]_0^1} = \frac{x(2-x-y)}{\frac{2}{3} - \frac{y}{2}} = \frac{6x(2-x-y)}{4-3y}$$

2. No, X and Y are dependent.

Follow up: What is $f_{X|Y}\left(x|\frac{1}{2}\right)$?