21: Beta

Lisa Yan and Jerry Cain October 30, 2020

Quick slide reference

MLE: Multinomial 21a_mle_multinomial 3 Bayesian statistics/Beta sneak peek 21b bayesian 11 The Beta RV 21c_beta 20 Flipping a coin with unknown probability LIVE 37 Extra: MLE: Multinomial Derivation 21e_extra *

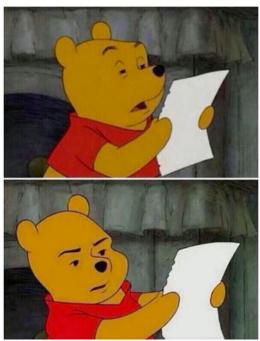
21a_mle_multinomial

MLE: Multinomial

Consider a sample of *n* i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^m p_i = 1$
- $X_i = #$ of trials with outcome *i*, where $\sum_{i=1}^m X_i = n$

Staring at my math homework like



Let's give an example!

Consider a sample of *n* i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^m p_i = 1$
- $X_i = #$ of trials with outcome *i*, where $\sum_{i=1}^m X_i = n$

Example: Suppose each RV is outcome of 6-sided die.

- Roll the dice n = 12 times.
- Observe data: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

$$X_1 = 3, X_2 = 2, X_3 = 0,$$

 $X_4 = 3, X_5 = 1, X_6 = 3$

Check:
$$X_1 + X_2 + \dots + X_6 = 12$$

 $m=6, \sum p_i=1$

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^m p_i = 1$
- $X_i = #$ of trials with outcome *i*, where $\sum_{i=1}^m X_i = n$
- **1**. What is the likelihood of observing the sample($X_1, X_2, ..., X_m$), given the probabilities $p_1, p_2, ..., p_m$?

A.
$$\frac{n!}{X_{1}!X_{2}!\cdots X_{m}!}p_{1}^{X_{1}}p_{2}^{X_{2}}\cdots p_{m}^{X_{m}}$$

B.
$$p_{1}^{X_{1}}p_{2}^{X_{2}}\cdots p_{m}^{X_{m}}$$

C.
$$\frac{n!}{X_{1}!X_{2}!\cdots X_{m}!}X_{1}^{p_{1}}X_{2}^{p_{2}}\cdots X_{m}^{p_{m}}$$

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^m p_i = 1$
- $X_i = #$ of trials with outcome *i*, where $\sum_{i=1}^m X_i = n$
- **1**. What is the likelihood of observing the sample($X_1, X_2, ..., X_m$), given the probabilities $p_1, p_2, ..., p_m$?

(A)
$$\frac{n!}{X_1! X_2! \cdots X_m!} p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}$$

B. $p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}$
C. $\frac{n!}{X_1! X_2! \cdots X_m!} X_1^{p_1} X_2^{p_2} \cdots X_m^{p_m}$

Consider a sample of *n* i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^m p_i = 1$
- $X_i = #$ of trials with outcome *i*, where $\sum_{i=1}^m X_i = n$
- 1. What is the likelihood of observing the sample($X_1, X_2, ..., X_m$), given the probabilities $p_1, p_2, ..., p_m$? $L(\theta) = \frac{n!}{X_1! X_2! \cdots X_m!} p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}$

2. What is
$$\theta_{MLE}$$
?

$$LL(\theta) = \log(n!) - \sum_{i=1}^{m} \log(X_i!) + \sum_{i}^{m} X_i \log(p_i), \text{ such that } \sum_{i=1}^{m} p_i = 1$$

Optimize with
Lagrange multipliers in
extra slides
$$\Phi_{MLE}: p_i = \frac{X_i}{n} \quad \text{Intuitively, probability} \\ p_i = \text{proportion of outcomes} \\ p_i = \text{proportion of outcomes} \\ \text{Stanford University} \end{cases}$$

MLE for Multinomial: $p_i = \frac{X_i}{n}$

Consider a 6-sided die.

- Roll the dice n = 12 times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

What is θ_{MLE} ?

MLE for Multinomial: $p_i = \frac{X_i}{n}$

Consider a 6-sided die.

- Roll the dice n = 12 times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

 $heta_{MLE}$:

$$p_1 = 3/12$$

 $p_2 = 2/12$
 $p_3 = 0/12$
 $p_4 = 3/12$
 $p_5 = 1/12$
 $p_6 = 3/12$

- MLE: you'll **never**...<u>EVER</u>... roll a three.
- Do you really believe that?

Today: A new definition of probability!

21b_bayesian

Bayesian Statistics

Review

Consider a 6-sided die.

- Roll the dice n = 12 times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

 θ_{MLE} :

```
p_1 = 3/12

p_2 = 2/12

p_3 = 0/12

p_4 = 3/12

p_5 = 1/12

p_6 = 3/12
```

- MLE: you'll **never**...<u>EVER</u>... roll a three.
- Do you really believe that?

Roll more! Prob. = frequency in limit

But what if you cannot observe anymore rolls?

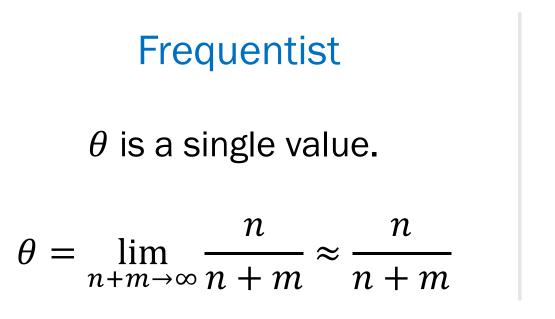
Today we are going to learn something unintuitive, beautiful, and useful!

We are going to think of probabilities as random variables.

A new definition of probability

Flip a coin n + m times, come up with n heads. We don't know the probability θ that the coin comes up heads.

The world's first coin



Bayesian

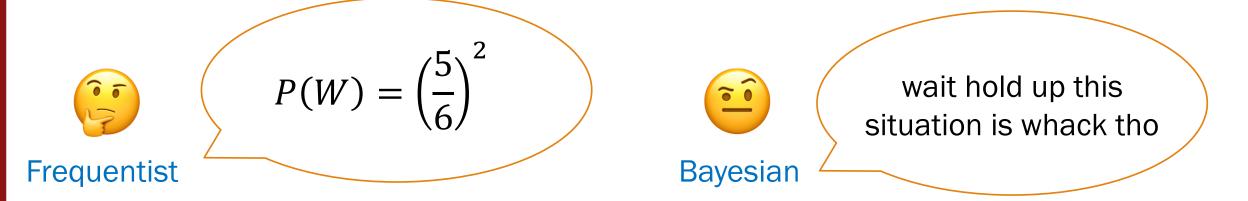
 θ is a random variable.

 θ 's continuous support: (0, 1)

Let's play a game

Roll 2 dice. If *neither* roll is a 6, you win (event W). Else, I win (event W^C).

- Before you play, what's the probability that you win?
- Play once. What's the probability that you win?
- Play three more times. What's the probability that you win?



Bayesian statistics: Update your prior beliefs of probability.

Bayesian statistics: Probability is a reasonable expectation representing a state of knowledge.

Mixing discrete and continuous random variables, combined with Bayes' Theorem, allows us to reason about probabilities as random variables.

Mixing discrete and continuous

Let *X* be a continuous random variable, and *N* be a discrete random variable.

Bayes'
Theorem:
$$f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}$$

ntuition:
$$P(X = x | N = n) = \frac{P(N = n | X = x)P(X = x)}{P(N = n)}$$
$$f_{X|N}(x|n)\varepsilon_X = \frac{P(N = n | X = x)f_X(x)\varepsilon_X}{P(N = n)} \implies f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}$$

All your Bayes are belong to us

Let *X*, *Y* be continuous and *M*, *N* be discrete random variables.

OG Bayes:
$$p_{M|N}(m|n) = \frac{p_{N|M}(n|m)p_M(m)}{p_N(n)}$$
Mix Bayes #1: $f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}$ Mix Bayes #2: $p_{N|X}(n|x) = \frac{f_{X|N}(x|n)p_N(n)}{f_X(x)}$ All continuous: $f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x)f_X(x)}{f_Y(y)}$

CATS: ALL YOUR Bayes ARE BELONG

TO US.

Mixing discrete and continuous

Let θ be a random variable for the probability your coin comes up heads, and N be the number of heads you observe in an experiment.

posterior

$$f_{\theta|N}(x|n) = \frac{\text{likelihood prior}}{p_N|_{\theta}(n|x)f_{\theta}(x)}$$

 $p_N(n)$

normalization constant

- Prior belief of parameter θ
- Likelihood of N = n heads, given parameter $\theta = x$.
- Posterior updated belief of parameter θ .

```
f_{\theta}(x)p_{N|\theta}(n|x)f_{\theta|N}(x|n)
```

More in live lecture! Stanford University 19

21c_beta

Beta RV

Beta random variable

<u>def</u> A **Beta** random variable *X* is defined as follows:

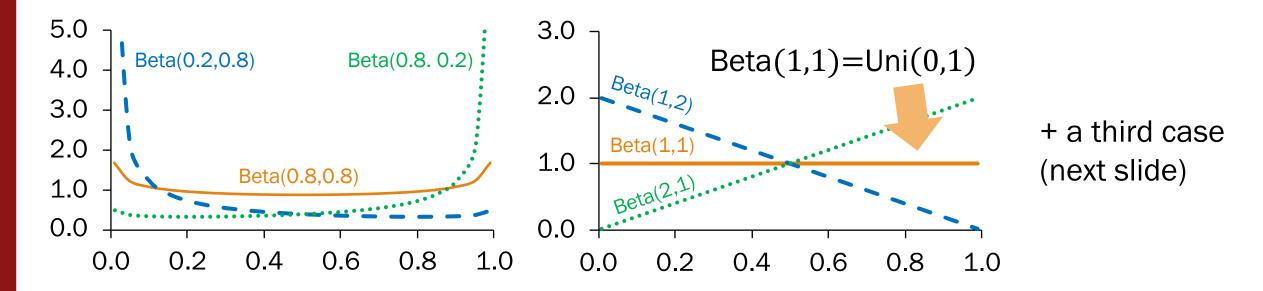
$$X \sim \text{Beta}(a, b)$$

 $a > 0, b > 0$
Support of X: (0, 1)
Expectation $E[X] = \frac{a}{a+b}$
PDF $f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}$
where $B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$, normalizing constant
Variance $\text{Var}(X) = \frac{ab}{(a+b)^2(a+b+1)}$

$$X \sim \text{Beta}(a, b) \qquad \text{PDF} \quad f(x) = \frac{1}{B(a, b)} x^{a-1} (1-x)^{b-1}$$

$$a > 0, b > 0$$

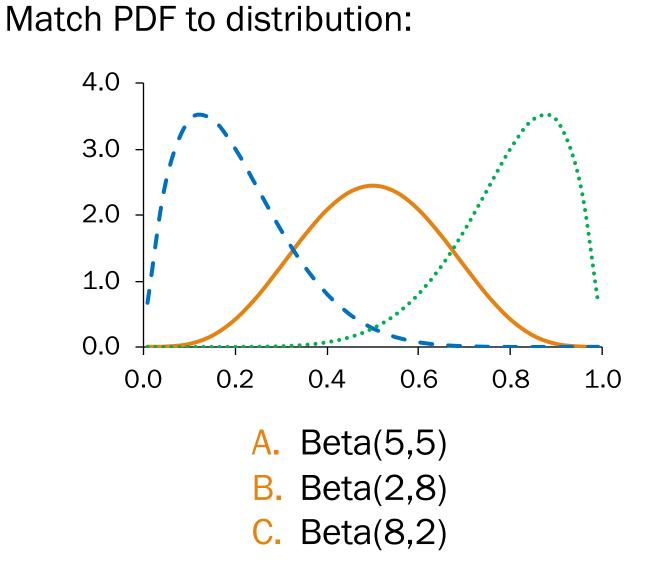
Support of X: (0, 1)
$$\text{where } B(a, b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx, \text{ normalizing constant}$$

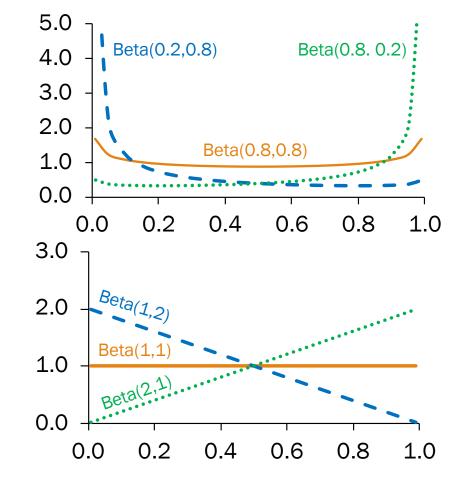


Note: PDF symmetric when a = b

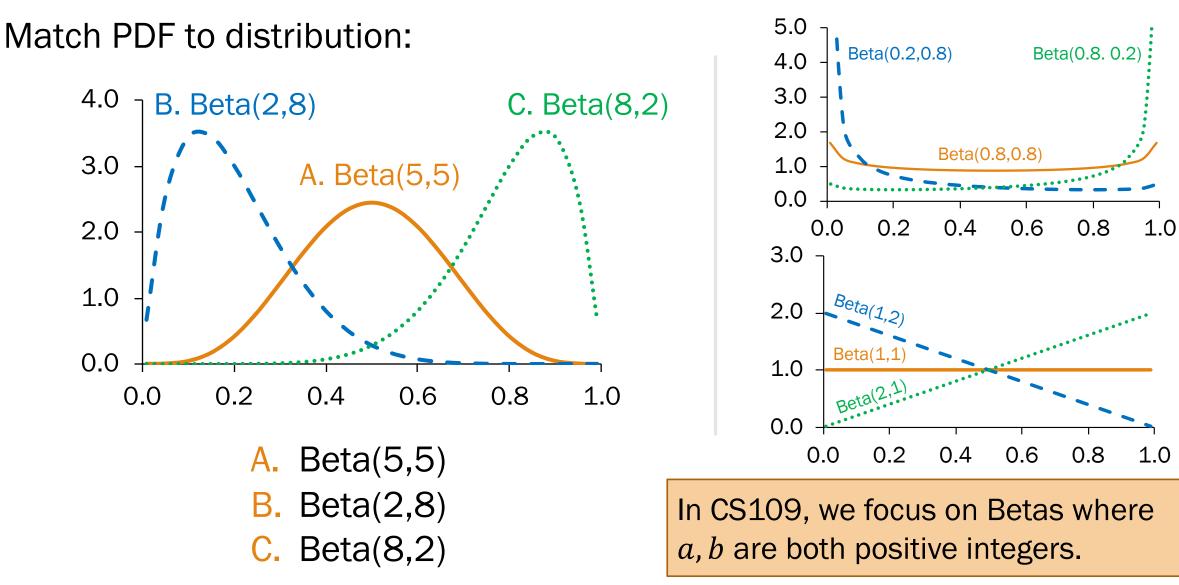
Beta RV with different *a*, *b*

 $X \sim \text{Beta}(a, b)$





 $X \sim \text{Beta}(a, b)$



Beta random variable

<u>def</u> A Beta random variable *X* is defined as follows:

$$X \sim \text{Beta}(a, b)$$

$$a > 0, b > 0$$

$$\text{PDF} \quad f(x) = \frac{1}{B(a, b)} x^{a-1} (1-x)^{b-1}$$

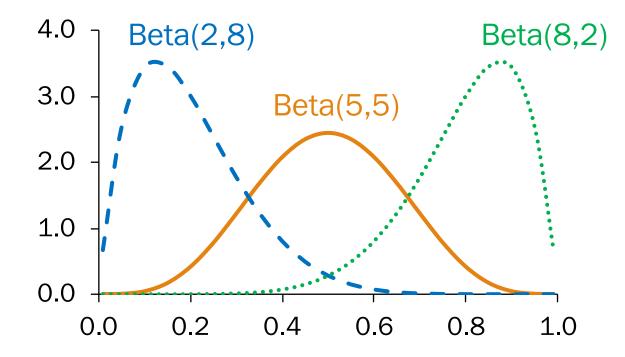
where $B(a, b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$, normalizing constant

$$\text{Expectation} \quad E[X] = \frac{a}{a+b}$$

$$\text{Variance} \quad \text{Var}(X) = \frac{ab}{(a+b)^2(a+b+1)}$$

Beta can be a distribution of probabilities.

Beta can be a distribution of probabilities.



Beta parameters *a*, *b* <u>could</u> come from an experiment...

But which one? Stay tuned... $X \sim \text{Beta}(a, b)$

21: Beta

Lisa Yan and Jerry Cain October 30, 2020 MLE Beta RV

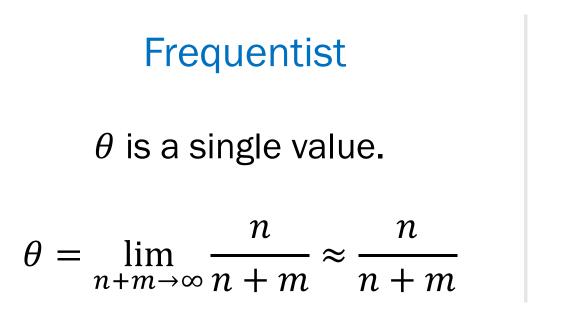
Flipping a coin with unknown probability

A new definition of probability

Flip a coin n + m times, comes up with n heads. We don't know the probability θ that the coin comes up heads.

Review

The world's first coin



Bayesian

 θ is a random variable.

 θ 's continuous support: (0, 1)

Flip a coin with unknown probability

Flip a coin n + m times, observe n heads.

- Before our experiment, θ (the probability that the coin comes up heads) can be any probability.
- Let N = number of heads.
- Given $\theta = x$, coin flips are independent.

What is our updated belief of θ after we observe N = n?

What are reasonable distributions of the following?

- **1.** *θ*
- $2. \quad N|\theta = x$
- 3. $\theta | N = n$

Flip a coin with unknown probability

Flip a coin n + m times, observe n heads.

- Before our experiment, θ (the probability that the coin comes up heads) can be any probability.
- Let N = number of heads.
- Given $\theta = x$, coin flips are independent.

What is our updated belief of θ after we observe N = n?

What are reasonable distributions of the following?

- **1.** θ Bayesian prior $\theta \sim \text{Uni}(0,1)$
- 2. $N|\theta = x$ Likelihood $N|\theta = x$ Bin(n + m, x)
- **3.** $\theta | N = n$ Bayesian posterior. Use Bayes'!

Flip a coin with unknown probability

Flip a coin n + m times, observe n heads.

- Before our experiment, θ (the probability that the coin comes up heads) can be any probability.
- Let N = number of heads.
- Given $\theta = x$, coin flips are independent.

doesn't depend on x

What is our updated belief of θ after we observe N = n?

0

32

Likelihood: $N|\theta = x \sim Bin(n + m, x)$ Posterior: $f_{\theta|N}(\theta|n)$

$$f_{\theta|N}(x,n) = \frac{p_{N|\theta}(n|x)f_{\theta}(x)}{p_{N}(n)} = \frac{\binom{n+m}{n}x^{n}(1-x)^{m} \cdot 1}{p_{N}(n)}$$

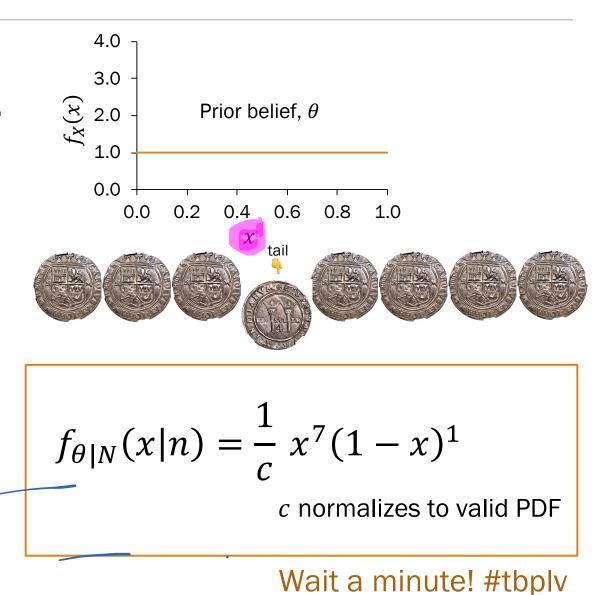
$$= \frac{\binom{n+m}{n}x^{n}(1-x)^{m}}{p_{N}(n)} = \frac{1}{c}x^{n}(1-x)^{m}, \text{ where } c = \int_{0}^{1}x^{n}(1-x)^{m}dx$$
constant with respect to x,
doesn't depend on x.

Lisa Yan and Jerry Cain, CS109, 2020

Let's try it out

1. Start with a $\theta \sim \text{Uni}(0,1)$ over probability that a coin lands heads.

- 2. Flip a coin 8 times. Observe n = 7 heads and m = 1 tail
- 3. What is our posterior belief of the probability θ ?



Review

$$X \sim \text{Beta}(a, b)$$

$$a > 0, b > 0$$

Support of X: (0, 1) w

PDF
$$f(x) = \frac{1}{B(a,b)} x^{a-1}(1-x)^{b-1}$$

here $B(a,b) = \int_0^1 x^{a-1}(1-x)^{b-1} dx$, normalizing constant

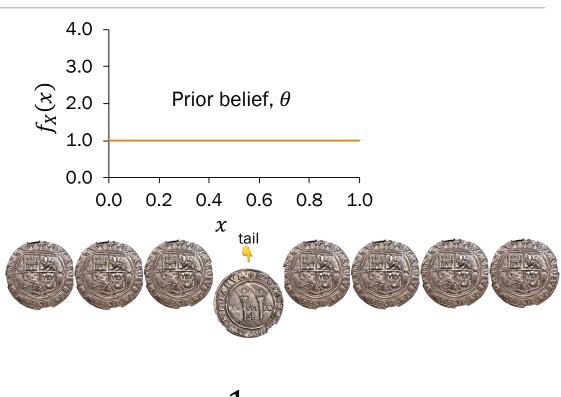
$$f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1-x)^1 \qquad \text{is the PDF for Beta}(8,2)!$$

c normalizes to valid PDF

Let's try it out

1. Start with a $\theta \sim \text{Uni}(0,1)$ over probability that a coin lands heads.

- 2. Flip a coin 8 times. Observe n = 7 heads and m = 1 tail
- 3. What is our posterior belief of the probability θ ?



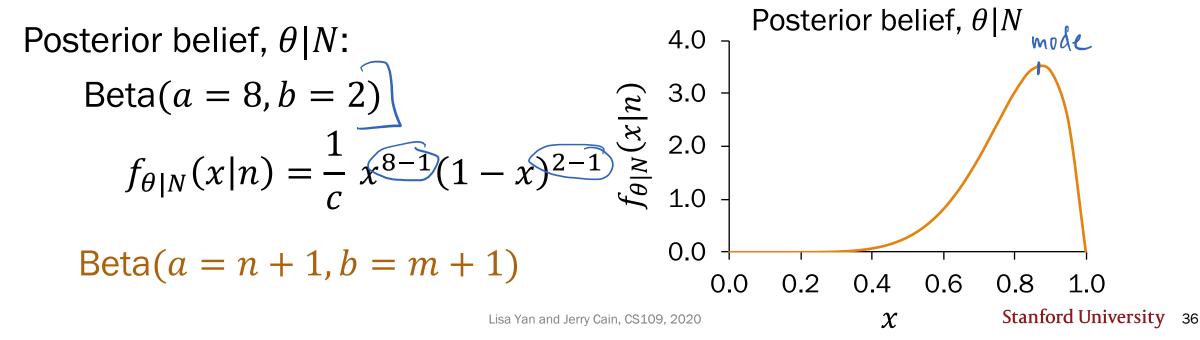
$$f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1-x)^1$$

c normalizes to valid PDF

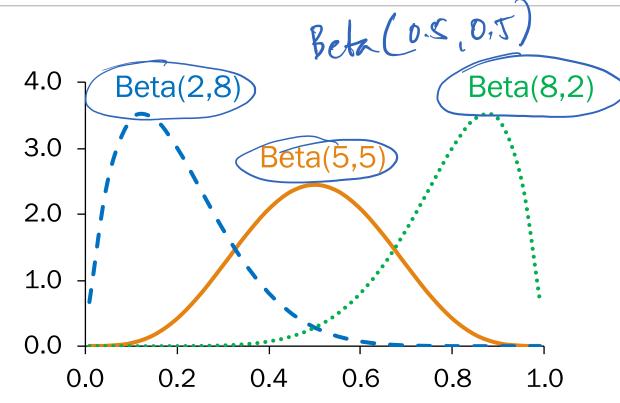
3. What is our posterior belief of the probability θ ?

- Start with a $\theta \sim \text{Uni}(0,1)$ over probability
- Observe n = 7 successes and m = 1 failures
- Your new belief about the probability of θ is:

$$f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1-x)^1$$
, where $c = \int_0^1 x^7 (1-x)^1 dx$



CS109 focus: Beta where a, b both positive integers $X \sim Beta(a, b)$



If *a*, *b* are positive integers, Beta parameters *a*, *b* could come from an experiment:

> a = "successes" + 1 b = "failures" + 1

- Beta (in CS109) models the randomness of the probability of experiment success.
- Beta parameters depend our data and our prior.

Bayes' on the waves

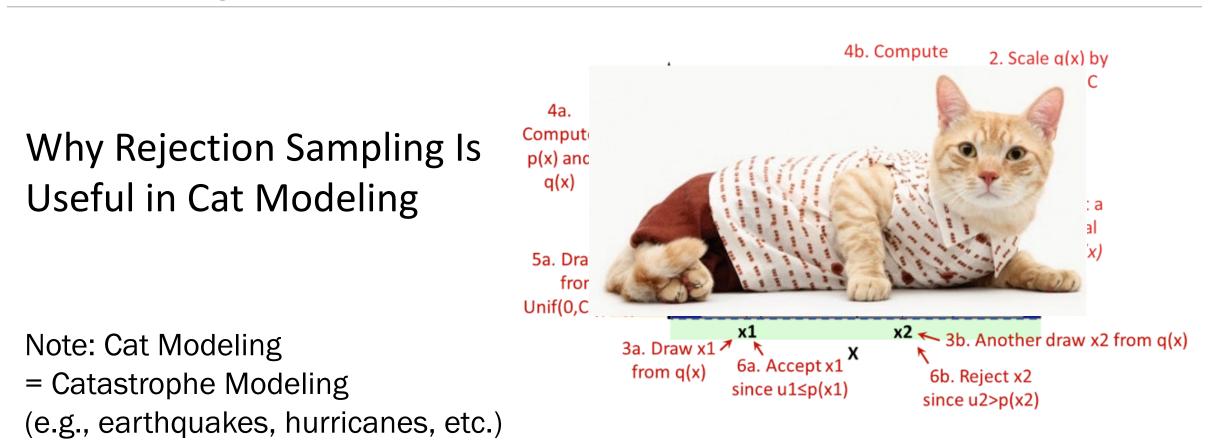
(I'M NEAR | I PICKED UP) = THE OCEAN A SEASHELL) = I PICKED UP I'M NEAR P(I'M NEAR A SEASHELL THE OCEAN) FICKED UP SPLOOS

xkcd. um

d'any. um

STATISTICALLY SPEAKING, IF YOU PICK UP A SEASHELL AND DON'T HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

Interesting probability news

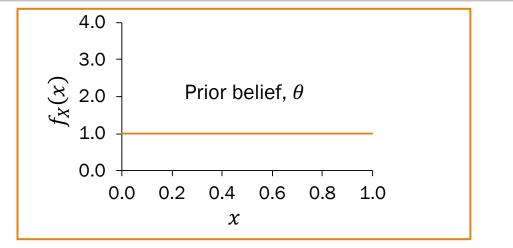


https://www.air-worldwide.com/blog/posts/2018/9/why-rejection-sampling-is-useful-in-cat-modeling/

Conjugate distributions

A note about our prior

1. Start with a $\theta \sim \text{Uni}(0,1)$ over probability that a coin lands heads.



- 2. Flip a coin 8 times. Observe n = 7 heads and m = 1 tail
- 3. What is our posterior belief of the probability θ ?

$$f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1-x)^1$$

okay

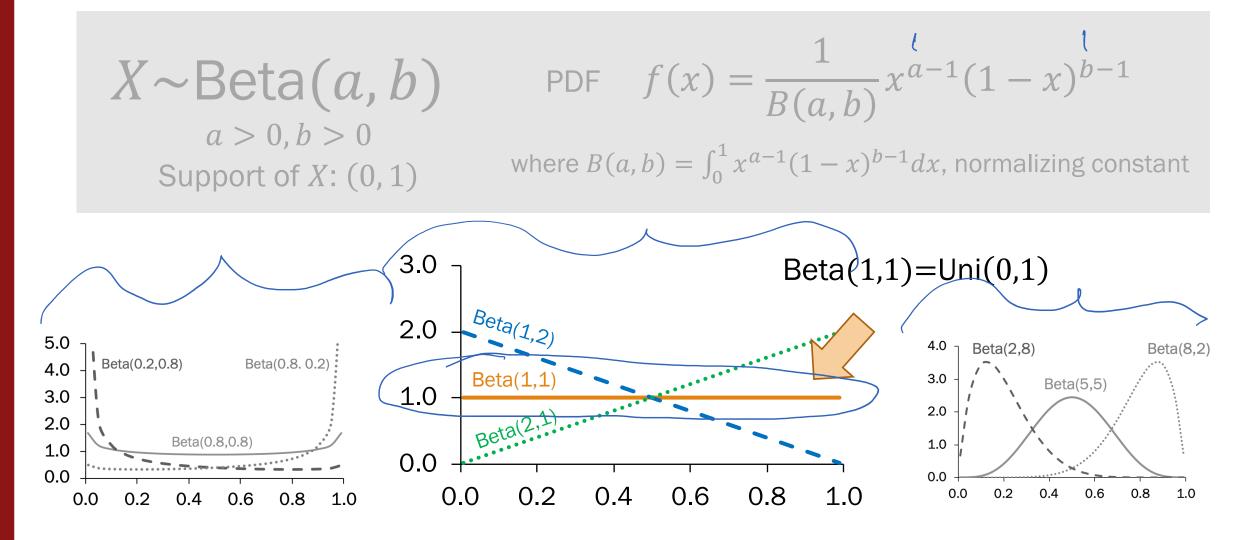
c normalizes to valid PDF

Wait another minute!

Stanford University 41

Lisa Yan and Jerry Cain, CS109, 2020

Review



Note: PDF symmetric when a = b

Lisa Yan and Jerry Cain, CS109, 2020

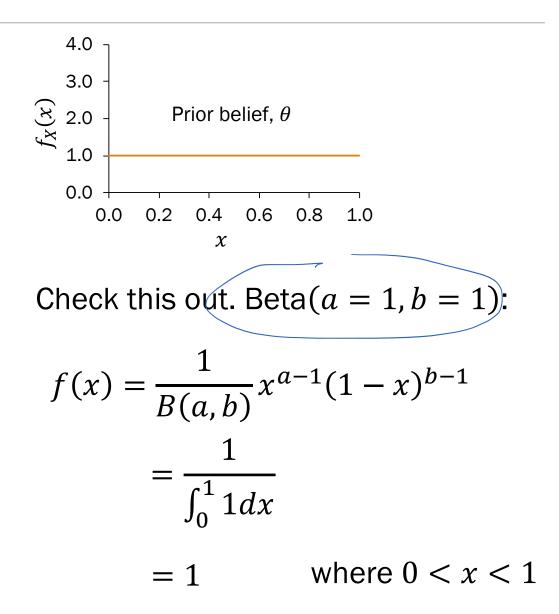
A note about our prior

1. Start with a θ ~ Uni(0,1) over probability that a coin lands heads.

Beta(1,1)

- 2. Flip a coin 8 times. Observe n = 7 heads and m = 1 tail
- 3. What is our posterior belief of the probability θ ?

Beta



Beta is a conjugate distribution for Bernoulli

Beta is a **conjugate distribution** for Bernoulli, meaning:

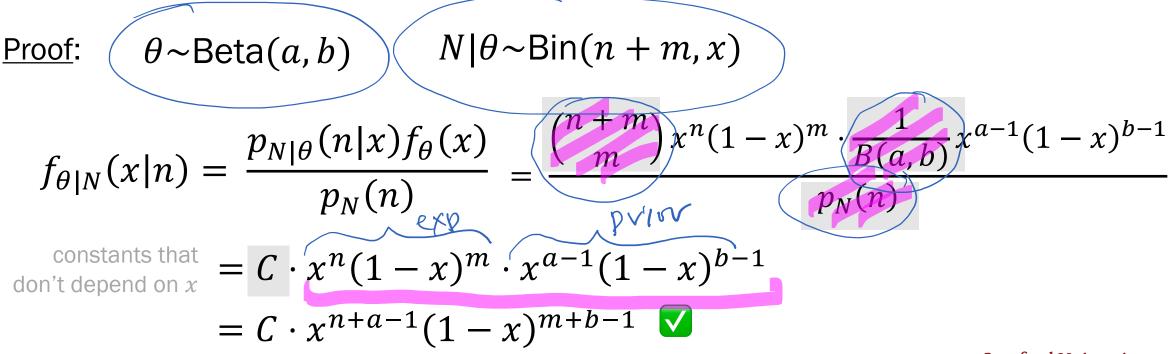
Prior and posterior parametric forms are the same

(proof on next slide)

Beta is a conjugate distribution for Bernoulli

Beta is a conjugate distribution for Bernoulli, meaning:

- 1. If our prior belief of the parameter is Beta, and
- 2. Our experiment is Bernoulli, then
- **3.** Our posterior is also Beta.



(observe *n* successes, *m* failures)

Beta is a conjugate distribution for Bernoulli

This is the main takeaway of Beta.

Beta is a conjugate distribution for Bernoulli, meaning:

- Prior and posterior parametric forms are the same
- Practically, conjugate means easy update: Add number of "heads" and "tails" seen to Beta parameters.

You can set the prior to reflect how biased you think the coin is a priori:

- $\theta \sim \text{Beta}(a, b)$: have seen (a + b 2) imaginary trials, where (a 1) are heads, (b 1) tails
- Then Beta(1, 1) = Uni(0, 1) means we haven't seen any imaginary trials

PriorBeta($a = n_{imag} + 1, b = m_{imag} + 1$)ExperimentObserve n successes and m failuresPosteriorBeta($a = n_{imag} + n + 1, b = m_{imag} + m + 1$)

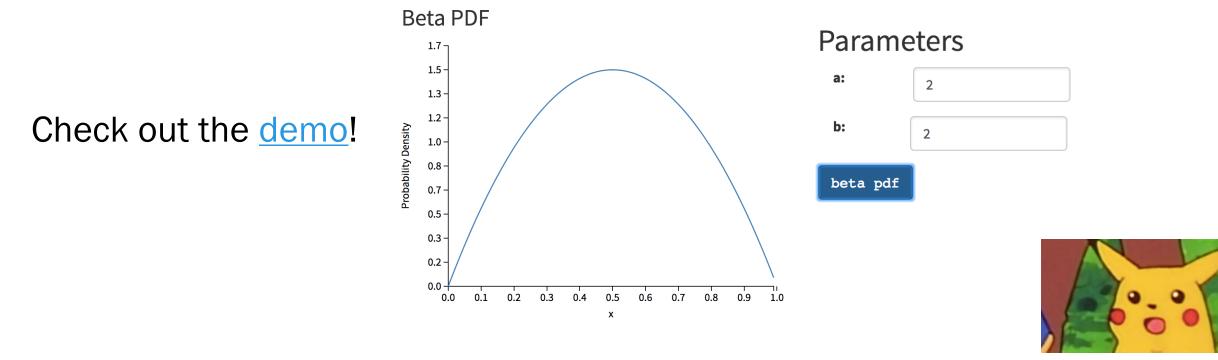
The enchanted die

Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

Let θ be the probability of rolling a 6 on Lisa's die.

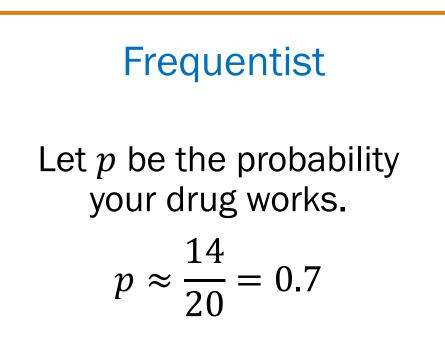
- Prior: Imagine 1 out of 6 die rolls where only 6 showed up
- Observation: roll it a few times...

What is the updated distribution of θ after our observation?



- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?



Bayesian

A frequentist view will not incorporate prior/expert belief about probability.

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

Frequentist

Let *p* be the probability your drug works.

$$p \approx \frac{14}{20} = 0.7$$

Let θ be the probability your drug works.

 $\boldsymbol{\theta}$ is a random variable.

Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

(Bayesian interpretation)

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

What is the prior distribution of θ ? (select all that apply)

- A. $\theta \sim \text{Beta}(1,1) = \text{Uni}(0,1)$
- **Β.** *θ*~Beta(81, 101)
- C. $\theta \sim \text{Beta}(80, 20)$
- D. $\theta \sim \text{Beta}(81, 21)$
- E. $\theta \sim \text{Beta}(5,2)$

Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

(Bayesian interpretation)

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

What is the prior distribution of θ ? (select all that apply)

- A. $\theta \sim \text{Beta}(1,1) = \text{Uni}(0,1)$
- **Β.** *θ*~Beta(81, 101)
- C. $\theta \sim \text{Beta}(80, 20)$
 - $\theta \sim \text{Beta}(81, 21)$ Interpretation: 80 successes / 100 imaginary trials
 - $\theta \sim \text{Beta}(5,2)$

(you can choose either based on how strong your belief is (an engineering choice). We choose E on next slide) Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 51

Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

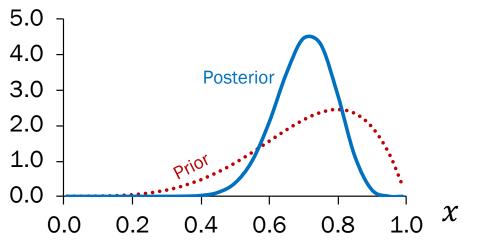
- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

Prior:
$$\theta \sim \text{Beta}(a = 5, b = 2)$$

Posterior:
$$\theta \sim \text{Beta}(a = 5 + 14, b = 2 + 6)$$

 $\sim \text{Beta}(a = 19, b = 8)$



Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

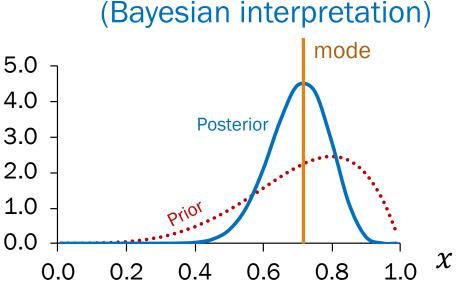
What is your new belief that the drug "works"?

Prior:
$$\theta \sim \text{Beta}(a = 5, b = 2)$$

Posterior: $\theta \sim \text{Beta}(a = 5 + 14, b = 2 + 6)$ $\sim \text{Beta}(a = 19, b = 8)$

What do you report to pharmacists?

- A. Expectation of posterior
- B. Mode of posterior
- C. Distribution of posterior
- D. Nothing



 $Beta(a = n_{imag} + 1, b = m_{imag} + 1)$ Prior $Beta(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$ Posterior

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

Prior:
$$\theta \sim \text{Beta}(a = 5, b = 2)$$

Posterior: $\theta \sim \text{Beta}(a = 5 + 14, b = 2 + 6)$
 $\sim \text{Beta}(a = 19, b = 8)$
What do you report to pharmacists?
 $E[\theta] = \frac{a}{a+b} = \frac{19}{19+8} \approx 0.70$
 $\text{mode}(\theta) = \frac{a-1}{a+b-2} = \frac{18}{18+7} \approx 0.72$
 $E[\theta] = \frac{a}{a+b-2} = \frac{18}{18+7} \approx 0.72$
 $\text{In } cs109$, we report the mode: The mode: The mode the data.

(Bayesian interpretation)

modo

Food for thought

In this lecture:

 $X \sim \text{Ber}(p)$

If we don't know the parameter p, Bayesian statisticians will:

- Treat the parameter as a random variable θ with a Beta prior distribution
- Perform an experiment
- Based on experiment outcomes, update the posterior distribution of θ

Food for thought:

Any parameter for a "parameterized" random variable can be thought of as a random variable.

 $Y \sim \mathcal{N}(\mu, \sigma^2)$

Estimating our parameter directly

(our focus so far)

Maximum Likelihood Estimator (MLE) What is the parameter θ that **maximizes the likelihood** of our observed data $(x_1, x_2, ..., x_n)$?

$$L(\theta) = f(X_1, X_2, \dots, X_n | \theta)$$
$$= \prod_{i=1}^n f(X_i | \theta)$$
$$\theta_{MLE} = \arg\max_{\theta} f(X_1, X_2, \dots, X_n | \theta)$$

Observations:

- MLE maximizes probability of observing data given a parameter θ .
- If we are estimating θ , shouldn't we maximize the probability of θ directly?

See you next time!

(extra)

Extra: MLE: Multinomial derivation

Okay, just one more MLE with the Multinomial

Consider a sample of *n* i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^m p_i = 1$
- $X_i = #$ of trials with outcome *i*, where $\sum_{i=1}^m X_i = n$
- 1. What is the likelihood of observing the sample($X_1, X_2, ..., X_m$), given the probabilities $p_1, p_2, ..., p_m$? $L(\theta) = \frac{n!}{X_1! X_2! \cdots X_m!} p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}$

2. What is
$$\theta_{MLE}$$
?

$$LL(\theta) = \log(n!) - \sum_{i=1}^{m} \log(X_i!) + \sum_{i=1}^{m} X_i \log(p_i), \text{ such that } \sum_{i=1}^{m} p_i = 1$$

Optimize with
Lagrange multipliers in
extra slides $\theta_{MLE}: p_i = \frac{X_i}{n}$ Intuitively, probability
 $p_i = \text{proportion of outcomes}$
Stanford University

58

Optimizing MLE for Multinomial

$$\theta = (p_1, p_2, \dots, p_m)$$

$$\theta_{MLE} = \arg \max_{\theta} LL(\theta), \text{ where } \sum_{i=1}^m p_i = 1$$

Use Lagrange multipliers to account for constraint

Lagrange multipliers: $A(\theta) = LL(\theta) + \lambda \left(\sum_{i=1}^{m} p_i - 1\right) = \sum_{i=1}^{m} X_i \log(p_i) + \lambda \left(\sum_{i=1}^{m} p_i - 1\right) \begin{array}{l} \text{(drop non-}p_i \\ \text{non-}p_i \\ \text{terms} \end{array}\right)$ Differentiate w.r.t. $\frac{\partial A(\theta)}{\partial p_i} = X_i \frac{1}{p_i} + \lambda = 0 \implies p_i = -\frac{X_i}{\lambda}$

Solve for λ , noting $\sum_{i=1}^{m} X_i = n, \sum_{i=1}^{m} p_i = 1:$

Substitute λ into p_i

$$\sum_{i=1}^{m} p_i = \sum_{i=1}^{m} -\frac{X_i}{\lambda} = 1 \quad \Rightarrow 1 = -\frac{n}{\lambda} \qquad \Rightarrow \lambda = -n$$

Lisa Yan and Jerry Cain, CS109, 2020

Stanford University 59