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Motivating example
You want to know the true mean and 
variance of happiness in Bhutan.
• But you can’t ask everyone.
• You poll 200 random people.
• Your data looks like this:

Happiness = {72, 85, 79, 91, 68, …, 71}

• The mean of all these numbers is 83.
Is this the true mean happiness of 
Bhutanese people?

4
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Population

5

This is a population.
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Sample

6

A sample is selected from a population.
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Sample

7

A sample is selected from a population.
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A sample, mathematically
Consider 𝑛 random variables 𝑋!, 𝑋", … , 𝑋#.
The sequence 𝑋!, 𝑋", … , 𝑋# is a sample from distribution 𝐹 if:
• 𝑋$ are all independent and identically distributed (i.i.d.)
• 𝑋$ all have same distribution function 𝐹 (the underlying distribution), 

where 𝐸 𝑋$ = 𝜇, Var 𝑋$ = 𝜎"

8

𝜇

𝜎
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A sample of sample size 8:
𝑋!, 𝑋", 𝑋#, 𝑋$, 𝑋%, 𝑋&, 𝑋', 𝑋(

A realization of a sample of size 8:
𝑋!, 𝑋", 𝑋#, 𝑋$, 𝑋%, 𝑋&, 𝑋', 𝑋(

A sample, mathematically

9

59 87 94 99 87 78 69 91

2x
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If we had a distribution 𝐹 of our entire 
population, we could compute exact statistics 
about about happiness.

But we only have 200 people (a sample).

Today: If we only have a single sample,
• How do we report estimated statistics?
• How do we report estimated error of these 

estimates?
• How do we perform hypothesis testing?

A single sample

10

A happy
Bhutanese person
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If we had a distribution 𝐹 of our entire 
population, we could compute exact statistics 
about about happiness.

But we only have 200 people (a sample).

So these population statistics are unknown:
• 𝜇, the population mean
• 𝜎", the population variance

A single sample

12

A happy
Bhutanese person
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If we had a distribution 𝐹 of our entire 
population, we could compute exact statistics 
about about happiness.

But we only have 200 people (a sample).

• From these 200 people, what is our
best estimate of population mean and 
population variance?

• How do we define best estimate?

A single sample

13

A happy
Bhutanese person
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Estimating the population mean

If we only have a sample, 𝑋!, 𝑋", … , 𝑋# :

The best estimate of 𝜇 is the sample mean:

1𝑋 is an unbiased estimator of the population mean 𝜇. 𝐸 1𝑋 = 𝜇

Intuition: By the CLT, 

14

1𝑋 =
1
𝑛
2
$%!

#

𝑋$

1. What is our best estimate of 𝜇, the mean
happiness of Bhutanese people?

!𝑋 ~𝒩(𝜇,
𝜎!

𝑛
) If we could take multiple samples of size 𝑛:

1. For each sample, compute sample mean
2. On average, we would get the population mean
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Sample mean

15

Even if we can’t report 𝜇, we can report our 
sample mean 83.03, which is an unbiased 
estimate of 𝜇.

!𝑋 ~𝒩(𝜇,
𝜎!

𝑛 )
𝑋"~𝐹
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Estimating the population variance

If we knew the entire population 𝑥!, 𝑥", … , 𝑥& :

𝜎! = 𝐸 𝑋 − 𝜇 ! =
1
𝑁
0
"#$

%

𝑥" − 𝜇 !

If we only have a sample, 𝑋!, 𝑋", … , 𝑋# :

16

2. What is 𝜎", the variance of happiness of 
Bhutanese people?

population
variance

population mean

𝑆" =
1

𝑛 − 1
2
$%!

#

𝑋$ − 1𝑋 "sample
variance

sample mean



Lisa Yan and Jerry Cain, CS109, 2020

Calculating population statistics exactly 
requires us knowing all 𝑁 datapoints.

0
Happiness 𝜇

Intuition about the sample variance, 𝑆!

17

𝜎" =
1
𝑁
2
$%!

&

𝑥$ − 𝜇 "population
variance

population mean

𝑥" − 𝜇

Actual, 𝜎"

150

Population size, 𝑁
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Intuition about the sample variance, 𝑆!

18

𝑆" =
1

𝑛 − 1
2
$%!

#

𝑋$ − 1𝑋 "sample
variance

sample mean
Estimate, 𝑆"

𝜎" =
1
𝑁
2
$%!

&

𝑥$ − 𝜇 "population
variance

population mean
Actual, 𝜎"

0
Happiness 𝜇

Population size, 𝑁

150
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Intuition about the sample variance, 𝑆!

19

𝑆" =
1

𝑛 − 1
2
$%!

#

𝑋$ − 1𝑋 "𝜎" =
1
𝑁
2
$%!

&

𝑥$ − 𝜇 "population
variance

sample
variance

population mean sample mean
Actual, 𝜎" Estimate, 𝑆"

0
Happiness 𝜇

Population size, 𝑁
$𝑋

150
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Sample variance is an estimate using an 
estimate, so it needs additional scaling.

Intuition about the sample variance, 𝑆!

20

𝑆" =
1

𝑛 − 1
2
$%!

#

𝑋$ − 1𝑋 "

1500
Happiness 𝜇

𝜎" =
1
𝑁
2
$%!

&

𝑥$ − 𝜇 "population
variance

sample
variance

population mean sample mean

Population size, 𝑁
$𝑋

𝑋$ − !𝑋

Actual, 𝜎" Estimate, 𝑆"
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Estimating the population variance

If we only have a sample, 𝑋!, 𝑋", … , 𝑋# :

The best estimate of 𝜎" is the sample variance:

𝑆" is an unbiased estimator of the population variance, 𝜎". 𝐸 𝑆" = σ"

21

𝑆" =
1

𝑛 − 1
2
$%!

#

𝑋$ − 1𝑋 "

2. What is 𝜎", the variance of happiness of 
Bhutanese people?
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Proof that 𝑆! is unbiased

22

𝐸 𝑆" = 𝜎"(just for reference)

𝐸 𝑆! = 𝐸
1

𝑛 − 1
-
"#$

%

𝑋" − /𝑋 ! ⇒ 𝑛 − 1 𝐸 𝑆! = 𝐸 -
"#$

%

𝑋" − /𝑋 !

𝑛 − 1 𝐸 𝑆! = 𝐸 -
"#$

%

𝑋" − 𝜇 + 𝜇 − /𝑋 !

= 𝐸 -
"#$

%

𝑋" − 𝜇 ! +-
"#$

%

𝜇 − /𝑋 ! + 2-
"#$

%

𝑋" − 𝜇 𝜇 − /𝑋

(introduce 𝜇 − 𝜇)

= 𝐸 -
"#$

%

𝑋" − 𝜇 ! + 𝑛 𝜇 − /𝑋 ! − 2𝑛 𝜇 − /𝑋 !

2 𝜇 − $𝑋 &
!"#

$

𝑋! − 𝜇

2 𝜇 − $𝑋 &
!"#

$

𝑋! − 𝑛𝜇

2 𝜇 − )𝑋 𝑛 )𝑋 − 𝜇

−2𝑛 𝜇 − )𝑋 !

= 𝐸 -
"#$

%

𝑋" − 𝜇 ! − 𝑛 𝜇 − /𝑋 ! =-
"#$

%

𝐸 𝑋" − 𝜇 ! − 𝑛𝐸 /𝑋 − 𝜇 !

= 𝑛𝜎! − 𝑛Var /𝑋 = 𝑛𝜎! − 𝑛
𝜎!

𝑛
= 𝑛𝜎! − 𝜎! = 𝑛 − 1 𝜎! Therefore 𝐸 𝑆! = 𝜎!



Standard error

23

19c_standard_error
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Estimating population statistics

24

1. Collect a sample, 𝑋!, 𝑋", … , 𝑋#.

2. Compute sample mean, 1𝑋 = !
#
∑$%!# 𝑋$.

3. Compute sample deviation, 𝑋$ − 1𝑋.

4. Compute sample variance, 𝑆" = !
#5!

∑$%!# 𝑋$ − 1𝑋 ".

How “close” are our estimates $𝑋 and 𝑆"?

𝑆" = 793

−11, 2, −4,−4,8, −15,… ,−12

1𝑋 = 83

72, 85,79,79,91,68, … , 71
𝑛 = 200

A particular outcome
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Sample mean

25

!𝑋 ~𝒩(𝜇,
𝜎!

𝑛 )

• Var 1𝑋 is a measure of how “close” 1𝑋 is to 𝜇.
• How do we estimate Var 1𝑋 ?

𝑋"~𝐹
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How “close” is our estimate !𝑋 to 𝜇?

def The standard error of the mean is an
estimate of the standard deviation of 1𝑋.

26

Var 1𝑋 =
𝜎"

𝑛
𝐸 $𝑋 = 𝜇

𝑆𝐸 =
𝑆"

𝑛
Intuition:
• 𝑆! is an unbiased estimate of 𝜎!
• 𝑆!/𝑛 is an unbiased estimate of 𝜎!/𝑛 = Var !𝑋
• 𝑆!/𝑛 can estimate Var !𝑋

We want to
estimate this

More info on bias of 
standard error: wikipedia

https://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
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Standard error of the mean

27

Claim: The average happiness of Bhutan is 83,
with a standard error of 1.99.

1. Mean happiness:

83

Bhutan

Av
er

ag
e 

H
ap

pi
ne

ss

0

𝑆𝐸

Closed 
form:

𝑆𝐸 =
𝑆!

𝑛

this is our estimate of 
how “close” we are

this is our best
estimate of 𝜇 error bars

These 2 statistics give a sense of how the 
sample mean random variable !𝑋 behaves.
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Standard error of variance?

28

Claim: The average happiness of Bhutan is 83, 
with a standard error of 1.99.

1. Mean happiness:

83

Bhutan

Av
er

ag
e 

H
ap

pi
ne

ss

0

𝑆𝐸

Closed 
form:

𝑆𝐸 =
𝑆!

𝑛

2. Variance of happiness:

Claim: The variance of happiness of Bhutan is 793.

But how close
are we?

this is our best
estimate of 𝜎!

Closed 
form:

Not covered
in CS109

⚠

error bars

Up next: Compute
Statistics with code!



Bootstrap: 
Sample mean

29

19d_bootstrap_mean
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Bootstrap

The Bootstrap:

Probability for Computer Scientists

30
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Computing statistic of sample mean
What is the standard deviation of the sample mean 1𝑋? (sample size 𝑛 = 200)

31

Sample 
distribution

(we do have this)

𝑆𝐸 =
𝑆
𝑛
= 1.992

Simulated 
estimated statistic???

𝜎
𝑛
= 1.886Population 

distribution
(we don’t have this)

Exact statistic
(we don’t have this)

Estimated statistic, 
by formula,
standard error

Note: We don’t have access to the population.
But Lisa is sharing the exact statistic with you.

1.869 Simulated statistic
(we don’t have this)
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Bootstrap insight 1: Estimate the true distribution

32

≈
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Bootstrap insight 1: Estimate the true distribution
You can estimate the PMF of the underlying distribution, using your sample.*

33

≈

𝐹 ≈ #𝐹The underlying 
distribution

the sample distribution
(aka the histogram of 
your data)

*This is just a histogram of your data!
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Bootstrap insight 2: Simulate a distribution
Approximate the procedure of simulating a distribution of a statistic, e.g., 1𝑋.

34

≈

Population 
distribution

(we don’t have this)

Sample 
distribution

(we do have this)

Bootstrap
means

Simulated distribution of 
sample means

Simulated distribution of 
sample means
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Bootstrapped sample means

35

Estimate the true PMF
using our “PMF” (histogram)

of our sample.

…generate a whole
bunch of sample means

of this estimated distribution…

…and compute the
standard deviation
of this distribution.

means = [84.7, 
83.9, 80.6, 79.8, 
90.3, …, 85.2]

np.std(means)

2.003
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Computing statistic of sample mean
What is the standard deviation of the sample mean 1𝑋? (sample size 𝑛 = 200)

36

Sample 
distribution

(we do have this)

𝑆𝐸 =
𝑆
𝑛
= 1.992 Estimated statistic, 

by formula,
standard error

Simulated estimated 
statistic, bootstrapped 
standard error

2.003

Population 
distribution

(we don’t have this)

𝜎
𝑛
= 1.886 Exact statistic

(we don’t have this)

1.869 Simulated statistic
(we don’t have this)



Lisa Yan and Jerry Cain, CS109, 2020

Bootstrap algorithm

Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times: 

a. Resample sample.size() from PMF 
b. Recalculate the sample mean on the resample

3. You now have a distribution of your sample mean

What is the distribution of your sample mean?

37

We’ll talk about this algorithm 
in detail during live lecture!
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Bootstrap algorithm

Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times: 

a. Resample sample.size() from PMF 
b. Recalculate the statistic on the resample

3. You now have a distribution of your statistic

What is the distribution of your statistic?

38
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Bootstrapped sample variance

Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times: 

a. Resample sample.size() from PMF 
b. Recalculate the sample variance on the resample

3. You now have a distribution of your sample variance

What is the distribution of your sample variance?

39

Even if we don’t have a closed form equation,
we estimate statistics of sample variance with bootstrapping!



(live)
19: Sampling and the 
Bootstrap
Lisa Yan and Jerry Cain
October 26, 2020

40



Think
Slide 42 has a question to go over by 
yourself.

Post any clarifications here or in Zoom chat!
https://us.edstem.org/courses/2678/discussion/160257

Think by yourself: 2 min

41

🤔(by yourself)

https://us.edstem.org/courses/2678/discussion/160257
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Quick check  
1. 𝜇, the population mean 

2. 𝑋!, 𝑋", 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋:, 𝑋; , a sample

3. 𝜎", the population variance

4. 1𝑋, the sample mean

5. 1𝑋 = 83

6. (𝑋! = 59, 𝑋" = 87, 𝑋6 = 94, 𝑋7 = 99,
𝑋8 = 87, 𝑋9 = 78, 𝑋: = 69, 𝑋; = 91)

42

A. Random variable(s)
B. Value
C. Event

🤔
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Quick check
1. 𝜇, the population mean 

2. 𝑋!, 𝑋", 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋:, 𝑋; , a sample

3. 𝜎", the population variance

4. 1𝑋, the sample mean

5. 1𝑋 = 83

6. (𝑋! = 59, 𝑋" = 87, 𝑋6 = 94, 𝑋7 = 99,
𝑋8 = 87, 𝑋9 = 78, 𝑋: = 69, 𝑋; = 91)

43

A. Random variable(s)
B. Value
C. Event

These are outcomes 
from your collected 
data.
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Today: Crash course on (bootstrapped) statistics
If we only have a single sample of RVs generated 
i.i.d. from the same unknown distribution,
how can we perform statistical analysis?

• What is the probability that a Bhutanese peep 
is just straight up loving life?

• What is a good estimate of the population 
mean (and how “close” is the estimate)?

• What is a good estimate of the population 
variance (and how “close” is the estimate)?

44

Population 
distribution

(we don’t have this)

Sample 
distribution

(we do have this)

Review
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Standard error

45

Claim: The average happiness of Bhutan is 83, 
with a standard error of 1.99.

1. Mean happiness:

this is how close
we are

this is our best
estimate of 𝜇

83

Bhutan

Av
er

ag
e 

H
ap

pi
ne

ss

0

𝑆𝐸

✅Closed 
form:

𝑆𝐸 =
𝑆!

𝑛

Verified via
bootstrap:

np.std(means) 
= 2.003

Review

!𝑋 =
1
𝑛
0
"#$

,

𝑋"
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We can bootstrap for standard 
error of sample variance—
a statistic of a statistic.

Standard error

46

Claim: The average happiness of Bhutan is 83, 
with a standard error of 1.99.

1. Mean happiness:

Closed 
form:

𝑆𝐸 =
𝑆!

𝑛

2. Variance of happiness:

Claim: The variance of happiness of Bhutan is 793.

But how close
are we?

this is our best
estimate of 𝜎!

Closed 
form:

Not covered
in CS109

Review

𝑆! =
1

𝑛 − 1
0
"#$

,

𝑋" − !𝑋 !
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Bootstrap

The Bootstrap:

Probability for Computer Scientists

Allows you to do the following:
• Calculate distributions over statistics
• Calculate p values

47

Review
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Bootstrapped sample variance

Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times: 

a. Resample sample.size() from PMF 
b. Recalculate the sample variance on the resample

3. You now have a distribution of your sample variance

What is the distribution of your sample variance?

48

Goal
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Bootstrapped variance

1. Estimate the PMF using the sample
2. Repeat 10,000 times: 

a. Resample sample.size() from PMF 
b. Recalculate the sample variance on the resample

3. You now have a distribution of your sample variance

49
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Bootstrapped variance

1. Estimate the PMF using the sample
2. Repeat 10,000 times: 

a. Resample sample.size() from PMF 
b. Recalculate the sample variance on the resample

3. You now have a distribution of your sample variance

50
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1. Estimate the PMF using the sample
2. Repeat 10,000 times: 

a. Resample sample.size() from PMF 
b. Recalculate the sample variance on the resample

3. You now have a distribution of your sample variance

Bootstrapped variance

51

[52, 38, 98, 107, ..., 94]

⚠

This resampled sample is 
generated with replacement.

Why are these samples 
different? 🤔
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1. Estimate the PMF using the sample
2. Repeat 10,000 times: 

a. Resample sample.size() from PMF 
b. Recalculate the sample variance on the resample

3. You now have a distribution of your sample variance

Bootstrapped variance

52

[52, 38, 98, 107, ..., 94]

variances = [827.4]
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Bootstrapped variance

1. Estimate the PMF using the sample
2. Repeat 10,000 times: 

a. Resample sample.size() from PMF 
b. Recalculate the sample variance on the resample

3. You now have a distribution of your sample variance

53

variances = [827.4]
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1. Estimate the PMF using the sample
2. Repeat 10,000 times: 

a. Resample sample.size() from PMF 
b. Recalculate the sample variance on the resample

3. You now have a distribution of your sample variance

Bootstrapped variance

54

[116, 76, 132, 85, ..., 78]

variances = [827.4]
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1. Estimate the PMF using the sample
2. Repeat 10,000 times: 

a. Resample sample.size() from PMF 
b. Recalculate the sample variance on the resample

3. You now have a distribution of your sample variance

Bootstrapped variance

55

variances = [827.4, 846.1]

[116, 76, 132, 85, ..., 78]
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1. Estimate the PMF using the sample
2. Repeat 10,000 times: 

a. Resample sample.size() from PMF 
b. Recalculate the sample variance on the resample

3. You now have a distribution of your sample variance

Bootstrapped variance

56

variances = [827.4, 846.1]
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Bootstrapped variance

1. Estimate the PMF using the sample
2. Repeat 10,000 times: 

a. Resample sample.size() from PMF 
b. Recalculate the sample variance on the resample

3. You now have a distribution of your sample variance

57

variances = [827.4, 846.1, 726.0, …, 860.7]
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Bootstrapped variance

58

What is the bootstrapped 
standard error?

variances = [827.4,
846.1, 726.0, …,
860.7]

3. You now have a distribution of your sample variance

np.std(variances)

Bootstrapped standard error: 66.16
• Simulate a distribution of 

sample variances
• Compute standard deviation
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Standard error

59

Claim: The average happiness of Bhutan is 83, 
with a standard error of 1.99.

1. Mean happiness:

83

Bhutan

Av
er

ag
e 

H
ap

pi
ne

ss

0

𝑆𝐸

Closed 
form:

𝑆𝐸 =
𝑆!

𝑛

2. Variance of happiness:

Claim: The variance of happiness of Bhutan is 793,
with a bootstrapped standard error of 66.16.

𝑆! is our best
estimate of 𝜎!

this is how close we are,
calculated by bootstrapping
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1. Estimate the PMF using the sample
2. Repeat 10,000 times: 

a. Resample sample.size() from PMF 
b. Recalculate the statistic on the resample

3. You now have a distribution of your statistic

Algorithm in practice: Resampling

60

𝑃 𝑋 = 𝑘 =
# values in sample equal to 𝑘

𝑛

?

[116, 76, 132, 85, ..., 78]
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Algorithm in practice: Resampling

61

𝑃 𝑋 = 𝑘 =
# values in sample equal to 𝑘

𝑛

?

[116, 76, 132, 85, ..., 78]

def resample(sample, n):
# estimate the PMF using the sample
# draw n new samples from the PMF
return np.random.choice(sample, n, replace=True)

This resampled sample is 
generated with replacement.
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To the code!

Bootstrap provides a way to calculate probabilities of 
statistics using code.

Bootstrapping works for any statistic*

62

*as long as your sample is i.i.d. and the underlying distribution does not have a long tail

Google colab notebook link
(we will use this in Breakout rooms)

https://drive.google.com/file/d/13LypVzntZQs3a_OV_B1MACdJIeC1jMLV/view?usp=sharing
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Bradley Efron

63

• Invented bootstrapping in 1979
• Still a professor at Stanford
• Won a National Science Medal

Efron’s dice: 4 dice 𝐴, 𝐵, 𝐶, 𝐷 such that

𝑃 𝐴 > 𝐵 = 𝑃 𝐵 > 𝐶 = 𝑃 𝐶 > 𝐷 = 𝑃 𝐷 > 𝐴 = "
6



Interlude for 
jokes/announcements

64
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Announcements

65

Week 8 (Election Day 11/3)

Concept Check 23 (Wed 11/4) Cancelled
Lecture 23 (Wed 11/4) Optional: Quicksort runtime (Jerry)

Section next week: Cancelled
Section handout: Will still be posted

Extra Section / Destress OH: Wed 11/4 10am-12pm (Lisa) 
PS5 due date: Fri 11/6 1pm

Problem Set 5

Out: now
Due: Friday 11/6 1pm
Covers: Up to and including today



Bootstrap:
p-value

66

LIVE
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Null hypothesis test

67

Nepal
Happiness

4.45
2.45
6.37
2.07

…
1.63

Bhutan
Happiness

0.91
0.34
1.91
1.61

…
1.08

1𝑋! = 3.1 1𝑋" = 2.4

Claim: The difference in mean happiness between Nepal and 
Bhutan is 0.7 happiness points, and this is significant.
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Example:
• Flip some coin 100 times.
• Flip the same coin another 150 times.

• Compute fraction of heads in both groups.
• There is a possibility we’ll see the observed difference

in these fractions even if we used the same coin

Null hypothesis test

68

def null hypothesis – Even if there is no pattern (i.e., the two samples
are from identical distributions), your claim might have arisen by chance.

def p-value – What is the probability that, under the null hypothesis, the 
observed difference occurs?

Null hypothesis assumes 
we use the same coin

p-value

A significant p-value (< 0.05) means we reject the null hypothesis.
Errata: Lisa said 0.01 in lecture. Should be 0.05
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Universal sample

69

(this is what the null 
hypothesis assumes)

1𝑋! = 3.1

1𝑋" = 2.4

Want p-value: probability !𝑋$ − !𝑋! = 3.1 − 2.4 happens under null hypothesis
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Bootstrap for p-values

1. Create a universal sample using
your two samples

70

i.e., recreate the 
null hypothesis

+
= ≈
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Bootstrap for p-values

1. Create a universal sample using
your two samples

2. Repeat 10,000 times: 
a. Resample both samples
b. Recalculate the mean difference

between the resamples

3. p-value =

71

Probability
that observed 
difference arose 
by chance

# (mean diffs >= observed diff)
n

bhutan_sample

nepal_sample
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Bootstrap for p-values
def pvalue_boot(bhutan_sample, nepal_sample):

N = size of the bhutan_sample
M = size of the nepal_sample
observed_diff = |mean of bhutan_sample – mean of nepal_sample|

uni_sample = combine bhutan_sample and nepal_sample
count = 0 

repeat 10,000 times:
bhutan_resample = draw N resamples from the uni_sample
nepal_resample = draw M resamples from the uni_sample
muBhutan = sample mean of the bhutan_resample
muNepal = sample mean of the nepal_resample
diff = |muNepal - muBhutan|
if diff >= observed_diff: 

count += 1

pValue = count / 10,000 
72
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Bootstrap for p-values
def pvalue_boot(bhutan_sample, nepal_sample):

N = size of the bhutan_sample
M = size of the nepal_sample
observed_diff = |mean of bhutan_sample – mean of nepal_sample|

uni_sample = combine bhutan_sample and nepal_sample
count = 0 

repeat 10,000 times:
bhutan_resample = draw N resamples from the uni_sample
nepal_resample = draw M resamples from the uni_sample
muBhutan = sample mean of the bhutan_resample
muNepal = sample mean of the nepal_resample
diff = |muNepal - muBhutan|
if diff >= observed_diff: 

count += 1

pValue = count / 10,000 
73

1. Create a universal 
sample using
your two samples
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Bootstrap for p-values
def pvalue_boot(bhutan_sample, nepal_sample):

N = size of the bhutan_sample
M = size of the nepal_sample
observed_diff = |mean of bhutan_sample – mean of nepal_sample|

uni_sample = combine bhutan_sample and nepal_sample
count = 0 

repeat 10,000 times:
bhutan_resample = draw N resamples from the uni_sample
nepal_resample = draw M resamples from the uni_sample
muBhutan = sample mean of the bhutan_resample
muNepal = sample mean of the nepal_resample
diff = |muNepal - muBhutan|
if diff >= observed_diff: 

count += 1

pValue = count / 10,000 
74

2. a. Resample both samples
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Bootstrap for p-values
def pvalue_boot(bhutan_sample, nepal_sample):

N = size of the bhutan_sample
M = size of the nepal_sample
observed_diff = |mean of bhutan_sample – mean of nepal_sample|

uni_sample = combine bhutan_sample and nepal_sample
count = 0 

repeat 10,000 times:
bhutan_resample = draw N resamples from the uni_sample
nepal_resample = draw M resamples from the uni_sample
muBhutan = sample mean of the bhutan_resample
muNepal = sample mean of the nepal_resample
diff = |muNepal - muBhutan|
if diff >= observed_diff: 

count += 1

pValue = count / 10,000 
75

2. b. Recalculate the mean 
difference b/t resamples
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Bootstrap for p-values
def pvalue_boot(bhutan_sample, nepal_sample):

N = size of the bhutan_sample
M = size of the nepal_sample
observed_diff = |mean of bhutan_sample – mean of nepal_sample|

uni_sample = combine bhutan_sample and nepal_sample
count = 0 

repeat 10,000 times:
bhutan_resample = draw N resamples from the uni_sample
nepal_resample = draw M resamples from the uni_sample
muBhutan = sample mean of the bhutan_resample
muNepal = sample mean of the nepal_resample
diff = |muNepal - muBhutan|
if diff >= observed_diff: 

count += 1

pValue = count / 10,000 
76

3. p-value = # (mean diffs > observed diff)
n
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Bootstrap for p-values
def pvalue_boot(bhutan_sample, nepal_sample):

N = size of the bhutan_sample
M = size of the nepal_sample
observed_diff = |mean of bhutan_sample – mean of nepal_sample|

uni_sample = combine bhutan_sample and nepal_sample
count = 0 

repeat 10,000 times:
bhutan_resample = draw N resamples from the uni_sample
nepal_resample = draw M resamples from the uni_sample
muBhutan = sample mean of the bhutan_resample
muNepal = sample mean of the nepal_resample
diff = |muNepal - muBhutan|
if diff >= observed_diff: 

count += 1

pValue = count / 10,000 
77

with replacement!
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Bootstrap

78

Let’s try it!
Google colab notebook link

(we will use this in Breakout rooms)

https://drive.google.com/file/d/13LypVzntZQs3a_OV_B1MACdJIeC1jMLV/view?usp=sharing
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Null hypothesis test

79

Nepal
Happiness

4.45
2.45
6.37
2.07

…
1.63

Bhutan
Happiness

0.91
0.34
1.91
1.61

…
1.08

1𝑋! = 3.1 1𝑋" = 2.4

Claim: The happiness of Nepal and Bhutan have a 0.7 difference 
of means, and this is significant (p < 0.05).

Errata: Lisa said 0.01 in lecture. Should be 0.05


