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21a_mle_multinomial

MLE:
Multinomial




Okay, just one more MLE with the Multinomial

Consider a sample of n I.i.d. random variables where

 Each element is drawn from one of m outcomes.
P(outcome i) = p;, where > 72 p; = 1

 X; = # of trials with outcome i, where }12, X; = n

Staring at my math homework like

Let’s give an
example!
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Okay, just one more MLE with the Multinomial

Consider a sample of n I.i.d. random variables where

Each element is drawn from one of m outcomes.
P(outcome i) = p;, where > 72 p; = 1

X; = # of trials with outcome i, where 12, X; = n

6
Example: Suppose each RV is outcome of 6-sided die. m = 6, Z'pi =1
Roll the dice n = 12 times. =1

Observe data: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

Xl — 3)X2 — 2,X3 — O’
X4:3'X5:1'X6:3 CheCk:X1 -|—X2-|—_|_X6:12
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Okay, just one more MLE with the Multinomial

Consider a sample of n I.i.d. random variables where

Each element is drawn from one of m outcomes.
P(outcome i) = p;, where > 72 p; = 1

X; = # of trials with outcome i, where 12, X; = n

What is the likelihood of observing
the sample(Xy, X5, ..., X)),
given the probabilities p4, vy, ..., Pm?

n!
X1 X5 X!

X1, Xp Xm
pl pz ...pm

X1, Xp Xm
pl pz ces pm
n!

X X, X,

P1yDP2 . yPm
Xl XZ Xm
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Okay, just one more MLE with the Multinomial

Consider a sample of n I.i.d. random variables where

Each element is drawn from one of m outcomes.
P(outcome i) = p;, where > 72 p; = 1

X; = # of trials with outcome i, where 12, X; = n

What is the likelihood of observing
the sample(Xy, X5, ..., X)),
given the probabilities p4, vy, ..., Pm?

n!
X1 X5 X!

X1, Xp Xm
pl pz ...pm

X1, Xp Xm
pl pz ces pm
n!

X X, X,

P1yDP2 . yPm
Xl XZ Xm
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Okay, just one more MLE with the Multinomial

Consider a sample of n I.i.d. random variables where

Each element is drawn from one of m outcomes.
P(outcome i) = p;, where > 72 p; = 1

X; = # of trials with outcome i, where 12, X; = n

What is the likelihood of observing n X x ¥
the Sample(XLX_z_; -_--;Xm)7 L(B) = XXX !p11p22 DPm
given the probabilities p4, vy, ..., Pm? 1: A2 m

LL(6) = log(n!) — z log(X;!) + zX log(p;), suchthat %, p; =

Optimize with X;  Intuitively, probability

Lagrange multipliers in OmLe: Di = p; = proportion of outcomes

extra slides .
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When MLEs attack!

MLE for _ X;
Multinomial: Pi = 7,

Consider a 6-sided die.
°* Rollthe dice n = 12 times

* Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

Whatis 0, 7

Lisa

W2
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MLE for X;

When MLEs attack! Multinomial: Pi = 7

n

Consider a 6-sided die.
Roll the dice n = 12 times.

Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes
OmLE:

py = 3/12

p, =2/12 MLE: you'll never...EVER... roll a three.
ps = 0/12 ! Do you really believe that?

Py = 3/12

ps = 1/12

Pe = 3/12 Today: A new definition of

probability!
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21b_bayesian

Bayesian
Statistics




When MLEs attack! Review

* MLE: you’ll never...EVER... roll a three.
* Do you really believe that?

Roll morel!
Prob. = frequency
in [imit

But what if you cannot
observe anymore rolls?

2

Frequentist
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Today's plan

Today we are going to learn something unintuitive,
beautiful, and useful!

We are going to think of probabilities as
random variables.
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A new definition of probability

Flip a coin n + m times, come up with n heads.

We don’t know the probability 8 that the coin
comes up heads.

The world’s first coin

Frequentist Bayesian
0 is a single value. 0 is a random variable.
| n n
6 = n+171nrr_1)oo ST S, 6’s continuous support: (0, 1)
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Let’s play a game

Roll 2 dice. If neither roll is a 6, -
you win (event W). Else, | win (event W©). " OJ ’J
he

Before you play, what'’s the probability that you win?
Play once. What's the probability that you win?
Play three more times. What's the probability that you win?

2
o P(W) = (_) 50 wait hold up this
K‘?J 6 U situation is whack tho
Frequentist Bayesian

Bayesian statistics: Update your prior beliefs of probability.
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Bayesian probability

Bayesian statistics: Probability is a reasonable expectation
representing a state of knowledge.

Mixing discrete and continuous random variables,
combined with Bayes’ Theorem, allows us to reason about
probabilities as random variables.

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 16




Mixing discrete and continuous

Let X be a continuous random variable, and
N be a discrete random variable.

pN|X(n|x)fX(x)
pn(n)

Bayes’
Theorem:

fX|N(x|n) =

P(N =n|X =x)P(X = x)

Intuition: ~ P(X = x|N =n) = PN = n)

pN|X(n|x)fX(x)
pn(n)

P(N =n|X = x)fx(x)ex
P(N =n)

fX|N(X|7’l) =

fX|N(x|7’l)€X =

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 17




All your Bayes are belong to us

Let X,Y be continuous and M, N be discrete random variables.

pNM(n|m)pp(m)

OG Bayes: —
’ Pa () N ()
Mix Bayes #1.: fx|N(x|n) _ N x(n|x) f x(x)
pn(n)
Mix BayeS #2: leX(nlx) — fX|N(x|n)pN(n) 10 US.
fx(x)
All continuous: Frqy Cely) = DX

fy(y)
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Mixing discrete and continuous

Let 8 be a random variable for the probability your coin comes up heads,
and N be the number of heads you observe in an experiment.

likelihood  prior

A M CTEOVAC)
7N py(n)
normalization constant
Prior belief of parameter 6 fo(x)
_ikelihood of N = n heads, given parameter 8 = x. Pnio (n]x)
Posterior updated belief of parameter 6. fon (x|n)

More in live lecture!
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Beta RV




Beta random variable

def A Beta random variable X is defined as follows:

1
XNBeta (a, b) PDF  f(x) = Bla.b) x4 1(1 — x)b—1

a>0b>0
Support of X: (0, 1)

where B(a, b) = folx“‘l(l — x)?~1dx, normalizing constant

- Vari Var(X) = ab
a+b ariance Var(X) = 3 2(a + b + D

Expectation E[X] =

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 21




Beta RV with different a, b

1
XNBeta (a, b) PDF f(x) = Bab) x21(1 — x)b—1

a>0b>0

e -1 _ ~\b—1 o o
Support of X: (0,1) where B(a, b) = [, x*~1(1 — x)’~'dx, normalizing constant

5.0 - : 3.0 -
40 - 'l Beta(0.2,0.8) Beta(0.8.0.2) } Beta(1,1)=Uni(0,1)
3.0 4| ;20 -~Be£a(1,2) ......
204" . A~ e + a third case

| \\ 1.0 7 N TR = (next slide)
1.0 _'-. S == T - %ex,a.\?"‘ ..... S ~
00 [T il N | | ~..

00 02 04 06 08 1.0 00 02 04 06 08 1.0

Note: PDF symmetric when a = b
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Beta RV with different a, b X~Beta(a, b)

istribution: 5.0 :

Match PDF to distribution: v : o0, 00502
4.0 - 3.0 ! :
2.0\ ;

3.0 10 _\¥ Beta(0808) s/

0.0 '-........I:..ﬁ..?..-....--,Ig-;"'_"I_ - ,I

00 02 04 06 08 1.0
3.0 ~

2.0

1.0 2.0 —\Be\ta(l,g

0.0

1.0 T
%e,@.\?.,}_\, ........ S~ o -
0.0 f== T T T T = =
A. Beta(b,d) 00 02 04 06 08 1.0
B. Beta(2,8) G
C. Beta(8,2) M=
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Beta RV with different a, b

Match PDF to distribution:

4.0

3.0

2.0

1.0

0.0

B. Beta(2,8)

/ \

A.Beta(5,5)

A. Beta(b,d)
5. Beta(2,8)
C. Beta(8,2)

X~Beta(a, b)
5.0 - :
4.0 - '| Beta(0.2,0.8) Beta(0.8. 0.2) ;
11
C. Beta(8,2) 3.0 91 :
2.0 - :
10 _\\g Beta(0.8,08) =/
OO '--.......I....ﬁ..?I ...... «IH";"_ I_ - ’I
00 02 04 06 08 10
3.0 -
20 ey L
Beta(1,] ~ e
1.0 44—+ ~
e&5?§%{¥) ----- S ™ -
0.0 == T T T T = =
00 02 04 06 08 1.0

In CS109, we focus on Betas where
a, b are both positive integers.

Lisa Yan and Jerry Cain, CS109, 2020

Stanford University 24



Beta random variable

def A Beta random variable X is defined as follows:

X~Beta(a, b)

a>0b>0

> Support of X: (0,1)

Beta can be a distribution of probabilities.

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 25




Beta can be a distribution of probabilities. X~Beta(a, b)

P
o
J

Beta(2,8) Beta(8,2)
1 Beta parameters a, b could

301, Beta(5,5 -
, Betbdo) come from an experiment...

But which one?
Stay tuned...

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVCI‘Sity 26
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MLE
Bedn BV

Flipping a coin
with unknown
probability




A new definition of probability — Review

Flip a coin n + m times, comes up with n heads.

We don’t know the probability 8 that the coin
comes up heads.

The world’s first coin

Frequentist Bayesian
0 is a single value. 0 is a random variable.
| n n
6 = n+171nrr_1)oo ST S, 6’s continuous support: (0, 1)
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Flip a coin with unknown probability

Flip a coin n + m times, observe n heads.

» Before our experiment, 6 (the probability that the coin
comes up heads) can be any probability.
* Let N = number of heads.

* Given 8 = x, coin flips are independent.
What is our updated belief of 6 after we observe N = n?

What are reasonable distributions of the following?
1. 6

2. N =x

3. IN=n

Lisa Yan and Jerry Cain, CS109, 2020
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Flip a coin with unknown probability

\ -
Flip a coin n + m times, observe n heads.- l
Before our experiment, 6 (the probability that the coin
comes up heads) can be any probability.
Let N = number of heads.
Given 8 = x, coin flips are independent.

What is our updated belief of 6 after we observe N = n?

What are reasonable distributions of the following?
0 Bayesian prior 8~Uni(0,1)

N[ =x) Likelihood(N|6 = x}Bin(n +m,x)

O|N =n Bayesian posterior. Use Bayes'!

Lisa Yan and Jerry Cain, CS109, 2020
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Flip a coin with unknown probability

Flip a coin n + m times, observe n heads.

Prior:
Before our experiment, 6 (the probability that the coin 8~Uni(0,1)
comes up heads) can be any probability.
Let N = number of heads. __Likelihood:
Given 8 = x, coin flips are independent. N|O = @ + m@

What is our updated belief of 6 after we observe N = n? Posterior: fgy(6|n)

i L

Pnio (n]x)fo(x) (n+m) x"(1—x)™-1

o @in) = -y (1) =
g/

1 1
x"(1—x)™ _— npqp _ . \m _ neq _ . \m
PN,O?) - X (1 —x)™, where c jox (1 —x)"dx

constant with respect to x,
doesn’t depend on x Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 32



Let’s try it out

1. Start with a 6~Uni(0,1) over :Z
probability that a coin lands heads. = ., | Prior belief, 8
= 1.0
0.0

0.0 02 04 06 08 1.0

2. Flip a coin 8 times. Observe n = 7
heads and m = 1 tail

3. What is our posterior belief of the fon (xIn) = 1 x”(1—x)!
probability 67 C

—————

— ¢ normalizes to valid PDF

Wait a minute! #tbplv

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 33




Beta RV with different a, b

>
< ~

X~Beta(a,b)  PoF f(x)= " ah(q - xgpoD

L

(B (a, b)j
a>0b>0 .
Support of X: (0,1) where B(a,b) = [ x*~*(1 — x)"~'dx, normalizing constant
1 .
fon(xIn) == x7(1 — x)* is the PDF for Beta(8, 2)!
C

¢ normalizes to valid PDF
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Let’s try it out

4.0 -

3.0
20 A Prior belief, 8

fx(x)

1.0

0.0

0.0 02 04 06 08 1.0

tail

3. What is our posterior belief of the fon (xIn) = 1 x”(1—x)!
probability 67 C

¢ normalizes to valid PDF

Beta(8,2)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 35




What is our posterior belief of the probability 67

Start with a 6~Uni(0,1) over probability
Observe n = 7 successes and m = 1 failures
Your new belief about the probability of @ is:

1

1
foin(xIn) = - x’(1 —x)',wherec = f x"(1—2x)tdx
0

Posterior belief, 8|N

Posterior belief, 6|N: 4.0 - mode
J
Beta(a = 8,b = 23 S 30 -
o (xlm) = = £85(1 — 52D2 2
9IN C 2 1.0
_ _ 0.0 e
Beta(a =n+1,b=m+1) 00 02 04 06 08 1.0

Lisa Yan and Jerry Cain, CS109, 2020 X Stanford University 36




CS109 focus: Beta where a, b both positive integers x~Beta(a,b)

Beks( 0€ LoS)

@ If a, b are positive integers,

Beta parameters a, b could
come from an experiment:

4.0

o\
) @
—t |
Qo
N
X

3.0
2.0

1.0 a = “successes” + 1

b = “failures” + 1

0.0

 Beta (in CS109) models the randomness of the
probability of experiment success.
 Beta parameters depend our data and our prior.

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVCI‘Sity 37




Bayes’ on the waves

P(I’MNEAR IPICKEDUP @m
IPIC!GDLP I'M NEAR I™M NERR
P(Rser |72 8 PR Ay, tom
P(52se
L5
O

STATSTICALLY SPEAKING, IF YOU PICK UP A
SEASHELL AND DOVT™ HOLD IT TO YOUR EAR,
YoU CAN PROBABLY HEAR THE OCEAN.
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Interesting probability news

4b. Compute

2. Scale a(x) by
C
4a.
Why Rejection Sampling Is o
. : (x
Useful in Cat Modeling ’
5a. Dra z
fror « ﬁ
unif(0,c
Note: Cat Modeling 3a. Drawxlf;d\A X "2,‘;3b- Another draw x2 from (x)
= Catastrophe Modeling fromab) e utspixa) Sb. Reject x2

since u2>p(x2)

(e.g., earthquakes, hurricanes, etc.)

https://www.air-worldwide.com/blog/posts/2018/9/why-rejection-sampling-is-useful-in-cat-modeling/

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 39
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Conjugate
distributions




A note about our prior

Start with a 6~Uni(0,1) over :Z
probability that a coin lands heads. | = ., | Prior belief, 8
= 1.0 -
0.0

0.0 02 04 06 08 1.0
X

Flip a coin 8 times. Observe n = 7

heads and m = 1 tail okay

What is our posterior belief of the fon (xIn) = 1 x”(1—x)!
probability 67

c normalizes to valid PDF

Wait another minute!

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 41




Beta RV with different a, b Review

{ (
3.0 - Beta¢1,1)=Uni(0,1)
B

2.0 < Sty
5.0 1y : :;iQ) 4.0 1 Beta(2,8) Beta(8,2)
4.0 - | Beta(0.2,0.8) Beta(0.8. 0.2)_: 1 ~ - ,—\

: Beta(1,1) ~
30 1! 1.0
2.0 - _.: rz"‘),\.) ..... —
10 _-\\\% -Beta(0.8,0.8) ; 4/ 0.0 66’@\
OO .-. ------ al._ - .— - fl . |
00 02 04 06 08 1.0 0.0 0.2 04
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A note about our prior

1. Start wi 0~Uni(0,1) ov zz
probability N lands heads. =,/ Prior belief, 8

ME:L.O

Beta(l,l) 0.0

0.0 02 04 06 08 1.0

% g Check this o@a =1,b = 1)

|+
4 ) f(x) — xa—l(l _ x)b—l

B(a,b)
1

- fol 1dx

@0 =1 where0 <x <1

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 43




Beta is a conjugate distribution for Bernoulli

Beta is a conjugate distribution for Bernoulli, meaning:
* Prior and posterior parametric forms are the same

(proof on next slide)
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Beta is a conjugate distribution for Bernoulli

Beta is a conjugate distribution for Bernoulli, meaning;
If our prior belief of the parameter is Beta, and
Our experiment is Bernoulli, then (observe n successes, m failures)
Our posterior is also Beta.

puje () fo(x) [ () kmC —x)@“(l — x)b~!
fon(xIn) = i ° —\ 2 ¢ a;b)

/Iji(j’l\)i&\;w’\ (o 7
=C-x"(1—x)™

. Xa_l(l _ .X')b_1

x)m+b—1

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 45

= C - xn+a—1(1




Beta is a conjugate distribution for Bernoulli | This is the main
takeaway of |

Beta is a conjugate distribution for Bernoulli, meaning: Beta.

Prior and posterior parametric forms are the same

Practically, conjugate means easy update:
Add number of “heads” and “tails” seen to Beta parameters.

You can set the prior to reflect how biased you think the coin is a priori:

O~Beta(a,b): have seen (a + b — 2) imaginary trials, where
(a — 1) are heads, (b — 1) tails

Then Beta(1,1) = Uni(0, 1) means we haven’t seen any imaginary trials

Prior Beta(a = njypqg + 1, b = Mypay + 1)
Experiment Observe n successes and m failures

Posterior Beta(a = Njmag T N+ 1, b= Mimag + M + 1)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 46




Prior Beta(a = nypag + 1,0 = Mypggy + 1)

The enchanted die Posterior Beta(a = Nymag + 1 + 1,b = Mumag +m + 1)

Let 6 be the probability of rolling a 6 on Lisa’s die.
* Prior: Imagine 1 out of 6 die rolls where only 6 showed up &

* Observation: roll it a few times...
What is the updated distribution of 8 after our observation?

Beta PDF
Parameters
: a 2
Check out the demo! ¢ ., & :
e

. T T T T T T T T T 11
00 01 02 03 04 05 06 07 08 03 10 9 9
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Medicinal Beta

Before being tested, a medicine is believed to “work” 80% of the time.
The medicine is tried on 20 patients.
It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

Frequentist

Let p be the probability
your drug works.

14

~—=0.7
20

p

Lisa

A frequentist view will not incorporate
prior/expert belief about probability.

Yan and Jerry Cain, C$109, 2020 Stanford University 48



Medicinal Beta

* Before being tested, a medicine is believed to “work” 80% of the time.
* The medicine is tried on 20 patients.
* |t “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

Bayesian

Let 8 be the probability
your drug works.

6 is a random variable.

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVCI‘Sity 49




Prior Beta(a = nypag + 1,0 = Mypggy + 1)

MEdiCinal Beta Posterior Beta(a = nypgg + n+ 1,0 = Mypag + m+ 1)

Before being tested, a medicine is believed to “work” 80% of the time.
The medicine is tried on 20 patients.
It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”? (Bayesian interpretation)

What is the prior distribution of 67 (select all that apply)
6~Beta(1,1) = Uni(0,1)
6~Beta(81,101)
0 ~Beta(80, 20)
0~Beta(81,21)
6~Beta(5, 2) %’
e

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 50



Prior Beta(a = nypag + 1,0 = Mypggy + 1)

Medicinal Beta Posterior Beta(a = nypgg + n+ 1,0 = Mypag + m+ 1)

* Before being tested, a medicine is believed to “work” 80% of the time.
* The medicine is tried on 20 patients.
* |t “works” for 14, “doesn’t work” for ©.

What is your new belief that the drug “works”? (Bayesian interpretation)

What is the prior distribution of 67 (select all that apply)

A. 6~Beta(1,1) = Uni(0,1)
B. 6~Beta(81,101)
C. 6~Beta(80,20)
@ 6~Beta(81,21) Interpretation: 80 successes / 100 imaginary trials
(E) 6~Beta(s,2)
(you can choose either based on how strong your belief is (an engineering choice).

We choose E on next slide)
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Prior Beta(a = nypag + 1,0 = Mypggy + 1)

MediCinal Beta Posterior Beta(a = nypgg + n+ 1,0 = Mypag + m+ 1)

Before being tested, a medicine is believed to “work” 80% of the time.
The medicine is tried on 20 patients.
It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”? (Bayesian interpretation)
Prior: 0~Beta(a = 5,b = 2) 2-8 :
Posterior: 6~Beta(a =5+ 14,b=2+4+6) 30 Posterior
~Beta(a = 19,b = 8) 2.0 - [\
1.0 - \)(\O‘....
0.0 II T T |
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Prior Beta(a = nypag + 1,0 = Mypggy + 1)

Medicinal Beta Posterior Beta(a = nypqg + n+1,b = Mypey + m+ 1)

Before being tested, a medicine is believed to “work” 80% of the time.
The medicine is tried on 20 patients.
It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”? (Bayesian interpretation)
Prior: 6~Beta(a =5,b = 2) i:g : node
Posterior: 6~Beta(a =5+ 14,b=2+6) 30 Posterior
~Beta(a = 19,b = 8) 2.0 -
What do you report to pharmacists? ég 1 I_m”\ff\,‘f‘.--'

Expectation of posterior 00 02 0.4
Mode of posterior
Distribution of posterior
Nothing

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 53



Prior Beta(a = nypag + 1,0 = Mypggy + 1)

MEdiCinal BEta Posterior Beta(a = nypgg + n+ 1,0 = Mypag + m+ 1)

Before being tested, a medicine is believed to “work” 80% of the time.
The medicine is tried on 20 patients.
It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”? (Bayesian interpretation)
mode
Prior: O~Beta(a = 5,b = 2) 2'8 :
Posterior: 6~Beta(a =5+ 14,b =2+ 6) 3:0 | Posterior
~Beta(a = 19,b = 8) 2.0 - [T\
What do you report to pharmacists? é:ﬁ _ ‘?‘°‘ / L\
; 0.0 0.2 04 06 08 10 X
E|0] = ~ 0.70 = b
a+b j
fin %sgmb% ‘?e{)ort the mode: The
mode(@) ~ 0.72 j&}most likely” parameter given the data.

and Jerry Cain, C$109, 2020 Stanford University 54



Food for thought

= In this lecture: If we don’t know the parameter p,
o Bayesian statisticians will:
Treat the parameter as a random variable 6

XNBer(p) with a Beta prior Qistribution
Perform an experiment

Based on experiment outcomes, update the

» </ posterior distribution of 6
;6 Food for thought:

Any parameter for a “parameterized”
random variable can be thought of as Y~]\/‘(‘u, 0'2)
a random variable.
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Estimating our parameter directly

Maximum
Likelihood
Estimator

(MLE)

What is the parameter 0 L(O) =f(X1,X5,...,X,]0)
that maximizes the likelihood T
of our observed data B Df(xilg)
X1, X9, e, Xy )? -
b, %, n) Oprg = argmax [ (X, X5, ..., X,,|0)
likelihood of data
Observations:

*  MLE maximizes probability of observing data
given a parameter 6.

* If we are estimating 8, shouldn’t we maximize See you
the probability of 6 directly? next time!
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Extra: MLE:
Multinomial

derivation




Okay, just one more MLE with the Multinomial

Consider a sample of n I.i.d. random variables where

Each element is drawn from one of m outcomes.
P(outcome i) = p;, where > 72 p; = 1

X; = # of trials with outcome i, where 12, X; = n

What is the likelihood of observing n X x ¥
the Sample(XLX_z_; -_--;Xm)7 L(B) = XXX !p11p22 DPm
given the probabilities p4, vy, ..., Pm? 1: A2 m

LL(6) = log(n!) — z log(X;!) + zX log(p;), suchthat %, p; =

Optimize with X;  Intuitively, probability

Lagrange multipliers in OmLe: Di = p; = proportion of outcomes

extra slides .
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Optimizing MLE for Multinomial

0 = (pl:Pz: . rpm)
HMLE = darg maXLL(Q) where Epl =1

Use Lagrange multipliers
to account for constraint

m (drop
Lagrange
multipliers: A(8) = LL(8) + A( bi — 1) 2 Xilog(p;) + 4 (Z Pi — 1) non-p;
i=1 terms)
i i dA(6 1 .
leferentllate W.r.t. (0) —X,—+1=0 = . = _)ﬁ
each p;, in turn: op; D; : A
Solve for A, noting i =y, n
m m Epizi_ =1 =21=—= >A=-n

X; = ,Z = 1t A A
Z P P i=1 i=1
=1 1=1

Substitute A into p; p; =
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