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20a_intro

Intro to
parameter
estimation




Story so far

At this p0|nt P(Fu=1=01 PU=1)=08
If you are given a model with all the Y ~Poi(5) @
necessary probabilities, you can \7

J P y X1, o, X, 0lild. ﬂ ﬁ

make predictions.
X;~Ber(0.2),
X = Z?=1 Xi

P(Fevz 1|Flu=1)=09 P(T=1|Flu=0,U=0)=0.1
P(T=1|F, =1,U=0)=09
P(T =1|Fy =1,U=1) =10

But what if you want to learn the probabilities in the model?

(I wish...
another day)

Machine Learning
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Al and Machine Learning

Deep
Learning

Machine
Learning

Avrtificial

hﬂemgijii’////

ML: Rooted in probability theory
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Alright, so Deep Learning now?

Tensor Flow

Not so fast...
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Once upon a time...

...there was parameter estimation.
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Recall some estimators

X1, X5, ..., X, are ni.i.d. random variables,
where X; drawn from distribution F with E[X;]

n
=22,

i=1

n
— 1 (X X)Z
n-— 12_ i

=1

Sample mean:

SIP—‘

Sample variance:

Lisa Yan and Jerry Cain, CS109, 2020

= u,Var(X;) = o*.

unbiased estimate of u

unbiased estimate of g2
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What are parameters?

def Many random variables we have learned so far are parametric models:

Distribution = model + parameter 6

ex The distribution Ber(0.2) = Bernoulli model, parameter 8 = 0.2.

For each of the distributions below, what is the parameter 67
Ber(p) 0=p
Poi(1)
Uni(a, )
N(u,0?)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 11



What are parameters?

def Many random variables we have learned so far are parametric models:

Distribution = model + parameter 6

ex The distribution Ber(0.2) = Bernoulli model, parameter 8 = 0.2.

For each of the distributions below, what is the parameter 67

Ber(p) 0=p
Poi(4) =21
Uni(a, B) 0 =(a,p)
N(y,02) 0 = (1,0

Y=mX+b 0 =(m,b)

Lisa

6 is the parameter of a distribution.
6 can be a vector of parameters!

Yan and Jerry Cain, CS109, 2020
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Why do we care?

In the real world, we don’t know the “true” parameters.

But we do get to observe data:  (# times coin comes up heads, lifetimes of

disk drives produced, # visitors to website
per day, etc.)

def estimator : random variable estimating parameter 6 from data.

In parameter estimation,

We use the point estimate of parameter estimate (best single value):
Better understanding of the process producing data
Future predictions based on model
Simulation of future processes

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 13



20b_mle

Maximum
[ikelihood
Estimator




Defining the likelihood of data: Bernoulli

Consider a sample of n i.i.d. random variables X4, X5, ..., X,,.
+ X; was drawn from distribution F = Ber(8) with unknown parameter 6.
* Observed data:

0,0,1,1,1,1,1,1,1,1] (n = 10)

How likely was the observed data if 6 = 0.47
o.L> O. 4%

P(sample|d = 0.4) = l(0.4)8(0.6)2 = 0.000236
I

Likelihood of data
given parameter 8 = 0.4 Is there a better
parameter 07
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Defining the likelihood of data

Consider a sample of n i.i.d. random variables X4, X5, ..., X,,.
X; was drawn from a distribution with density function f(X;|0).
Observed data: (X{, X5, ..., X;;) of Mass

Likelihood question:
How likely is the observed data (X4, X5, ..., X;,) given parameter 67?

Likelihood function, L(6): .
TGRS S A E W preal
i=1

This is just a product, since X; are i.i.d.
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Defining the likelihood of data

L) = | [rexied
=1
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Maximum Likelihood Estimator

Consider a sample of n i.i.d. random variables X4, X,, ..., X;,, drawn from a
distribution f(X;|0).

def The Maximum Likelihood Estimator (MLE) of @ is the value of 8 that
maximizes L(0).

HMLE = dI'g max L(H)
6

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 1s



Maximum Likelihood Estimator

Consider a sample of n i.i.d. random variables X4, X,, ..., X;,, drawn from a

distribution f(X;|0).

def The Maximum Likelihood Estimator (MLE) of @ is the value of 8 that
maximizes L(0).

HMLE = dIg max L(H)
6

Likelihood of your sample

Lo = | [rexie
=1

For continuous X;, f(X;|0) is PDF; for discrete X;, f (X;|0) is PMF

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 19



Maximum Likelihood Estimator

Consider a sample of n i.i.d. random variables X4, X,, ..., X;,, drawn from a
distribution f(X;|0).

def The Maximum Likelihood Estimator (MLE) of @ is the value of 8 that
maximizes L(0).

HMLE = dI'g max L(H)
6

The argument 6
that maximizes L(0)

Stay tuned!
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argmax




New function: arg max

The argument x that

drg max f(x) maximizes the function f(x).

X

1. max f(x)?

Let f(x) = —x? + 4,
where —2 < x < 2.

2. argmax f(x)?

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 22



New function: arg max

The argument x that

drg max f(x) maximizes the function f(x).

X

1. max f(x)?

Let f(x) = —x? + 4, — 4

where -2 < x < 2.

2. argmax f(x)?
= 0

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 23




Argmax and log

The argument x that

drg max f(x) maximizes the function f(x).

X

= arg max log f(x)
X

f(x) log f (x)
Let f(x) = —x? + 4, |
where —2 < x < 2. e BN
o0 1 0 1 |2
4 |

argmax f(x) =0
X

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 24



Logs all around

° Logisincreasing: - Log of product = sum of logs:
x<y&elogx <logy

log(ab) =loga +logh
\og X

* Natural logs

T et e
Vx{x - MxHﬂ&) [ob(x

= (o]l <l [%

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 25



Argmax properties

The argument x that

drg max f(x) maximizes the function f(x).

X

arg max ]og f(x) (log is an increasing function:
X x <y logx <logy)

darg max (C logf(x)) (x <y clogx <clogy)
X

for any positive constant ¢

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 26



Argmax properties

arg

How do we compute argma

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 27



Finding the argmax with calculus

~ _ 2
X = arg max f(x) Let f(x) = —x“ + 4,
X where =2 < x < 2.
. . f(x)
Differentiate w.r.t. d _ d 2 _ 4
argmax’s argument Ef(x) - E(x +4) =2x .
2 1
Set to 0 and solve 2x =0 = x=0 1]
2 1 ° 0 1 2

Make sure X Check f(& + €) < f (&)
is a maximum Often ignored in expository derivations
We’ll ignore it here too
(and won’t require it in class)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 28



Maximum Likelihood Estimator

Consider a sample of n i.i.d. random -
variables X4, X5, ..., X,,, drawn from a L(9) = Hf(XiW)
distribution f(X;|0). i=1

0, Maximizes the likelihood of our Oy g = argmax L(0)

sample, L(6): 0

6,15 also maximizes the log-likelihood Oy r = arg max LL(6O)
6

function, LL(0):

n n
LL(6) = log L(8) = log (1_[ f(Xl-|6?)> - z log £ (X;|0) LL(6) is often easier to
i=1 i=1 differentiate than L(0).

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 29
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MLE: Bernoulli




Computing the MLE Oy = arg max LL(0)

General approach for finding 8y, , the MLE of 6:

1. Determine 2. Differentiate LL(6) 3. Solve resulting
formula for LL(6) w.r.t. (each) 6 (simultaneous)
equations
n ..
dLL(0) U iz dlinize: (algebra or
— , JdLL(6
LL(6) Zlogf(Xlw) 06 aé )_o computer)
1=

4. Make sure derived 8, ¢ is @ maximum

* Check LL(QMLE + 6) < LL(HMLE)
e Often ignored in expository derivations
 We’'ll ignore it here too (and won't require it in class)

LL(0) is often easier to
differentiate than L(8).

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 31



Maximum Likelihood with Bernoulli

Consider a sample of ni.i.d. RVs X, X,, ..., X,,. | * Let X;~Ber(p).
What |S QMLE — pMLE?

1. Determine

formula for LL(8) LL(6) =

log f (X;|p)

n
=1

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 32



Maximum Likelihood with Bernoulli

Consider a sample of ni.i.d. RVs Xy, X5, ..., X,,. | * Let X;~Ber(p).
Whatis Oy1p = PmLE"? © fXilp) =p*(A —p)t™¥

n
1. Determine
formula for LL(8) LL(®) = Z log f (X;p)
l:

f(Xilp) = p*i(1 = p)* "t where X; € {0,1}
Xi=1 gkt = p (-pt =
X712 é?()(r\:O\P) :PD C\"FYHDL \"P

* |s differentiable with respect to p
* Valid PMF over discrete domain

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 33



Maximum Likelihood with Bernoulli

Consider a sample of ni.i.d. RVs Xy, X5, ..., X,,. | * Let X;~Ber(p).
Whatis Oy = PmLE"? © fXilp) =p*i(1 —p)tT*

n
1. Determine _ _ 1-X.
L 6) LL(@)-ZIogf(XAp) Zlog(zo (1 - p)')
1=

X ki oy
loé? ~ \500’?3 —c ]037(

= 2 [X;logp + (1 — X;) log(1 — p)] )
Togp LK, 1oy ipy 2~ bP2X

=Y(logp) + (n—Y)log(1 —p), whereY = z X;

=1 .
Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 34



Maximum Likelihood with Bernoulli

Consider a sample of ni.i.d. RVs Xy, X5, ..., X,,. | * Let X;~Ber(p).
Whatis Oy = PmLE"? © fXilp) =p*i(1 —p)tT*

LL(6)

n
=Y({ogp) + (n —Y)log(1 —p), where Y = ZXi
i=1

2. Differentiate LL(0) dLL(6) _ Yl+ (n—1) -1 — 0
w.r.t. (each) 6, setto O op p 1-p

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 35



Maximum Likelihood with Bernoulli

Consider a sample of ni.i.d. RVs Xy, X5, ..., X,,. | * Let X;~Ber(p).
Whatis Oy = PmLE"? © fXilp) =p*i(1 —p)tT*

LL(6)

n
=Y({ogp) + (n —Y)log(1 —p), where Y = ZXi

OLL(6) 1 -1
=Y-4+n-Y)——=0
op p l1-p
Kq:u =) \((,\/PB TP(V\'\(>
3. Solve resulting P P X- Y= np -
= Wp - XF

equations

Lisa Yan and Jerry Cain, CS109, 2020
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Maximum Likelihood with Bernoulli

Consider a sample of ni.i.d. RVs X, X,, ..., X,,. | * Let X;~Ber(p).

Whatis Oy1p = PmLE"? © fWKilp) =p*i(1 - p)tTH
_ 1 1 — MLE of the Bernoulli parameter,
3. Solve .resultmg PMLE = HY = Ez X; PumLE, IS the unbiased estimate of
equations i=1 the mean, X (sample mean)

Lisa Yan and Jerry Cain, C$109, 2020 Stantord University 37



MLE of Bernoulli is the sample mean

Bernoulli

fXilp) = p*i(1 —p)* ™%,
where X; € {0,1}

Lisa Yan and Jerry Cain, C$109, 2020 Stanford UIliVCI'Sity 38



Quick check

You draw n i.i.d. random variables X4, X5, ..., X;, from the distribution F,
yielding the following sample:

0,0,1,1,1,1,1,1,1,1] (n = 10)
Suppose distribution F = Ber(p) with unknown parameter p.

What is py,. 5, the MLE of the parameter p?

1.0

0.5 L&

0.8 Puie = X = gz: %¢

0.2 t=1 -
None/other =)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 39



Quick check

You draw n i.i.d. random variables X4, X5, ..., X;, from the distribution F,
yielding the following sample:

0,0,1,1,1,1,1,1,1,1] (n = 10)
Suppose distribution F = Ber(p) with unknown parameter p.

What is py,. 5, the MLE of the parameter p?

1.0

0.5 L&
0.8 PMLE = X = gz: Xi
0.2 i=1

None/other

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 4o



Quick check

You draw n i.i.d. random variables X4, X5, ..., X;, from the distribution F,
yielding the following sample:

0,0,1,1,1,1,1,1,1,1] (n = 10)
Suppose distribution F = Ber(p) with unknown parameter p.

What is py,. 5, the MLE of the parameter p? 0.8
What is the likelihood L(8) of this particular sample?

% 2
fXilp) = p*i(1 — p)*~*i where X; € {0,1} 0.3 0.9
LB =] | fFX;|lp) Wwhereb =p
|

=p°(1-p)*

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 41
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Computing the MLE ] ([9[7 - p (X, Yo X, / .Q> Review

General approach for finding 6, , the MLE of 8: - _ﬁ(?(,/g)@ (K?— ZQJ“%;,
&

1. Determine 2. Differentiate LL(6) 3. Solve resulting
formula for LL(6) w.r.t. (each) 6 (simultaneous)
/—\ equations
n ..
BLL(H) To maximize: (algebra or
— . JdLL(6
@9) Z log £ (X;16) - Lo _, e
1=

4. Make sure derived 8, ¢ is @ maximum
* Check LL(0p g £ €) < LL(Op1E)
e Often ignored in expository derivations
 We’'ll ignore it here too (and won't require it in class)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 43

LL(0) is often easier to
differentiate than L(8).




/ N_ifeC

\ o

probabmty ,

2\ %f(XL

i=1

L&~ %0,
)

S0

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 44



b

Maximum Likelihood with Poisson ~ lvg a” = b lij a

Consider a sample of n i.i.d. RVs X, X5, ..., X,,. | * Let X;~Poi(4). A7 X;

Whatis Oyre = AyLe? [% ob = liga +ligb | * PMF: f&D) = —
[va, &« — lvg
1. Determine l%f % e-MXi
formula for LL(0) L6y = log( X;! ( ’“ﬁgf/’ 108X y

=@ﬁZX —g<x e

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 45



Maximum Likelihood with Poisson

Consider a sample of n i.i.d. RVs X, X5, ..., X,,. ° Let X;~Poi(4). A7 X;
What is 815 = dyigp? - PMF: f(Xi|1) = X

LL(B) =

2. Differentiate LL(0) JLL(6)

w.r.t. (each) @, set to O @

N

None/other/
don’t know

</

Stanford University 46



Maximum Likelihood with Poisson

Consider a sample of n i.i.d. RVs X, X5, ..., X,,. ° Let X;~Poi(4). A7 X;
What is 815 = dyigp? - PMF: f(Xi|1) = X

LL(B) =

n n
= —nl + log(1) Z X; — z log(X;!)
i=1 i=1

2. Differentiate LL(0) OLL(6)
w.r.t. (each) 8, setto O ol -
B. = C.
1 aXx;! 1 None/other/
s ZX +nlogd — ZX' 9X; _n+zzxi don’t know

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 47



Maximum Likelihood with Poisson

Consider a sample of n i.i.d. RVs X, X5, ..., X,,. ° Let X;~Poi(4). A7 X;
What is 815 = dyigp? - PMF: f(Xi|1) = X

LL(B) =

n n
—nA + log(4) Z X; — z log(X;!)
i=1 i=1

/n\
3. Solve resultin _1
: g AMLE - Xi
equations n =1
Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 4s



Maximum Likelihood with Poisson

Consider a sample of n i.i.d. RVs X{, X5, ..., X,,. Let X;~Poi(1). A7 X;
What is 815 = dyigp? PMF: f(X;|d) = X

LL(B) =

n n
—nA + log(4) Z X; — z log(X;!)
i=1 i=1

MLE of the Poisson
parameter, Ay, is the
unbiased estimate of the
mean, X (sample mean)

Solve resulting
equations

Stanford University 49



Quick check A e

(

1. A particular experiment can be modeled as a 1m 52
Poisson RV with parameter A, in terms of AMmLE = - i
events/minute. i=1
Collect data: observe 53 events over the next (x, 2 g - x”’) ot
10 minutes. What is Ay, g? X =53

N
) ,
2. ls the Bernoulli MLE an unbiased estimator of Pue = ng - :(,\2 i
the Bernoulli parameter p?

ECPMLEj; x
3. Is the Poisson MLE an unbiased estlmatqr oiﬁg B "
the Poisson variance? Ame = - >\;= 5
>

4. What does unbiased mean?

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University so



Quick check

A particular experiment can be modeled as a 1 &
Poisson RV with parameter 4, in terms of AMLE = —z X;
events/minute. e
Collect data: observe 53 events over the next

10 minutes. What is Ay, 57

Is the Bernoulli MLE an unbiased estimator of
the Bernoulli parameter p?

Is the Poisson MLE an unbiased estimator of
the Poisson variance?

What does unbiased mean’?| ynbiased: If you could repeat your experiment, on

E[estimator] = true_thing average you would get what you are looking for.

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University s1



Interlude for

jokes/announcements




Announcements

4 )
Quiz #2
Duration: Out today 2:00pm, due Fri, 1:00pm PT
Coverage: Up to and including Lecture 15
- /

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 53



Maximum Likelihood with Uniform

Consider a sample of n i.i.d. random variables X4, X5, ..., X,,.

1
: — < x;: <
Let X;~Uni(a, B). filap)={g—a TE=N=P .
0 otherwise m
1. Determi 1 \"
. Determine :
_ )= if a<xq{,%X,..,%X, <
formula for L(6) L(8) = (ﬁ — a) b2 n<h
0 otherwise
2. Differentiate LL(6) A_J Great, let’'s do it
w.r.t. (each) 6, set to O B. Differentiation is hard Tvne

Constraint a < x4, x5, ..., X, < f8
makes differentiation hard

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 54




Example sample from a Uniform

Consider a sample of n i.i.d. random variables X4, X5, ..., X,,.

1 n
,B—a) if a <x,%x,.., %, <

0 otherwise

LetXi’VUni(aiﬁ)' L(B) = (

Suppose X;~Uni(0,1).

0.15,0.20,0.30, 0.40,0.65,0.70, 0.7@
You observe data:

- Uni(le=0 ,8=1 )
meters |
would give you B. Uni(a = 0.15, 8 = 0.75)
maximum L(8)? C. Uni(e = 0.15,8 = 0.70)

2y
S

Stanford University 55
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Example sample from a Uniform

Consider a sample of n i.i.d. random variables X4, X5, ..., X,,.

1 \"
L(H) — (ﬁ — a) If a S xl; xz, --.,xn S ﬂ
0 otherwise

Let Xl-~Uni(a,,8).

L (

A
Suppose X;~Uni(0,1).  [0.15,0.20,0.30,0.40, 0.65,0.70,0.75]

You observe data:
Unila=0 ,8=1 ) (1)’ =1
Which parameters

: 1\’ _
would give you @U”'(“ = 0.15, = 0.75) (ﬁ) = 59-%

] 6
maximum L(8)? Uni(a = 0.15, 8 = 0.70) (0—155) 0=0

I | Original parameters may not yield maximum likelihood.

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 56



Maximum Likelihood with Uniform

Consider a sample of n i.i.d. random variables X4, X5, ..., X,,.

. 1 \"

Let X;~Uni(a, B). L(6) = (,B—a) if a <xq,%9, .0, <P
0 otherwise

Omie: Qg = Min(xy, Xy, ..., Xp) Bure = max(xq, Xz, ..., Xp)

Intuition:

Want interval size (f — a) to be as small

as possible to maximize likelihood function
per datapoint

Need to make sure all observed data is in
interval (if not, then L(8) = 0)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 57



https://colab.research.google.com/drive/1Rsz8s735E1F_VFoVvgyicDOD8UQNsFKQ?authuser=1

Small samples = problems with MLE

Maximum Likelihood Estimator 8, :
Best explains data we have seen
Does not attempt to generalize to unseen data.

HMLE = dIrg max L(H)
0

(MLE for Bernoulli p,

n
1
=) X
In many cases, HMLE n; ¥ Sample mean Poisson A, Normal p)

Unbiased (E[uy. ] = u regardless of size of sample, n)

For some cases, like Uniform:  ayrp = @, By < B

Biased. Problematic for small sample size
Example: If n = 1 then a = 3, yielding an invalid distribution

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University ss



Properties of MLE

Maximum Lik.elihood Estimator: 0. = arg max L(6)
Best explains data we have seen 6
Does not attempt to generalize to unseen data.

Often used when sample size n is large relative to parameter space

Potentially biased (though asymptotically less so, as n — o)
Consistent: lim P(|0 — 6| < &) =1wheree >0

Nn—>00
As n — oo (i.e., more data), probability that 2] significantly differs from 8 is zero

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University so



Maximum Likelihood with Normal

Consider a sample of n i.i.d. random variables X4, X5, ..., X,,.

Let X;~ N (u, 02). F(X; |, 02) = ——e~Xim1?/(20%)
_ 5 V2mo
What is Oy1r = (UmLE, OmLE)?
Determine

formula for LL(6)

n 1 , , n
LL(O) = ; log ( e /(20 )) _ ;[_ log(VZro) — (X; — W%/ (202)]

(using natural log)

= = ) log(V2ma) = ) (X, - )?/(202)]
i=1 =1

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University e0



Maximum Likelihood with Normal

Consider a sample of n i.i.d. random variables X4, X5, ..., X,,.
- Let X;~ NV (u, 0?). Xy 0?) = e~ Xi=m)?/(20?)

What is Oyrr = (Umie, OriLe)?

2. Differentiate LL(6)
w.r.t. (each) 8, setto O

W”I R L10) = - ) log(V2ra) - ) [(X; — 1)?/(207)]
i=1 =1

ALL(O) X
20 = 120~ /207

i=1

1 n
=) (i =0
i=1

V2ro

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University e1



Maximum Likelihood with Normal

Consider a sample of n i.i.d. random variables X4, X5, ..., X,,.
Let X;~ N (i, 02). Xy 0?) = e~ Xi=m)?/(20?)

What is Oyrr = (Umie, OriLe)?

Differentiate LL(0)
w.r.t. (each) 8, setto O
n

LL(O) = — 2 log(\/Z_na) _ Z[(Xi — 1)?/(262)] with respect to o
=1 i=1

V2ro

4
a n n
T D, 206 =0/ (25")

do _
i=1

%zn:(xi—ﬂ)=0 =——+—2(X —w?=0
i=1

Lisa Yan and Jerry Cain, CS109, 2020 [ University 62




Maximum Likelihood with Normal

Consider a sample of n i.i.d. random variables X4, X5, ..., X;,.

Let X;~ N (i, 02). F(X; |, 02) = ——e~Xim1?/(20%)
_ 5 V2no
What is Oy1r = (UmLE, OmLE)?
Solve resulting Two equations, o4 2 _
equations two unknowns: E(X w =0 + z(X W= =0

n n
First, solve 1 1 _ 21
fOr a1 FZXL' - U—ZZﬂ zxi = n = HUMLE = az Xi

i=1 i=1 i=1 unbiased i=1
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Maximum Likelihood with Normal

Consider a sample of n i.i.d. random variables X4, X5, ..., X,,.

° Let X;~ N(M,O'z). f(Xl.llu’o'z) - e—(Xi—u)Z/(ZO'Z)
_ 5 V2mo
What is Oy1r = (UmLE, OmLE)?
n
3. Solve resulting Two equations, i N e _z 2 _
equations two unknowns: 42 Z(Xl w) =0 + Xi—pw)* =0
1
HMLE = 52 Xi
unbiased  i=1
Next, solve 1 1w )
for oy g gZ(Xi - M)z —~ = Z(X -w?=0°n > UMLE — (X; — Umre)
= i=1 biased =1

W1
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