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Another big day
Up until this point, we’ve mostly covered traditional probability topics:
• Equally likely outcomes
• Conditional probability, independence
• Joint probability distributions, conditional expectation

We have done some awesome applications:
• Federalist Papers: Authorship identification
• WebMD: General Inference

Today
• Our last big topic in traditional probability before

we move onto modern-day statistical analysis!
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Independence of multiple random variables
We have independence of 𝑛 discrete random variables 𝑋!, 𝑋", … , 𝑋# if

for all 𝑥!, 𝑥", … , 𝑥#:

We have independence of 𝑛 continuous random variables 𝑋!, 𝑋", … , 𝑋# if
for all 𝑥!, 𝑥", … , 𝑥#:
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Review

𝑝!!,!",…,!# 𝑥$, 𝑥%, … , 𝑥& =&
'($

&

𝑝!$ 𝑥'

𝑃 𝑋$ = 𝑥$, 𝑋% = 𝑥%, … , 𝑋& = 𝑥& =&
'($

&

𝑃 𝑋' = 𝑥'

𝑃 𝑋$ ≤ 𝑥$, 𝑋% ≤ 𝑥%, … , 𝑋& ≤ 𝑥& =&
'($

&

𝑃 𝑋' ≤ 𝑥'

𝑓!!,!",…,!# 𝑥$, 𝑥%, … , 𝑥& =&
'($

&

𝑓!$ 𝑥'
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i.i.d. random variables
Consider 𝑛 variables 𝑋!, 𝑋", … , 𝑋#.
𝑋!, 𝑋", … , 𝑋# are independent and identically distributed if
• 𝑋!, 𝑋", … , 𝑋# are independent, and
• All have the same PMF (if discrete) or PDF (if continuous).
⇒ 𝐸 𝑋$ = 𝜇 for 𝑖 = 1,… , 𝑛
⇒ Var 𝑋$ = 𝜎" for 𝑖 = 1,… , 𝑛
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Same thing: i.i.d. iid IID
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Quick check
Are 𝑋!, 𝑋", … , 𝑋# i.i.d. with the following distributions?

1. 𝑋$~Exp 𝜆 , 𝑋$ independent

2. 𝑋$~Exp 𝜆$ , 𝑋$ independent

3. 𝑋$~Exp 𝜆 , 𝑋! = 𝑋" = ⋯ = 𝑋#

4. 𝑋$~Bin 𝑛$ , 𝑝 , 𝑋$ independent

7

🤔
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Quick check
Are 𝑋!, 𝑋", … , 𝑋# i.i.d. with the following distributions?

1. 𝑋$~Exp 𝜆 , 𝑋$ independent

2. 𝑋$~Exp 𝜆$ , 𝑋$ independent

3. 𝑋$~Exp 𝜆 , 𝑋! = 𝑋" = ⋯ = 𝑋#

4. 𝑋$~Bin 𝑛$ , 𝑝 , 𝑋$ independent
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✅

❌ (unless 𝜆' equal)

❌ dependent: 𝑋$ = 𝑋% = ⋯ = 𝑋&

❌ (unless 𝑛' equal)
Note underlying Bernoulli RVs are i.i.d.!
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(silent drumroll)
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Central Limit Theorem
Consider 𝑛 independent and identically distributed (i.i.d.) variables 𝑋!, 𝑋", … , 𝑋#
with 𝐸 𝑋$ = 𝜇 and Var 𝑋$ = 𝜎".

!
!"#

$

𝑋! ~𝒩(𝑛𝜇, 𝑛𝜎%)

The sum of 𝑛 i.i.d. random variables is normally distributed with mean 𝑛𝜇
and variance 𝑛𝜎".

11

As 𝑛 → ∞
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True happiness

12
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Sum of dice rolls

Roll 𝑛 independent dice. Let 𝑋$ be the outcome of roll 𝑖. 𝑋% are i.i.d.

13

0
'($

$

𝑋'

2 4 6 8 10 12
0.0

0.1

0.2

1 2 3 4 5 6
0.0

0.1

0.2

3 5 7 9 11131517

0
'($

%

𝑋' 0
'($

)

𝑋'
Sum of 1
die roll

Sum of 2
dice rolls

Sum of 3
dice rolls

How many ways
can you roll a total
of 3 vs 11?
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CLT explains a lot

14

0
'($

&

𝑋' ~𝒩(𝑛𝜇, 𝑛𝜎%)

0 1 2 3 4 5

𝑛 = 5

Galton Board, by Sir Francis Galton
(1822-1911)

As 𝑛 → ∞
The sum of 𝑛 i.i.d. random variables is normally 
distributed with mean 𝑛𝜇 and variance 𝑛𝜎%.
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CLT explains a lot

15

0
'($

&

𝑋' ~𝒩(𝑛𝜇, 𝑛𝜎%)

Normal approximation of Binomial
Sum of i.i.d. Bernoulli RVs ≈ Normal

𝑋~Bin(𝑛, 𝑝)𝑋 =0
'($

&

𝑋'

𝑋~𝒩 𝑛𝑝, 𝑛𝑝(1 − 𝑝)

Proof:

𝑋~𝒩 𝑛𝜇, 𝑛𝜎" CLT, as 𝑛 → ∞

(substitute mean,
variance of Bernoulli) 

Let 𝑋'~Ber(𝑝) for 𝑖 = 1,… , 𝑛, where 𝑋' are i.i.d.
𝐸 𝑋' = 𝑝, Var 𝑋' = 𝑝(1 − 𝑝)

As 𝑛 → ∞
The sum of 𝑛 i.i.d. random variables is normally 
distributed with mean 𝑛𝜇 and variance 𝑛𝜎%.
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CLT explains a lot

16

0
'($

&

𝑋' ~𝒩(𝑛𝜇, 𝑛𝜎%)

Sample of
size 15,

sum values

Distribution of 𝑋' Distribution of ∑'($$* 𝑋'

As 𝑛 → ∞
The sum of 𝑛 i.i.d. random variables is normally 
distributed with mean 𝑛𝜇 and variance 𝑛𝜎%.
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CLT explains a lot

17

0
'($

&

𝑋' ~𝒩(𝑛𝜇, 𝑛𝜎%)

Sample of
size 15,

average values

(sample mean) Distribution of $
$*
∑'($$* 𝑋'Distribution of 𝑋'

As 𝑛 → ∞
The sum of 𝑛 i.i.d. random variables is normally 
distributed with mean 𝑛𝜇 and variance 𝑛𝜎%.
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Proof of CLT

18

The sum of 𝑛 i.i.d. random variables is normally 
distributed with mean 𝑛𝜇 and variance 𝑛𝜎%.0

'($

&

𝑋' ~𝒩(𝑛𝜇, 𝑛𝜎%)

• The Fourier Transform of a PDF is called a characteristic function.
• Take the characteristic function of the probability mass of the sample 

distance from the mean, divided by standard deviation
• Show that this approaches an

exponential function in the limit as 𝑛 → ∞: 
• This function is in turn the characteristic function of the Standard 

Normal, 𝑍~ 𝒩(0,1).

Proof:

𝑓 𝑥 = 𝑒/
0!
"

(this proof is beyond the scope of CS109)

As 𝑛 → ∞



CLT example

19

18c_clt_example
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Sum of 𝑛 independent Uniform RVs
Let 𝑋 = ∑$1!# 𝑋$ be sum of i.i.d. RVs, where 𝑋$~Uni 0,1 .

For different 𝑛, how close is the CLT approximation of 𝑃 𝑋 ≤ 𝑛/3 ?

20

𝑛 = 2: 𝑃 𝑋 ≤ 2/3 ≈ 0.2222

𝑋 ≈ 𝑌~𝒩(𝑛𝜇, 𝑛𝜎")

Exact

𝑥

PD
F

CLT approximation

𝜇 = 𝐸 𝑋' = 1/2
𝜎% = Var 𝑋' = 1/12

⟹ 𝑌~𝒩(1, 1/6)

𝑃 𝑋 ≤ 2/3 ≈ 𝑃 𝑌 ≤ 2/3

= Φ
2/3 − 1
1/6

≈ 0.2071
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Sum of 𝑛 independent Uniform RVs
Let 𝑋 = ∑$1!# 𝑋$ be sum of i.i.d. RVs, where 𝑋$~Uni 0,1 .

For different 𝑛, how close is the CLT approximation of 𝑃 𝑋 ≤ 𝑛/3 ?

21

𝑛 = 5: 𝑃 𝑋 ≤ 5/3 ≈ 0.1017

𝑋 ≈ 𝑌~𝒩(𝑛𝜇, 𝑛𝜎")

Exact

𝑥

PD
F

CLT approximation

𝜇 = 𝐸 𝑋' = 1/2
𝜎% = Var 𝑋' = 1/12

⟹ 𝑌~𝒩(5/2, 5/12)

𝑃 𝑋 ≤ 5/3 ≈ 𝑃 𝑌 ≤ 5/3

= Φ
5/3 − 5/2

5/12
≈ 0.0984
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Sum of 𝑛 independent Uniform RVs
Let 𝑋 = ∑$1!# 𝑋$ be sum of i.i.d. RVs, where 𝑋$~Uni 0,1 .

For different 𝑛, how close is the CLT approximation of 𝑃 𝑋 ≤ 𝑛/3 ?

22

𝑛 = 10: 𝑃 𝑋 ≤ 10/3 ≈ 0.0337

𝑋 ≈ 𝑌~𝒩(𝑛𝜇, 𝑛𝜎")

Exact

𝑥

PD
F

CLT approximation

𝜇 = 𝐸 𝑋' = 1/2
𝜎% = Var 𝑋' = 1/12

⟹ 𝑌~𝒩(5, 5/6)

𝑃 𝑋 ≤ 10/3 ≈ 𝑃 𝑌 ≤ 10/3

= Φ
10/3 − 5

5/6
≈ 0.0339
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Sum of 𝑛 independent Uniform RVs
Let 𝑋 = ∑$1!# 𝑋$ be sum of i.i.d. RVs, where 𝑋$~Uni 0,1 .

For different 𝑛, how close is the CLT approximation of 𝑃 𝑋 ≤ 𝑛/3 ?

23

𝑛 = 10:

𝑥

PD
F

𝜇 = 𝐸 𝑋' = 1/2
𝜎% = Var 𝑋' = 1/12

Most books will tell you that CLT holds if 𝑛 ≥ 30, but it can hold 
for smaller 𝑛 depending on the distribution of your i.i.d. 𝑋'’s.

𝑛 = 5:

𝑥

PD
F

𝑛 = 2:

𝑥

PD
F



Sum/average/
max of i.i.d. 
random 
variables

24

18d_clt_extensions
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What about other functions?

25

K
$1!

#

𝑋$ ~𝒩(𝑛𝜇, 𝑛𝜎")

?

Sum of i.i.d. RVs

Average of i.i.d. RVs

Max of i.i.d. RVs

(sample mean)
?

Let 𝑋!, 𝑋", … , 𝑋# be i.i.d., where 𝐸 𝑋$ = 𝜇, Var 𝑋$ = 𝜎". As 𝑛 → ∞:
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What about other functions?

26

K
$1!

#

𝑋$ ~𝒩(𝑛𝜇, 𝑛𝜎")

?

Average of i.i.d. RVs

Max of i.i.d. RVs

(sample mean)
?

Let 𝑋!, 𝑋", … , 𝑋# be i.i.d., where 𝐸 𝑋$ = 𝜇, Var 𝑋$ = 𝜎". As 𝑛 → ∞:

Sum of i.i.d. RVs
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Distribution of sample mean
Let 𝑋!, 𝑋", … , 𝑋# be i.i.d., where 𝐸 𝑋$ = 𝜇, Var 𝑋$ = 𝜎". As 𝑛 → ∞:

Define:

𝑌~𝒩 𝑛𝜇, 𝑛𝜎"

L𝑋 = !
#
𝑌

L𝑋~𝒩( ? , ? )

27

2𝑋 =
1
𝑛
5
!"#

$

𝑋! (sample mean) 𝑌 =5
!"#

$

𝑋! (sum)

(Linear transform of a Normal)

(CLT, as 𝑛 → ∞)
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Distribution of sample mean
Let 𝑋!, 𝑋", … , 𝑋# be i.i.d., where 𝐸 𝑋$ = 𝜇, Var 𝑋$ = 𝜎". As 𝑛 → ∞:

Define:

𝑌~𝒩 𝑛𝜇, 𝑛𝜎"

L𝑋 = !
#
𝑌

L𝑋~𝒩 𝜇, 7
!

#

28

2𝑋 =
1
𝑛
5
!"#

$

𝑋! (sample mean) 𝑌 =5
!"#

$

𝑋! (sum)

(CLT, as 𝑛 → ∞)

(Linear transform of a Normal)

The average of i.i.d. random variables (i.e., 
sample mean) is normally distributed with 
mean 𝜇 and variance 𝜎%/𝑛.

1
𝑛
0
'($

&

𝑋' ~𝒩(𝜇,
𝜎%

𝑛
)

Demo: http://onlinestatbook.com/stat_sim/sampling_dist/

http://onlinestatbook.com/stat_sim/sampling_dist/
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?

What about other functions?

29

K
$1!

#

𝑋$ ~𝒩(𝑛𝜇, 𝑛𝜎")

Average of i.i.d. RVs

Max of i.i.d. RVs

(sample mean)

Let 𝑋!, 𝑋", … , 𝑋# be i.i.d., where 𝐸 𝑋$ = 𝜇, Var 𝑋$ = 𝜎". As 𝑛 → ∞:

Sum of i.i.d. RVs

1
𝑛
K
$1!

#

𝑋$ ~𝒩(𝜇,
𝜎"

𝑛
)

Gumbel
(see Fisher-Tippett Gnedenko Theorem)
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18: Central Limit 
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Lisa Yan and Jerry Cain
October 23, 2020
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Think
Slide 36 has a question to go over by 
yourself.

Post any clarifications here!
https://us.edstem.org/courses/2678/discussion/153773

Think by yourself: 2 min

31

🤔(by yourself)

https://us.edstem.org/courses/2678/discussion/153773
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Quick check
What dimensions are the following RVs? 
(Let 𝑋$ be i.i.d. with mean 𝜇)
1. 𝑋!
2. 𝑋!, 𝑋", … , 𝑋#

3.

4.

5.

32

A. 1-D random variable
B. 𝑛 -D random variable (a vector)
C. not a random variable

0
'($

&

𝑋'

1
𝑛0
'($

&

𝑋'

1
𝑛
0
'($

&

𝜇 🤔(by yourself)
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Quick check
What dimensions are the following RVs? 
(Let 𝑋$ be i.i.d. with mean 𝜇)
1. 𝑋!
2. 𝑋!, 𝑋", … , 𝑋#

3.

4.

5.

33

A. 1-D random variable
B. 𝑛 -D random variable (a vector)
C. not a random variable

0
'($

&

𝑋'

1
𝑛0
'($

&

𝑋'

1
𝑛
0
'($

&

𝜇

(aka the sample mean)

(aka a sample)
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Dice game
You will roll 10 6-sided dice 𝑋!, 𝑋", … , 𝑋!8 .
• Let 𝑋 = 𝑋! + 𝑋" +⋯+ 𝑋!8, the total value of all 10 rolls.
• You win if 𝑋 ≤ 25 or 𝑋 ≥ 45.

34

,
!"#

$

𝑋! ~𝒩(𝑛𝜇, 𝑛𝜎%)As 𝑛 → ∞:

🤔

To the demo!

https://drive.google.com/file/d/1bKQvpgTMF0zJRVl63XhBb_vXncykxwC0/view?usp=sharing


Breakout 
Rooms

Check out the question on the next slide 
(Slide 36). Post any clarifications here!
https://us.edstem.org/courses/2678/discussion/153773

Breakout rooms: 3 min

35

🤔

https://us.edstem.org/courses/2678/discussion/153773
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Dice game
You will roll 10 6-sided dice 𝑋!, 𝑋", … , 𝑋!% .
• Let 𝑋 = 𝑋! + 𝑋" +⋯+ 𝑋!%, the total value of all 10 rolls.
• You win if 𝑋 ≤ 25 or 𝑋 ≥ 45.

And now the truth (according to the CLT)…

36

,
!"#

$

𝑋! ~𝒩(𝑛𝜇, 𝑛𝜎%)As 𝑛 → ∞:

1. Define RVs and
state goal.

2. Solve.

𝐸 𝑋' = 3.5,
Var 𝑋' = 35/12 Approximate:

𝑃 𝑋 ≤ 25 or 𝑋 ≥ 45Want:

?

🤔
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Dice game
You will roll 10 6-sided dice 𝑋!, 𝑋", … , 𝑋!% .
• Let 𝑋 = 𝑋! + 𝑋" +⋯+ 𝑋!%, the total value of all 10 rolls.
• You win if 𝑋 ≤ 25 or 𝑋 ≥ 45.

And now the truth (according to the CLT)…

37

,
!"#

$

𝑋! ~𝒩(𝑛𝜇, 𝑛𝜎%)As 𝑛 → ∞:

1. Define RVs and
state goal.

2. Solve.

𝐸 𝑋' = 3.5,
Var 𝑋' = 35/12

𝑋 ≈ 𝑌~𝒩(10 3.5 , 10 35/12 )
Approximate:

𝑃 𝑋 ≤ 25 or 𝑋 ≥ 45Want:

𝑃 𝑌 ≤ 25.5 + 𝑃 𝑌 ≥ 44.5 1 − 𝑃 25.5 ≤ 𝑌 ≤ 44.5or

continuity
correction⚠
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Dice game
You will roll 10 6-sided dice 𝑋!, 𝑋", … , 𝑋!% .
• Let 𝑋 = 𝑋! + 𝑋" +⋯+ 𝑋!%, the total value of all 10 rolls.
• You win if 𝑋 ≤ 25 or 𝑋 ≥ 45.

And now the truth (according to the CLT)…

38

,
!"#

$

𝑋! ~𝒩(𝑛𝜇, 𝑛𝜎%)As 𝑛 → ∞:

1. Define RVs and
state goal.

2. Solve.

𝐸 𝑋' = 3.5,
Var 𝑋' = 35/12

𝑋 ≈ 𝑌~𝒩(10 3.5 , 10 35/12 )
Approximate:

𝑃 𝑋 ≤ 25 or 𝑋 ≥ 45Want:

𝑃 𝑌 ≤ 25.5 + 𝑃 𝑌 ≥ 44.5 = Φ
25.5 − 35
10 35/12

+ 1 − Φ
44.5 − 35
10 35/12

≈ Φ −1.76 + 1 − Φ 1.76 ≈ 1 − 0.9608 + 1 − 0.9608 = 0.0784
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Dice game
You will roll 10 6-sided dice 𝑋!, 𝑋", … , 𝑋!8 .
• Let 𝑋 = 𝑋! + 𝑋" +⋯+ 𝑋!8, the total value of all 10 rolls.
• You win if 𝑋 ≤ 25 or 𝑋 ≥ 45.

And now the truth (according to the CLT)…

39

,
!"#

$

𝑋! ~𝒩(𝑛𝜇, 𝑛𝜎%)As 𝑛 → ∞:

0

0.02

0.04

0.06

0.08

10 20 30 40 50 60

≈ 𝑃 𝑌 ≤ 25.5 + 𝑃 𝑌 ≥ 44.5
≈ 0.0786

(by CLT)

𝑃 𝑋 ≤ 25 or 𝑋 ≥ 45 = 0.0780
(exact, by computer)

Check out 
the code!

𝑃 𝑋 ≤ 25 or 𝑋 ≥ 45 ≈ 0.0776
(exact, by computer)

https://colab.research.google.com/drive/1OCUaJdAk2FjHdd4KjCOSSLVf94qs9tE2?authuser=1
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Summary: Working with the CLT

40

⚠
If 𝑋' is discrete:

Use the continuity 
correction on 𝑌!

K
$1!

#

𝑋$ ~𝒩(𝑛𝜇, 𝑛𝜎")

1
𝑛
K
$1!

#

𝑋$ ~𝒩(𝜇,
𝜎"

𝑛
)

Sum of i.i.d. RVs

Average of i.i.d. RVs
(sample mean)

Let 𝑋!, 𝑋", … , 𝑋# i.i.d., where 𝐸 𝑋$ = 𝜇, Var 𝑋$ = 𝜎". As 𝑛 → ∞:



Interlude for 
jokes/announcements

41
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Announcements

42

Quiz #2 Review session

When: Monday 10/26 7pm-9pm PT
Recorded: yes

Zoom link
Quiz #2 Info and practice: Exam page link
Covers PS3, PS4 (i.e., up to and including Lecture 15)

https://stanford.zoom.us/j/96849485259?pwd=WGNjT1dRMFlsTFQyODcxdjR1aU41QT09
http://web.stanford.edu/class/cs109/exams/quizzes.html


Think Slide 43 has a question to go over by yourself.

Post any clarifications here!
https://us.edstem.org/courses/2678/discussion/153773

Think by yourself: 2 min

43

🤔(by yourself)

https://us.edstem.org/courses/2678/discussion/153773
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Crashing website
• Let 𝑋 = number of visitors to a website, where 𝑋~Poi 100 .
• The server crashes if there are ≥ 120 requests/minute.

What is 𝑃 server crashes in next minute ?

44

Strategy: 
Poisson (exact) 𝑃 𝑋 ≥ 120 = 5

%"#&'

(
100 %𝑒)#''

𝑘! ≈ 0.0282

Strategy:
CLT
(approx.)

🤔
How would we involve CLT here?

(Hint: Is there a way to represent 𝑋 as a sum of i.i.d. RVs?)
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Crashing website
• Let 𝑋 = number of visitors to a website, where 𝑋~Poi 100 .
• The server crashes if there are ≥ 120 requests/minute.

What is 𝑃 server crashes in next minute ?
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Strategy: 
Poisson (exact) 𝑃 𝑋 ≥ 120 = 5

%"#&'

(
100 %𝑒)#''

𝑘! ≈ 0.0282

Strategy:
CLT
(approx.)

State 
approx. 
goal

Poi 100 ~0
'($

&

Poi 100/𝑛 𝑋 ≈ 𝑌~𝒩(𝑛𝜇, 𝑛𝜎")

𝑃 𝑋 ≥ 120 ≈ 𝑃 𝑌 ≥ 119.5

Solve 𝑃 𝑌 ≥ 119.5 = 1 − Φ
119.5 − 100

100
= 1 − Φ 1.95 ≈ 0.0256Check out 

the code!

https://colab.research.google.com/drive/1OCUaJdAk2FjHdd4KjCOSSLVf94qs9tE2?authuser=1
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As 𝑛 → ∞:Clock running time

46

L𝑋~𝒩 𝑡,
4
𝑛

𝑃 𝑡 − 0.5 ≤ L𝑋 ≤ 𝑡 + 0.5 = 0.95Want:

𝑃 −0.5 ≤ L𝑋 − 𝑡 ≤ 0.5 = 0.95L𝑋 − 𝑡~𝒩 0,
4
𝑛

(linear 
transform of 

a normal)

(CLT)

Want to find the mean (clock)
runtime of an algorithm, 𝜇 = 𝑡 sec.
• Suppose variance of

runtime is 𝜎" = 4 sec2.
How many trials do we need s.t. estimated time = 𝑡 ± 0.5 with 95% certainty?

Run algorithm repeatedly (i.i.d. trials):
• 𝑋' = runtime of 𝑖-th run (for 1 ≤ 𝑖 ≤ 𝑛)
• Estimate runtime to be

average of 𝑛 trials, L𝑋

1. Define RVs and
state goal.

2. Solve.

1
𝑛,
!"#

$

𝑋! ~𝒩(𝜇,
𝜎%

𝑛 )
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Clock running time
Want to find the mean (clock)
runtime of an algorithm, 𝜇 = 𝑡 sec.
• Suppose variance of

runtime is 𝜎" = 4 sec2.
How many trials do we need s.t. estimated time = 𝑡 ± 0.5 with 95% certainty?
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Run algorithm repeatedly (i.i.d. trials):
• 𝑋' = runtime of 𝑖-th run (for 1 ≤ 𝑖 ≤ 𝑛)
• Estimate runtime to be

average of 𝑛 trials, L𝑋

1. Define RVs and
state goal.

0.95 =
𝑃 −0.5 ≤ L𝑋 − 𝑡 ≤ 0.5

L𝑋 − 𝑡~𝒩 0,
4
𝑛

2. Solve.

0.95 = 𝐹 2=/> 0.5 − 𝐹 2=/> −0.5

= Φ
0.5 − 0
4/𝑛

− Φ
−0.5 − 0

4/𝑛
= 2Φ

𝑛
4

− 1

As 𝑛 → ∞:
1
𝑛,
!"#

$

𝑋! ~𝒩(𝜇,
𝜎%

𝑛 )
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Clock running time
Want to find the mean (clock)
runtime of an algorithm, 𝜇 = 𝑡 sec.
• Suppose variance of

runtime is 𝜎" = 4 sec2.
How many trials do we need s.t. estimated time = 𝑡 ± 0.5 with 95% certainty?
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Run algorithm repeatedly (i.i.d. trials):
• 𝑋' = runtime of 𝑖-th run (for 1 ≤ 𝑖 ≤ 𝑛)
• Estimate runtime to be

average of 𝑛 trials, L𝑋

1. Define RVs and
state goal.

0.95 =
𝑃 −0.5 ≤ L𝑋 − 𝑡 ≤ 0.5

L𝑋 − 𝑡~𝒩 0,
4
𝑛

2. Solve.

0.95 = 𝐹 2=/> 0.5 − 𝐹 2=/> −0.5

= Φ
0.5 − 0
4/𝑛

− Φ
−0.5 − 0

4/𝑛
= 2Φ

𝑛
4

− 1

0.975 = Φ 𝑛/4
𝑛/4 = Φ/! 0.975 ≈ 1.96 𝑛 ≈ 62

As 𝑛 → ∞:
1
𝑛,
!"#

$

𝑋! ~𝒩(𝜇,
𝜎%

𝑛 )
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Clock running time
Want to find the mean (clock)
runtime of an algorithm, 𝜇 = 𝑡 sec.
• Suppose variance of

runtime is 𝜎" = 4 sec2.
How many trials do we need s.t. estimated time = 𝑡 ± 0.5 with 95% certainty?
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Run algorithm repeatedly (i.i.d. trials):
• 𝑋' = runtime of 𝑖-th run (for 1 ≤ 𝑖 ≤ 𝑛)
• Estimate runtime to be

average of 𝑛 trials, L𝑋

𝑛 ≈ 62

As 𝑛 → ∞:
1
𝑛,
!"#

$

𝑋! ~𝒩(𝜇,
𝜎%

𝑛 )

Interpret: As we increase 𝑛 (the size of our sample):
• The variance of our sample mean, 𝜎"/𝑛 decreases
• The probability that our sample mean L𝑋 is close

to the true mean 𝜇 increases
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Wonderful form of cosmic order

I know of scarcely anything so apt to impress the imagination as the 
wonderful form of cosmic order expressed by the ”[Central limit theorem]". 
The law would have been personified by the Greeks and deified, if they had 
known of it. It reigns with serenity and in complete self-effacement, amidst 

the wildest confusion. The huger the mob, and the greater the apparent 
anarchy, the more perfect is its sway. 

– Sir Francis Galton

50

(of the Galton Board)

It reigns with serenity and in complete self-effacement, amidst    
the wildest confusion. The huger the mob, and the greater the apparent 
anarchy, the more perfect is its sway. It is the supreme law of Unreason. 

Whenever a large sample of chaotic elements are taken in hand and 
marshalled in the order of their magnitude, an unsuspected and most 

beautiful form of regularity proves to have been latent all along.



Lisa Yan and Jerry Cain, CS109, 2020

Next time
Central Limit Theorem:
• Sample mean L𝑋 ~𝒩 𝜇, 𝜎"/𝑛
• If we know 𝜇 and 𝜎", we can compute probabilities on

sample mean L𝑋 of a given sample size 𝑛

In real life:
• Yes, the CLT still holds….
• But we often don’t know 𝜇 or 𝜎" of our original distribution
• However, we can collect data (a sample of size 𝑛)!
• How can we estimate the values 𝜇 and 𝜎" from our sample?

51

…until next time!



Extra: History 
of the CLT
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18f_extra_clt_history
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Once upon a time…

53

Abraham de Moivre
CLT for 𝑋~Ber 1/2
1733

Aubrey Drake Graham
(Drake)
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A short history of the CLT
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1700

1800

1900

2000

1733: CLT for 𝑋~Ber 1/2
postulated by Abraham de Moivre

1823: Pierre-Simon Laplace extends de Moivre’s
work to approximating Bin 𝑛, 𝑝 with Normal

1901: Alexandr Lyapunov provides precise
definition and rigorous proof of CLT

2018: Drake releases Scorpion
• It was his 5th studio album, bringing his total # of songs to 190
• Mean quality of subsamples of songs is normally distributed (thanks 

to the Central Limit Theorem)


