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Okay, just one more MLE with the Multinomial
Consider a sample of 𝑛 i.i.d. random variables where
• Each element is drawn from one of 𝑚 outcomes.
𝑃 outcome 𝑖 = 𝑝!, where ∑!"#$ 𝑝! = 1

• 𝑋! = # of trials with outcome 𝑖, where ∑!"#$ 𝑋! = 𝑛

4

Let’s give an 
example!
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Okay, just one more MLE with the Multinomial
Consider a sample of 𝑛 i.i.d. random variables where
• Each element is drawn from one of 𝑚 outcomes.
𝑃 outcome 𝑖 = 𝑝!, where ∑!"#$ 𝑝! = 1

• 𝑋! = # of trials with outcome 𝑖, where ∑!"#$ 𝑋! = 𝑛
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Example: Suppose each RV is outcome of 6-sided die.
• Roll the dice 𝑛 = 12 times.
• Observe data: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

𝑋! = 3, 𝑋" = 2, 𝑋# = 0,
𝑋$ = 3, 𝑋% = 1, 𝑋& = 3 Check: 𝑋! + 𝑋" +⋯+ 𝑋& = 12

𝑚 = 6,'
!"#

$

𝑝! = 1
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Okay, just one more MLE with the Multinomial
Consider a sample of 𝑛 i.i.d. random variables where
• Each element is drawn from one of 𝑚 outcomes.
𝑃 outcome 𝑖 = 𝑝!, where ∑!"#$ 𝑝! = 1

• 𝑋! = # of trials with outcome 𝑖, where ∑!"#$ 𝑋! = 𝑛

1. What is the likelihood of observing
the sample 𝑋#, 𝑋%, … , 𝑋$ ,
given the probabilities 𝑝#, 𝑝%, … , 𝑝$?
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A.
𝑛!

𝑋#! 𝑋%!⋯𝑋$!
𝑝#
&!𝑝%

&"⋯𝑝$
&#

B. 𝑝#
&!𝑝%

&"⋯𝑝$
&#

C.
𝑛!

𝑋#! 𝑋%!⋯𝑋$!
𝑋#
'!𝑋%

'"⋯𝑋$
'# 🤔
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Okay, just one more MLE with the Multinomial
Consider a sample of 𝑛 i.i.d. random variables where
• Each element is drawn from one of 𝑚 outcomes.
𝑃 outcome 𝑖 = 𝑝!, where ∑!"#$ 𝑝! = 1

• 𝑋! = # of trials with outcome 𝑖, where ∑!"#$ 𝑋! = 𝑛

1. What is the likelihood of observing
the sample 𝑋#, 𝑋%, … , 𝑋$ ,
given the probabilities 𝑝#, 𝑝%, … , 𝑝$?
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Okay, just one more MLE with the Multinomial
Consider a sample of 𝑛 i.i.d. random variables where
• Each element is drawn from one of 𝑚 outcomes.
𝑃 outcome 𝑖 = 𝑝!, where ∑!"#$ 𝑝! = 1

• 𝑋! = # of trials with outcome 𝑖, where ∑!"#$ 𝑋! = 𝑛

1. What is the likelihood of observing
the sample 𝑋#, 𝑋%, … , 𝑋$ ,
given the probabilities 𝑝#, 𝑝%, … , 𝑝$?

2. What is 𝜃+,-?
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𝐿 𝜃 =
𝑛!

𝑋#! 𝑋%!⋯𝑋$!
𝑝#
&!𝑝%

&"⋯𝑝$
&#

𝐿𝐿 𝜃 = log 𝑛! −4
!"#

$

log 𝑋!! +4
!

$

𝑋! log 𝑝! , such that ∑!"#$ 𝑝! = 1

𝜃+,-: 𝑝. =
𝑋.
𝑛

Intuitively, probability
𝑝! = proportion of outcomes

Optimize with
Lagrange multipliers in 

extra slides
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When MLEs attack!
Consider a 6-sided die.
• Roll the dice 𝑛 = 12 times.
• Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

What is 𝜃+,-?

9

MLE for
Multinomial: 𝑝! =

𝑋!
𝑛

🤔
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When MLEs attack!
Consider a 6-sided die.
• Roll the dice 𝑛 = 12 times.
• Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes
𝜃+,- :

10

MLE for
Multinomial: 𝑝! =

𝑋!
𝑛

𝑝! = 3/12
𝑝" = 2/12
𝑝# = 0/12
𝑝$ = 3/12
𝑝% = 1/12
𝑝& = 3/12

• MLE: you’ll never…EVER… roll a three.
• Do you really believe that?

Today: A new definition of 
probability!

⚠



Bayesian 
Statistics

11

21b_bayesian
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When MLEs attack!
Consider a 6-sided die.
• Roll the dice 𝑛 = 12 times.
• Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes
𝜃+,- :
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𝑝! = 3/12
𝑝" = 2/12
𝑝# = 0/12
𝑝$ = 3/12
𝑝% = 1/12
𝑝& = 3/12

⚠

• MLE: you’ll never…EVER… roll a three.
• Do you really believe that?

🤔
Frequentist

Roll more!
Prob. = frequency 

in limit

Review

But what if you cannot 
observe anymore rolls?
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Today’s plan

Today we are going to learn something unintuitive,
beautiful, and useful!

13

We are going to think of probabilities as
random variables.
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A new definition of probability
Flip a coin 𝑛 +𝑚 times, come up with 𝑛 heads.
We don’t know the probability 𝜃 that the coin
comes up heads.
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The world’s first coin

Frequentist

𝜃 is a single value.

𝜃 = lim
123→5

𝑛
𝑛 +𝑚

≈
𝑛

𝑛 +𝑚

Bayesian

𝜃 is a random variable.

𝜃’s continuous support: (0, 1)
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Let’s play a game
Roll 2 dice. If neither roll is a 6,
you win (event 𝑊). Else, I win (event 𝑊6).

• Before you play, what’s the probability that you win?
• Play once. What’s the probability that you win?
• Play three more times. What’s the probability that you win?

15

🤨🤔
Frequentist

𝑃 𝑊 =
5
6

"

Bayesian

wait hold up this 
situation is whack tho

Bayesian statistics: Update your prior beliefs of probability.
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Bayesian probability

Bayesian statistics: Probability is a reasonable expectation 
representing a state of knowledge.

Mixing discrete and continuous random variables, 
combined with Bayes’ Theorem, allows us to reason about 

probabilities as random variables.

16
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Mixing discrete and continuous
Let 𝑋 be a continuous random variable, and
𝑁 be a discrete random variable.

17

𝑃 𝑋 = 𝑥 𝑁 = 𝑛 =
𝑃 𝑁 = 𝑛|𝑋 = 𝑥 𝑃 𝑋 = 𝑥

𝑃 𝑁 = 𝑛

Bayes’ 
Theorem: 𝑓7|9 𝑥|𝑛 =

𝑝9|7 𝑛|𝑥 𝑓7 𝑥
𝑝9 𝑛

Intuition:

𝑓&|) 𝑥|𝑛 𝜀& =
𝑃 𝑁 = 𝑛|𝑋 = 𝑥 𝑓& 𝑥 𝜀&

𝑃 𝑁 = 𝑛
𝑓&|) 𝑥|𝑛 =

𝑝)|& 𝑛|𝑥 𝑓& 𝑥
𝑝) 𝑛
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All your Bayes are belong to us
Let 𝑋, 𝑌 be continuous

OG Bayes: 𝑝+|9 𝑚|𝑛 = :!|# 1|3 :# 3
:! 1

Mix Bayes #1: 𝑓7|9 𝑥 𝑛 = :!|$ 1|; <$ ;
:! 1

Mix Bayes #2: 𝑝9|7 𝑛|𝑥 = <$|! ;|1 :! 1
<$ ;

All continuous: 𝑓7|= 𝑥 𝑦 = <%|$ >|; <$ ;
<% >

18

Bayes

and𝑀,𝑁 be discrete random variables.
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Mixing discrete and continuous
Let 𝜃 be a random variable for the probability your coin comes up heads, 
and 𝑁 be the number of heads you observe in an experiment.

𝑓!|# 𝑥|𝑛 =
𝑝#|! 𝑛|𝑥 𝑓! 𝑥

𝑝# 𝑛

• Prior belief of parameter 𝜃 𝑓? 𝑥
• Likelihood of 𝑁 = 𝑛 heads, given parameter 𝜃 = 𝑥. 𝑝9|? 𝑛|𝑥
• Posterior updated belief of parameter 𝜃. 𝑓?|9 𝑥|𝑛

19

normalization constant

posterior
likelihood prior

More in live lecture!



Beta RV

20

21c_beta
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Beta random variable
def A Beta random variable 𝑋 is defined as follows:

21

𝑓 𝑥 =
1

𝐵 𝑎, 𝑏
𝑥@A! 1 − 𝑥 BA!𝑋~Beta(𝑎, 𝑏)

VarianceExpectation

PDF

𝐸 𝑋 =
𝑎

𝑎 + 𝑏 Var 𝑋 =
𝑎𝑏

𝑎 + 𝑏 % 𝑎 + 𝑏 + 1

Support of 𝑋: 0, 1

𝑎 > 0, 𝑏 > 0
where 𝐵 𝑎, 𝑏 = ∫%

#𝑥&'# 1 − 𝑥 ('#𝑑𝑥, normalizing constant
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Beta RV with different 𝑎, 𝑏

22

𝑓 𝑥 =
1

𝐵 𝑎, 𝑏
𝑥@A! 1 − 𝑥 BA!𝑋~Beta(𝑎, 𝑏) PDF

Support of 𝑋: 0, 1 where 𝐵 𝑎, 𝑏 = ∫%
#𝑥&'# 1 − 𝑥 ('#𝑑𝑥, normalizing constant

𝑎 > 0, 𝑏 > 0

0.0
1.0
2.0
3.0
4.0
5.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta(0.2,0.8) Beta(0.8. 0.2)

Beta(0.8,0.8)

0.0

1.0

2.0

3.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta(1,2)

Beta
(2,1)

Beta(1,1) + a third case
(next slide)

Note: PDF symmetric when 𝑎 = 𝑏

Beta(1,1)=Uni 0,1
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Beta RV with different 𝑎, 𝑏
Match PDF to distribution:

23

A. Beta(5,5)
B. Beta(2,8)
C. Beta(8,2)

0.0
1.0
2.0
3.0
4.0
5.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta(0.2,0.8) Beta(0.8. 0.2)

Beta(0.8,0.8)

0.0

1.0

2.0

3.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta(1,2)

Beta
(2,1)

Beta(1,1)0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

𝑋~Beta(𝑎, 𝑏)

🤔
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0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta RV with different 𝑎, 𝑏
Match PDF to distribution:
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A. Beta(5,5)
B. Beta(2,8)
C. Beta(8,2)

0.0
1.0
2.0
3.0
4.0
5.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta(0.2,0.8) Beta(0.8. 0.2)

Beta(0.8,0.8)

0.0

1.0

2.0

3.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta(1,2)

Beta
(2,1)

Beta(1,1)

A. Beta(5,5)

B. Beta(2,8) C. Beta(8,2)

𝑋~Beta(𝑎, 𝑏)

In CS109, we focus on Betas where 
𝑎, 𝑏 are both positive integers.
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Beta random variable
def A Beta random variable 𝑋 is defined as follows:

25

𝑓 𝑥 =
1

𝐵 𝑎, 𝑏
𝑥@A! 1 − 𝑥 BA!𝑋~Beta(𝑎, 𝑏)

VarianceExpectation

PDF

𝐸 𝑋 =
𝑎

𝑎 + 𝑏 Var 𝑋 =
𝑎𝑏

𝑎 + 𝑏 % 𝑎 + 𝑏 + 1

Support of 𝑋: 0, 1

𝑎 > 0, 𝑏 > 0

Beta can be a distribution of probabilities.

where 𝐵 𝑎, 𝑏 = ∫%
#𝑥&'# 1 − 𝑥 ('#𝑑𝑥, normalizing constant
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0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta can be a distribution of probabilities.

26

Beta parameters 𝑎, 𝑏 could
come from an experiment…

But which one?
Stay tuned…

𝑋~Beta(𝑎, 𝑏)

Beta(5,5)

Beta(2,8) Beta(8,2)



(live)
21: Beta
Lisa Yan and Jerry Cain
October 30, 2020
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Flipping a coin 
with unknown 
probability

28
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A new definition of probability
Flip a coin 𝑛 +𝑚 times, comes up with 𝑛 heads.
We don’t know the probability 𝜃 that the coin
comes up heads.

29

The world’s first coin

Frequentist

𝜃 is a single value.

𝜃 = lim
123→5

𝑛
𝑛 +𝑚

≈
𝑛

𝑛 +𝑚

Bayesian

𝜃 is a random variable.

𝜃’s continuous support: (0, 1)

Review
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Flip a coin with unknown probability
Flip a coin 𝑛 +𝑚 times, observe 𝑛 heads.
• Before our experiment, 𝜃 (the probability that the coin

comes up heads) can be any probability.
• Let 𝑁 = number of heads.
• Given 𝜃 = 𝑥, coin flips are independent.

What is our updated belief of 𝜃 after we observe 𝑁 = 𝑛?

30

What are reasonable distributions of the following?
1. 𝜃
2. 𝑁|𝜃 = 𝑥
3. 𝜃|𝑁 = 𝑛

🤔
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Flip a coin with unknown probability
Flip a coin 𝑛 +𝑚 times, observe 𝑛 heads.
• Before our experiment, 𝜃 (the probability that the coin

comes up heads) can be any probability.
• Let 𝑁 = number of heads.
• Given 𝜃 = 𝑥, coin flips are independent.

What is our updated belief of 𝜃 after we observe 𝑁 = 𝑛?

31

What are reasonable distributions of the following?
1. 𝜃
2. 𝑁|𝜃 = 𝑥
3. 𝜃|𝑁 = 𝑛

Bayesian prior 𝜃~Uni 0,1

Likelihood 𝑁|𝜃 = 𝑥~Bin(𝑛 +𝑚, 𝑥)

Bayesian posterior. Use Bayes’!
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Flip a coin with unknown probability
Flip a coin 𝑛 +𝑚 times, observe 𝑛 heads.
• Before our experiment, 𝜃 (the probability that the coin

comes up heads) can be any probability.
• Let 𝑁 = number of heads.
• Given 𝜃 = 𝑥, coin flips are independent.

What is our updated belief of 𝜃 after we observe 𝑁 = 𝑛?

32

Posterior: 𝑓*|) 𝜃 𝑛

Likelihood:
𝑁|𝜃 = 𝑥~Bin(𝑛 +𝑚, 𝑥)

Prior:
𝜃~Uni 0,1

𝑓?|9 𝑥 𝑛 =
𝑝9|? 𝑛|𝑥 𝑓? 𝑥

𝑝9 𝑛 =
𝑛 +𝑚
𝑛 𝑥+ 1 − 𝑥 $ ⋅ 1

𝑝) 𝑛

=
𝑛 +𝑚
𝑛

𝑝) 𝑛 𝑥+ 1 − 𝑥 $

constant with respect to 𝑥,
doesn’t depend on 𝑥

=
1
𝑐
𝑥+ 1 − 𝑥 $, where 𝑐 = E

-

#
𝑥+ 1 − 𝑥 $𝑑𝑥
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Let’s try it out
1. Start with a 𝜃~Uni 0,1 over 

probability that a coin lands heads.

2. Flip a coin 8 times. Observe 𝑛 = 7
heads and 𝑚 = 1 tail

3. What is our posterior belief of the 
probability 𝜃?

33

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

! !
" Prior belief, #

"

𝑓?|9 𝑥 𝑛 =
1
𝑐
𝑥N 1 − 𝑥 !

𝑐 normalizes to valid PDF

Wait a minute! #tbplv

tail
👇

Prior belief, 𝜃
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Beta RV with different 𝑎, 𝑏

34

𝑓 𝑥 =
1

𝐵 𝑎, 𝑏
𝑥@A! 1 − 𝑥 BA!𝑋~Beta(𝑎, 𝑏) PDF

Support of 𝑋: 0, 1 where 𝐵 𝑎, 𝑏 = ∫%
#𝑥&'# 1 − 𝑥 ('#𝑑𝑥, normalizing constant

𝑎 > 0, 𝑏 > 0

Review

is the PDF for Beta(8, 2)!𝑓?|9 𝑥 𝑛 =
1
𝑐
𝑥N 1 − 𝑥 !

𝑐 normalizes to valid PDF
🌟



Lisa Yan and Jerry Cain, CS109, 2020

Let’s try it out
1. Start with a 𝜃~Uni 0,1 over 

probability that a coin lands heads.

2. Flip a coin 8 times. Observe 𝑛 = 7
heads and 𝑚 = 1 tail

3. What is our posterior belief of the 
probability 𝜃?

35

𝑓?|9 𝑥 𝑛 =
1
𝑐
𝑥N 1 − 𝑥 !

𝑐 normalizes to valid PDF

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

! !
" Prior belief, #

"

Beta 8,2

tail
👇

Prior belief, 𝜃
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0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

3. What is our posterior belief of the probability 𝜃?
• Start with a 𝜃~Uni 0,1 over probability
• Observe 𝑛 = 7 successes and 𝑚 = 1 failures
• Your new belief about the probability of 𝜃 is:

𝑓?|9 𝑥 𝑛 =
1
𝑐
𝑥N 1 − 𝑥 !,where 𝑐 = J

P

!
𝑥N 1 − 𝑥 !𝑑𝑥

36
𝑓 *
|)
𝑥|
𝑛

Posterior belief, 𝜃|𝑁

𝑥

Posterior belief, 𝜃|𝑁:
Beta(𝑎 = 8, 𝑏 = 2)

Beta(𝑎 = 𝑛 + 1, 𝑏 = 𝑚 + 1)

𝑓?|9 𝑥 𝑛 =
1
𝑐
𝑥QA! 1 − 𝑥 "A!
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0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

CS109 focus: Beta where 𝑎, 𝑏 both positive integers

37

If 𝑎, 𝑏 are positive integers,
Beta parameters 𝑎, 𝑏 could
come from an experiment:

𝑎 = “successes” + 1
𝑏 = “failures” + 1

𝑋~Beta(𝑎, 𝑏)

Beta(5,5)

Beta(2,8) Beta(8,2)

• Beta (in CS109) models the randomness of the 
probability of experiment success.

• Beta parameters depend our data and our prior.
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Bayes’ on the waves

38
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Interesting probability news

39

Why Rejection Sampling Is 
Useful in Cat Modeling

https://www.air-worldwide.com/blog/posts/2018/9/why-rejection-sampling-is-useful-in-cat-modeling/

Note: Cat Modeling 
= Catastrophe Modeling
(e.g., earthquakes, hurricanes, etc.)

https://www.air-worldwide.com/blog/posts/2018/9/why-rejection-sampling-is-useful-in-cat-modeling/


Conjugate 
distributions

40
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A note about our prior
1. Start with a 𝜃~Uni 0,1 over 

probability that a coin lands heads.

2. Flip a coin 8 times. Observe 𝑛 = 7
heads and 𝑚 = 1 tail

3. What is our posterior belief of the 
probability 𝜃?

41

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

! !
" Prior belief, #

"

okay

𝑓?|9 𝑥 𝑛 =
1
𝑐
𝑥N 1 − 𝑥 !

𝑐 normalizes to valid PDF

Wait another minute!Beta 8,2

Prior belief, 𝜃
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Beta RV with different 𝑎, 𝑏

42

𝑓 𝑥 =
1

𝐵 𝑎, 𝑏
𝑥@A! 1 − 𝑥 BA!𝑋~Beta(𝑎, 𝑏) PDF

Support of 𝑋: 0, 1 where 𝐵 𝑎, 𝑏 = ∫%
#𝑥&'# 1 − 𝑥 ('#𝑑𝑥, normalizing constant

𝑎 > 0, 𝑏 > 0

0.0

1.0

2.0

3.0

0.0 0.2 0.4 0.6 0.8 1.0

Beta(1,2)

Beta
(2,1)

Beta(1,1)

Note: PDF symmetric when 𝑎 = 𝑏

Beta(1,1)=Uni 0,1

Review
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A note about our prior
1. Start with a 𝜃~Uni 0,1 over 

probability that a coin lands heads.

2. Flip a coin 8 times. Observe 𝑛 = 7
heads and 𝑚 = 1 tail

3. What is our posterior belief of the 
probability 𝜃?

43

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0

! !
" Prior belief, #

"

Check this out. Beta 𝑎 = 1, 𝑏 = 1 :

𝑓 𝑥 =
1

𝐵 𝑎, 𝑏
𝑥./# 1 − 𝑥 0/#

where 0 < 𝑥 < 1

=
1

∫-
#1𝑑𝑥

= 1Beta 8,2

Beta 1,1

Prior belief, 𝜃
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Beta is a conjugate distribution for Bernoulli
Beta is a conjugate distribution for Bernoulli, meaning:
• Prior and posterior parametric forms are the same

44

(proof on next slide)
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Beta is a conjugate distribution for Bernoulli
Beta is a conjugate distribution for Bernoulli, meaning:
1. If our prior belief of the parameter is Beta, and
2. Our experiment is Bernoulli, then
3. Our posterior is also Beta.

45

Proof: 𝜃~Beta(𝑎, 𝑏) 𝑁|𝜃~Bin(𝑛 + 𝑚, 𝑥)

𝑓?|9 𝑥 𝑛 =
𝑝9|? 𝑛|𝑥 𝑓? 𝑥

𝑝9 𝑛 =

𝑛 +𝑚
𝑚 𝑥+ 1 − 𝑥 $ ⋅ 1

𝐵 𝑎, 𝑏 𝑥./# 1 − 𝑥 0/#

𝑝) 𝑛

= 𝐶 ⋅ 𝑥1 1 − 𝑥 3 ⋅ 𝑥@A! 1 − 𝑥 BA!constants that 
don’t depend on 𝑥

= 𝐶 ⋅ 𝑥12@A! 1 − 𝑥 32BA! ✅

(observe 𝑛 successes, 𝑚 failures)
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Beta is a conjugate distribution for Bernoulli
Beta is a conjugate distribution for Bernoulli, meaning:
• Prior and posterior parametric forms are the same
• Practically, conjugate means easy update:

Add number of “heads” and “tails” seen to Beta parameters.

You can set the prior to reflect how biased you think the coin is a priori:
• 𝜃~Beta(𝑎, 𝑏): have seen 𝑎 + 𝑏 − 2 imaginary trials, where

𝑎 − 1 are heads, 𝑏 − 1 tails
• Then Beta 1, 1 = Uni(0, 1) means we haven’t seen any imaginary trials 

46

This is the main 
takeaway of 

Beta.

Prior

Posterior

Experiment Observe 𝑛 successes and 𝑚 failures

Beta(𝑎 = 𝑛!$.1 + 1, 𝑏 = 𝑚!$.1 + 1)

Beta 𝑎 = 𝑛!$.1 + 𝑛 + 1, 𝑏 = 𝑚!$.1 +𝑚 + 1
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The enchanted die
Let 𝜃 be the probability of rolling a 6 on Lisa’s die.
• Prior: Imagine 1 out of 6 die rolls where only 6 showed up
• Observation: roll it a few times…

What is the updated distribution of 𝜃 after our observation?

Check out the demo!

47

Beta(𝑎 = 𝑛!)&* + 1, 𝑏 = 𝑚!)&* + 1)Prior

Beta(𝑎 = 𝑛!)&* + 𝑛 + 1, 𝑏 = 𝑚!)&* +𝑚 + 1)Posterior

http://web.stanford.edu/class/cs109/demos/beta.html
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Medicinal Beta
• Before being tested, a medicine is believed to “work” 80% of the time.
• The medicine is tried on 20 patients.
• It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

48

Frequentist

Let 𝑝 be the probability
your drug works.

𝑝 ≈
14
20

= 0.7

Bayesian

A frequentist view will not incorporate 
prior/expert belief about probability.
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Medicinal Beta
• Before being tested, a medicine is believed to “work” 80% of the time.
• The medicine is tried on 20 patients.
• It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

49

Frequentist

Let 𝑝 be the probability
your drug works.

𝑝 ≈
14
20

= 0.7

Bayesian

Let 𝜃 be the probability
your drug works.

𝜃 is a random variable.
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Medicinal Beta
• Before being tested, a medicine is believed to “work” 80% of the time.
• The medicine is tried on 20 patients.
• It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

50

What is the prior distribution of 𝜃? (select all that apply)

A. 𝜃~Beta 1, 1 = Uni 0, 1
B. 𝜃~Beta 81, 101
C. 𝜃~Beta 80, 20
D. 𝜃~Beta 81, 21
E. 𝜃~Beta 5, 2

Beta(𝑎 = 𝑛!)&* + 1, 𝑏 = 𝑚!)&* + 1)Prior

Beta(𝑎 = 𝑛!)&* + 𝑛 + 1, 𝑏 = 𝑚!)&* +𝑚 + 1)Posterior

(Bayesian interpretation)

🤔
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Medicinal Beta
• Before being tested, a medicine is believed to “work” 80% of the time.
• The medicine is tried on 20 patients.
• It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?
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What is the prior distribution of 𝜃? (select all that apply)

A. 𝜃~Beta 1, 1 = Uni 0, 1
B. 𝜃~Beta 81, 101
C. 𝜃~Beta 80, 20
D. 𝜃~Beta 81, 21
E. 𝜃~Beta 5, 2

Beta(𝑎 = 𝑛!)&* + 1, 𝑏 = 𝑚!)&* + 1)Prior

Beta(𝑎 = 𝑛!)&* + 𝑛 + 1, 𝑏 = 𝑚!)&* +𝑚 + 1)Posterior

(Bayesian interpretation)

Interpretation: 80 successes / 100 imaginary trials

(you can choose either based on how strong your belief is (an engineering choice).
We choose E on next slide)
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Medicinal Beta
• Before being tested, a medicine is believed to “work” 80% of the time.
• The medicine is tried on 20 patients.
• It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

52

Prior: 𝜃~Beta 𝑎 = 5, 𝑏 = 2
Posterior: 𝜃~Beta 𝑎 = 5 + 14, 𝑏 = 2 + 6

~Beta 𝑎 = 19, 𝑏 = 8

Beta(𝑎 = 𝑛!)&* + 1, 𝑏 = 𝑚!)&* + 1)Prior

Beta(𝑎 = 𝑛!)&* + 𝑛 + 1, 𝑏 = 𝑚!)&* +𝑚 + 1)Posterior

(Bayesian interpretation)

0.0
1.0
2.0
3.0
4.0
5.0

0.0 0.2 0.4 0.6 0.8 1.0

Posterior

Prio
r

𝑥
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Medicinal Beta
• Before being tested, a medicine is believed to “work” 80% of the time.
• The medicine is tried on 20 patients.
• It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

53

Prior: 𝜃~Beta 𝑎 = 5, 𝑏 = 2
Posterior: 𝜃~Beta 𝑎 = 5 + 14, 𝑏 = 2 + 6

~Beta 𝑎 = 19, 𝑏 = 8

Beta(𝑎 = 𝑛!)&* + 1, 𝑏 = 𝑚!)&* + 1)Prior

Beta(𝑎 = 𝑛!)&* + 𝑛 + 1, 𝑏 = 𝑚!)&* +𝑚 + 1)Posterior

(Bayesian interpretation)

What do you report to pharmacists?
A. Expectation of posterior
B. Mode of posterior
C. Distribution of posterior
D. Nothing

0.0
1.0
2.0
3.0
4.0
5.0

0.0 0.2 0.4 0.6 0.8 1.0

Posterior

Prio
r

𝑥

mode

🤔
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Medicinal Beta
• Before being tested, a medicine is believed to “work” 80% of the time.
• The medicine is tried on 20 patients.
• It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?
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Prior: 𝜃~Beta 𝑎 = 5, 𝑏 = 2
Posterior: 𝜃~Beta 𝑎 = 5 + 14, 𝑏 = 2 + 6

~Beta 𝑎 = 19, 𝑏 = 8

Beta(𝑎 = 𝑛!)&* + 1, 𝑏 = 𝑚!)&* + 1)Prior

Beta(𝑎 = 𝑛!)&* + 𝑛 + 1, 𝑏 = 𝑚!)&* +𝑚 + 1)Posterior

(Bayesian interpretation)

What do you report to pharmacists? 0.0
1.0
2.0
3.0
4.0
5.0

0.0 0.2 0.4 0.6 0.8 1.0

Posterior

Prio
r

𝑥

mode

In CS109, we report the mode: The 
“most likely” parameter given the data.

𝐸 𝜃 =
𝑎

𝑎 + 𝑏
=

19
19 + 8

≈ 0.70

mode 𝜃 =
𝑎 − 1

𝑎 + 𝑏 − 2
=

18
18 + 7

≈ 0.72
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Food for thought

55

𝑋~Ber 𝑝

In this lecture: If we don’t know the parameter 𝑝,
Bayesian statisticians will:
• Treat the parameter as a random variable 𝜃

with a Beta prior distribution
• Perform an experiment
• Based on experiment outcomes, update the 

posterior distribution of 𝜃
Food for thought:

Any parameter for a “parameterized” 
random variable can be thought of as 

a random variable.
𝑌~𝒩 𝜇, 𝜎.

🤔

👉
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Estimating our parameter directly

56

Maximum 
Likelihood 
Estimator

(MLE)

What is the parameter 𝜃
that maximizes the likelihood
of our observed data 
𝑥#, 𝑥%, … , 𝑥+ ?

𝜃234 = arg max
*

𝑓 𝑋#, 𝑋%, … , 𝑋+|𝜃

𝐿 𝜃 = 𝑓 𝑋#, 𝑋%, … , 𝑋+|𝜃

=T
!"#

+

𝑓 𝑋!|𝜃

(our focus so far)

likelihood of data

Observations:
• MLE maximizes probability of observing data

given a parameter 𝜃.
• If we are estimating 𝜃, shouldn’t we maximize

the probability of 𝜃 directly?
See you 

next time!



Extra: MLE: 
Multinomial 
derivation

57

(extra)
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Okay, just one more MLE with the Multinomial
Consider a sample of 𝑛 i.i.d. random variables where
• Each element is drawn from one of 𝑚 outcomes.
𝑃 outcome 𝑖 = 𝑝!, where ∑!"#$ 𝑝! = 1

• 𝑋! = # of trials with outcome 𝑖, where ∑!"#$ 𝑋! = 𝑛

1. What is the likelihood of observing
the sample 𝑋#, 𝑋%, … , 𝑋$ ,
given the probabilities 𝑝#, 𝑝%, … , 𝑝$?

2. What is 𝜃+,-?

58

𝐿 𝜃 =
𝑛!

𝑋#! 𝑋%!⋯𝑋$!
𝑝#
&!𝑝%

&"⋯𝑝$
&#

𝐿𝐿 𝜃 = log 𝑛! −4
!"#

$

log 𝑋!! +4
!"#

$

𝑋! log 𝑝! , such that ∑!"#$ 𝑝! = 1

𝜃+,-: 𝑝. =
𝑋.
𝑛

Intuitively, probability
𝑝! = proportion of outcomes

Optimize with
Lagrange multipliers in 

extra slides
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Optimizing MLE for Multinomial
𝜃 = 𝑝!, 𝑝", … , 𝑝3
𝜃+,- = arg max

?
𝐿𝐿 𝜃

59

4
!"#

$

𝑝! = 1, where Use Lagrange multipliers
to account for constraint

𝐴 𝜃 = 𝐿𝐿 𝜃 + 𝜆 4
!"#

$

𝑝! − 1 =4
!"#

$

𝑋! log 𝑝! + 𝜆 4
!"#

$

𝑝! − 1
(drop 
non-𝑝!
terms)

𝜕𝐴 𝜃
𝜕𝑝!

= 𝑋!
1
𝑝!
+ 𝜆 = 0Differentiate w.r.t.

each 𝑝!, in turn: ⇒ 𝑝! = −
𝑋!
𝜆

Solve for 𝜆, noting

5
!"#

$

𝑋! = 𝑛,5
!"#

$

𝑝! = 1:

Lagrange
multipliers:

4
!"#

$

𝑝! =4
!"#

$

−
𝑋!
𝜆
= 1 ⇒ 1 = −

𝑛
𝜆 ⇒ 𝜆 = −𝑛

Substitute 𝜆 into 𝑝! 𝑝! =
𝑋!
𝑛


