21: Beta

Lisa Yan and Jerry Cain October 30, 2020

Quick slide reference

3	MLE: Multinomial	21a_mle_multinomial
11	Bayesian statistics/Beta sneak peek	21b_bayesian
20	The Beta RV	21c_beta
37	Flipping a coin with unknown probability	LIVE
*	Extra: MLE: Multinomial Derivation	21e_extra

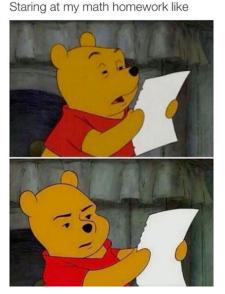
Lisa Yan and Jerry Cain, CS109, 2020

21a_mle_multinomial

MLE: Multinomial

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^{m} p_i = 1$
- $X_i = #$ of trials with outcome *i*, where $\sum_{i=1}^m X_i = n$



Let's give an example!

Stanford University 4

Lisa Yan and Jerry Cain, CS109, 2020

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^m p_i = 1$
- $X_i = #$ of trials with outcome *i*, where $\sum_{i=1}^m X_i = n$

Example: Suppose each RV is outcome of 6-sided die.

$$m = 6, \sum_{i=1}^{6} p_i = 1$$

- Roll the dice n = 12 times.
- Observe data: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

$$X_1 = 3, X_2 = 2, X_3 = 0,$$

 $X_4 = 3, X_5 = 1, X_6 = 3$

Check:
$$X_1 + X_2 + \dots + X_6 = 12$$

Lisa Yan and Jerry Cain, CS109, 2020

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^m p_i = 1$
- $X_i = #$ of trials with outcome *i*, where $\sum_{i=1}^m X_i = n$
- 1. What is the likelihood of observing the sample($X_1, X_2, ..., X_m$), given the probabilities $p_1, p_2, ..., p_m$?

A.
$$\frac{n!}{X_{1}! X_{2}! \cdots X_{m}!} p_{1}^{X_{1}} p_{2}^{X_{2}} \cdots p_{m}^{X_{m}}$$

B.
$$p_{1}^{X_{1}} p_{2}^{X_{2}} \cdots p_{m}^{X_{m}}$$

C.
$$\frac{n!}{X_{1}! X_{2}! \cdots X_{m}!} X_{1}^{p_{1}} X_{2}^{p_{2}} \cdots X_{m}^{p_{m}}$$

Stanford University 6

isa Yan and Jerry Cain, CS109, 2020

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^m p_i = 1$
- $X_i = \#$ of trials with outcome *i*, where $\sum_{i=1}^m X_i = n$
- 1. What is the likelihood of observing the sample($X_1, X_2, ..., X_m$), given the probabilities $p_1, p_2, ..., p_m$?

(A)
$$\frac{n!}{X_1! X_2! \cdots X_m!} p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}$$

B.
$$p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}$$

C.
$$\frac{n!}{X_1! X_2! \cdots X_m!} X_1^{p_1} X_2^{p_2} \cdots X_m^{p_m}$$

Lisa Yan and

Stanford University 7

sa Yan and Jerry Cain, CS109, 2020

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^m p_i = 1$
- $X_i = #$ of trials with outcome *i*, where $\sum_{i=1}^m X_i = n$
- 1. What is the likelihood of observing the sample($X_1, X_2, ..., X_m$), given the probabilities $p_1, p_2, ..., p_m$? $L(\theta) = \frac{n!}{X_1! X_2! \cdots X_m!} p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}$
- 2. What is θ_{MLE} ?

$$LL(\theta) = \log(n!) - \sum_{i=1}^{m} \log(X_i!) + \sum_{i=1}^{m} X_i \log(p_i)$$
, such that $\sum_{i=1}^{m} p_i = 1$

Optimize with Lagrange multipliers in extra slides

$$\rightarrow \theta_{MLE}: p_i = \frac{X_i}{n}$$
Lisa Yan and Jerry Cain, CS109, 2020

Intuitively, probability $p_i = \text{proportion of outcomes}$ <u>Stanford University</u> 8

When MLEs attack!

MLE for $p_i = \frac{X_i}{n}$

Consider a 6-sided die.

- Roll the dice n = 12 times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

What is θ_{MLE} ?

Lisa Yan and Jerry Cain, CS109, 2020

When MLEs attack!

Consider a 6-sided die.

- Roll the dice n = 12 times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

 θ_{MLE} :

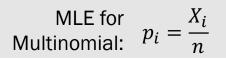
$$p_1 = 3/12$$

 $p_2 = 2/12$
 $p_3 = 0/12$
 $p_4 = 3/12$
 $p_5 = 1/12$
 $p_6 = 3/12$

- MLE: you'll never...<u>EVER</u>... roll a three.
- Do you really believe that?

Today: A new definition of probability!

Lisa Yan and Jerry Cain, CS109, 2020



21b_bayesian

Bayesian Statistics

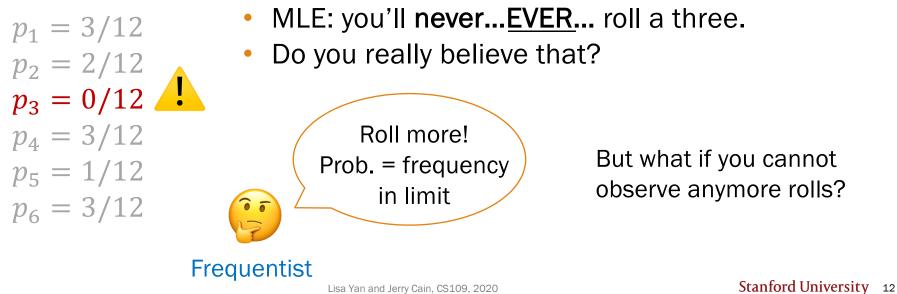
When MLEs attack!

Review

Consider a 6-sided die.

- Roll the dice n = 12 times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

 θ_{MLE} :



Lisa Yan and Jerry Cain, CS109, 2020

Today's plan

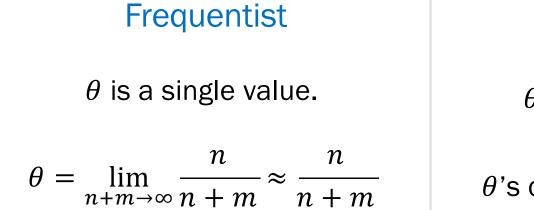
Today we are going to learn something unintuitive, beautiful, and useful!

We are going to think of probabilities as random variables.

Lisa Yan and Jerry Cain, CS109, 2020

A new definition of probability

Flip a coin n + m times, come up with n heads. We don't know the probability θ that the coin comes up heads.




```
The world's first coin
```

Bayesian

 θ is a random variable.

 θ 's continuous support: (0, 1)

Lisa Yan and Jerry Cain, CS109, 2020

Let's play a game

Roll 2 dice. If *neither* roll is a 6, you win (event W). Else, I win (event W^C).

- Before you play, what's the probability that you win?
- Play once. What's the probability that you win?
- Play three more times. What's the probability that you win?

Lisa Yan and Jerry Cain, CS109, 2020

Bayesian probability

Bayesian statistics: Probability is a reasonable expectation representing a state of knowledge.

Mixing discrete and continuous random variables, combined with Bayes' Theorem, allows us to reason about probabilities as random variables.

Lisa Yan and Jerry Cain, CS109, 2020

Mixing discrete and continuous

Let X be a continuous random variable, and N be a discrete random variable.

Bayes' Theorem:

$$f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}$$

Intuition:
$$P(X = x | N = n) = \frac{P(N = n | X = x)P(X = x)}{P(N = n)}$$
$$f_{X|N}(x|n)\varepsilon_X = \frac{P(N = n | X = x)f_X(x)\varepsilon_X}{P(N = n)} \implies f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}$$

Lisa Yan and Jerry Cain, CS109, 2020

All your Bayes are belong to us

Let *X*, *Y* be continuous and *M*, *N* be discrete random variables.

OG Bayes:
$$p_{M|N}(m|n) = \frac{p_{N|M}(n|m)p_M(m)}{p_N(n)}$$
Mix Bayes #1: $f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}$ Mix Bayes #2: $p_{N|X}(n|x) = \frac{f_{X|N}(x|n)p_N(n)}{f_X(x)}$ All continuous: $f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x)f_X(x)}{f_Y(y)}$

Lisa Yan and Jerry Cain, CS109, 2020

Mixing discrete and continuous

Let θ be a random variable for the probability your coin comes up heads, and N be the number of heads you observe in an experiment.

posterior

$$f_{\theta|N}(x|n) = \frac{\substack{\text{likelihood prior}}{p_N|_{\theta}(n|x)f_{\theta}(x)}}{p_N(n)}$$

normalization constant

- Prior belief of parameter θ
- Likelihood of N = n heads, given parameter $\theta = x$.
- Posterior updated belief of parameter θ .

 $f_{\theta}(x)$ $p_{N|\theta}(n|x)$ $f_{\theta|N}(x|n)$

More in live lecture! Stanford University 19

Lisa Yan and Jerry Cain, CS109, 2020

21c_beta

Beta RV

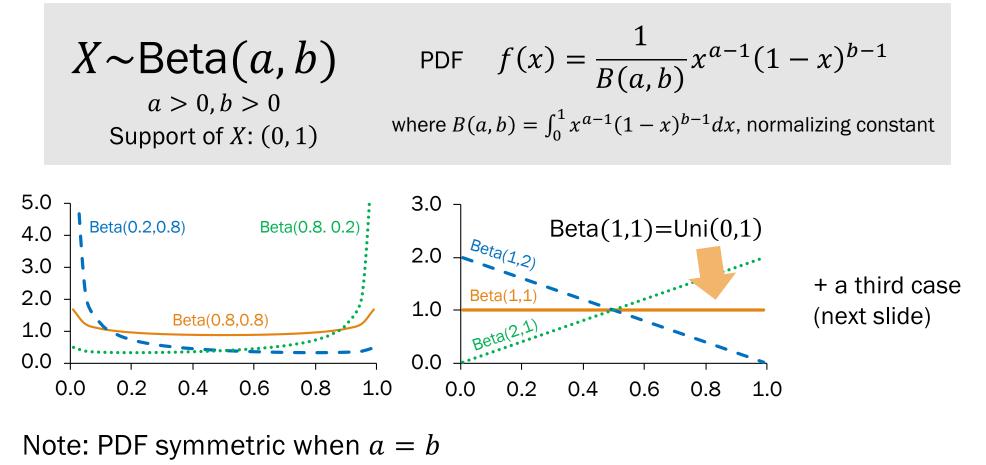
Beta random variable

<u>def</u> A Beta random variable *X* is defined as follows:

$$\begin{aligned} X \sim \text{Beta}(a, b) \\ a > 0, b > 0 \\ \text{Support of } X: (0, 1) \end{aligned} \qquad \text{PDF} \quad f(x) = \frac{1}{B(a, b)} x^{a-1} (1-x)^{b-1} \\ \text{where } B(a, b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx, \text{ normalizing constant} \end{aligned}$$
$$\qquad \text{Where } B(a, b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx, \text{ normalizing constant} \end{aligned}$$
$$\qquad \text{Variance } Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$$

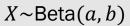
Lisa Yan and Jerry Cain, CS109, 2020

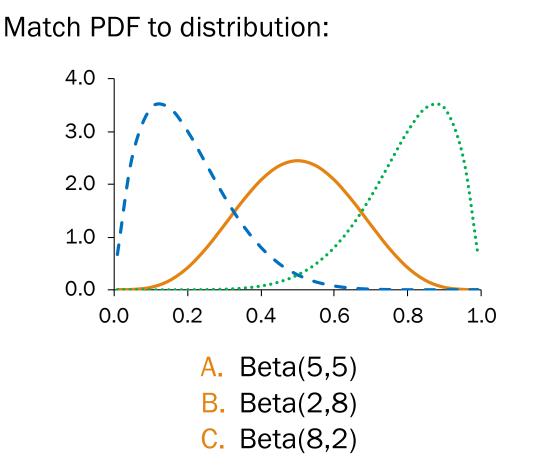
Beta RV with different *a*, *b*

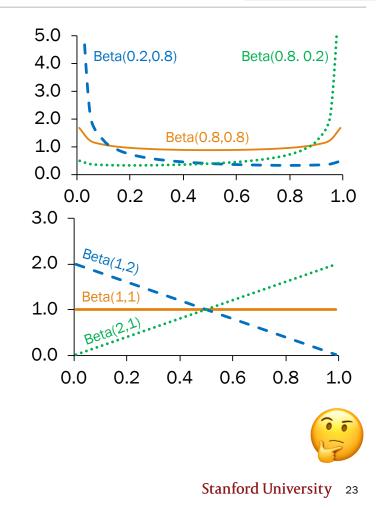


Lisa Yan and Jerry Cain, CS109, 2020

Beta RV with different *a*, *b*

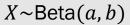


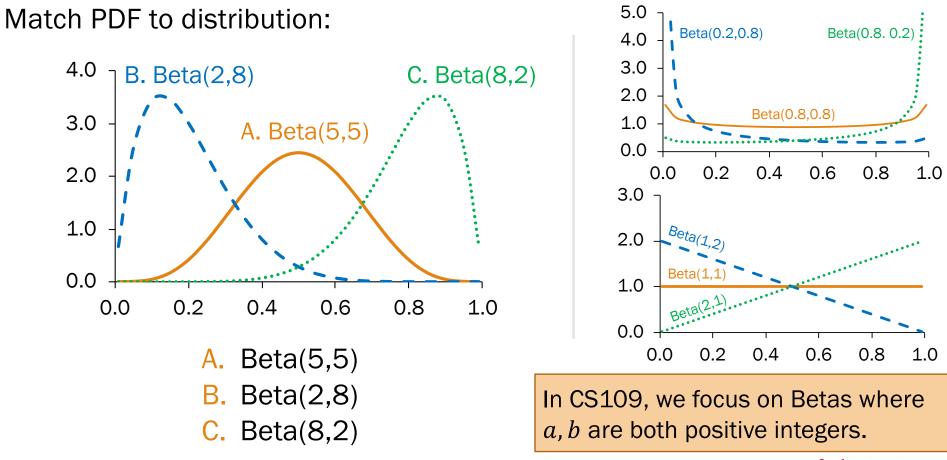




Lisa Yan and Jerry Cain, CS109, 2020

Beta RV with different *a*, *b*





Lisa Yan and Jerry Cain, CS109, 2020

Beta random variable

<u>def</u> A Beta random variable *X* is defined as follows:

$$X \sim \text{Beta}(a, b)$$

$$a > 0, b > 0$$

$$\text{PDF} \quad f(x) = \frac{1}{B(a, b)} x^{a-1} (1-x)^{b-1}$$

where $B(a, b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$, normalizing constant

$$\text{Expectation} \quad E[X] = \frac{a}{a+b}$$

$$\text{Variance} \quad \text{Var}(X) = \frac{ab}{(a+b)^2(a+b+1)}$$

Beta can be a distribution of probabilities.

Lisa Yan and Jerry Cain, CS109, 2020

Beta can be a distribution of probabilities.

4.0 3.0 2.0 1.0 0.0 0.2 0.4 0.6 0.8 1.0Beta(8,2) Beta(8,2) 0.8 0.81.0

Beta parameters a, b <u>could</u> come from an experiment...

But which one? Stay tuned...

Lisa Yan and Jerry Cain, CS109, 2020

Stanford University 26

 $X \sim \text{Beta}(a, b)$

21: Beta

Lisa Yan and Jerry Cain October 30, 2020

Flipping a coin with unknown probability

A new definition of probability

Review

Flip a coin n + m times, comes up with n heads. We don't know the probability θ that the coin comes up heads.

 $\boldsymbol{\theta}$ is a single value.

 $\theta = \lim_{n+m \to \infty} \frac{n}{n+m} \approx \frac{n}{n+m}$

The world's first coin

Bayesian

 θ is a random variable.

 θ 's continuous support: (0, 1)

Lisa Yan and Jerry Cain, CS109, 2020

Flip a coin with unknown probability

Flip a coin n + m times, observe n heads.

- Before our experiment, θ (the probability that the coin comes up heads) can be any probability.
- Let *N* = number of heads.
- Given $\theta = x$, coin flips are independent.

What is our updated belief of θ after we observe N = n?

What are reasonable distributions of the following?

- **1.** *θ*
- 2. $N|\theta = x$
- $3. \quad \theta | N = n$

Lisa Yan and Jerry Cain, CS109, 2020

Flip a coin with unknown probability

Flip a coin n + m times, observe n heads.

- Before our experiment, θ (the probability that the coin comes up heads) can be any probability.
- Let *N* = number of heads.
- Given $\theta = x$, coin flips are independent.

What is our updated belief of θ after we observe N = n?

What are reasonable distributions of the following?

- **1.** θ Bayesian prior $\theta \sim \text{Uni}(0,1)$
- 2. $N|\theta = x$ Likelihood $N|\theta = x \sim Bin(n + m, x)$
- **3.** $\theta | N = n$ Bayesian posterior. Use Bayes'!

Flip a coin with unknown probability

Flip a coin n + m times, observe n heads.

- Before our experiment, θ (the probability that the coin comes up heads) can be any probability.
- Let N = number of heads.
- Given $\theta = x$, coin flips are independent.

What is our updated belief of θ after we observe N = n?

$$\theta \sim \text{Uni}(0,1)$$

Likelihood:

$$N|\theta = x \sim Bin(n + m, x)$$

? Posterior: $f_{\theta|N}(\theta|n)$

$$\begin{aligned} f_{\theta|N}(x|n) &= \frac{p_{N|\theta}(n|x)f_{\theta}(x)}{p_{N}(n)} = \frac{\binom{n+m}{n}x^{n}(1-x)^{m} \cdot 1}{p_{N}(n)} \\ &= \frac{\binom{n+m}{n}}{p_{N}(n)}x^{n}(1-x)^{m} = \frac{1}{c}x^{n}(1-x)^{m}, \text{ where } c = \int_{0}^{1}x^{n}(1-x)^{m}dx \end{aligned}$$

constant with respect to x, doesn't depend on x

Lisa Yan and Jerry Cain, CS109, 2020

Let's try it out

1. Start with a $\theta \sim \text{Uni}(0,1)$ over probability that a coin lands heads.

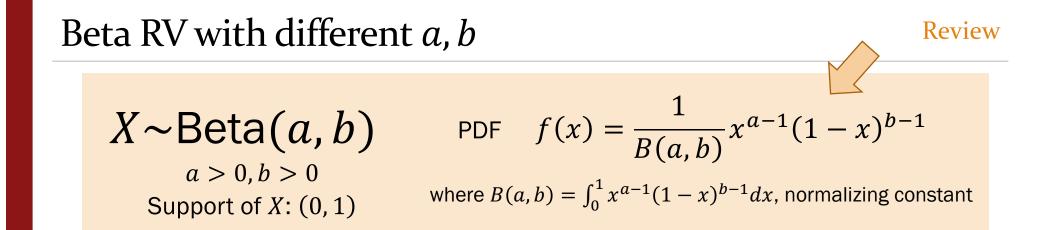
- 2. Flip a coin 8 times. Observe n = 7 heads and m = 1 tail
- 3. What is our posterior belief of the probability θ ?

$$f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1-x)^1$$

c normalizes to valid PDF

Wait a minute! #tbplv

Lisa Yan and Jerry Cain, CS109, 2020



$$f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1-x)^1$$
 is the PDF for Beta(8,2)!

c normalizes to valid PDF

Lisa Yan and Jerry Cain, CS109, 2020

Let's try it out

1. Start with a $\theta \sim \text{Uni}(0,1)$ over probability that a coin lands heads.

- 2. Flip a coin 8 times. Observe n = 7 heads and m = 1 tail
- 3. What is our posterior belief of the probability θ ?

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} 2.0 \\ 1.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \end{array}$

$$f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1-x)^1$$

4.0

3.0

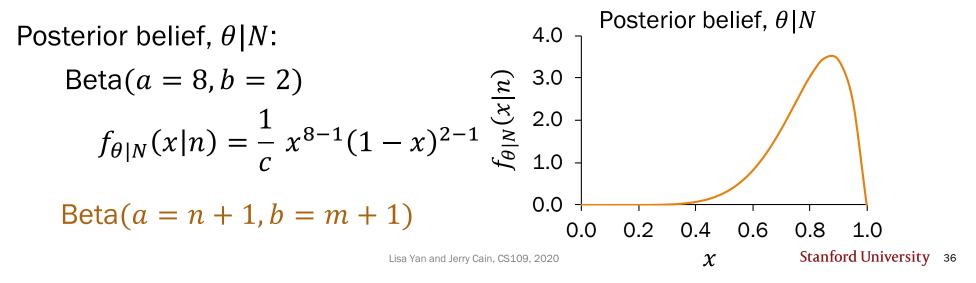
c normalizes to valid PDF

Lisa Yan and Jerry Cain, CS109, 2020

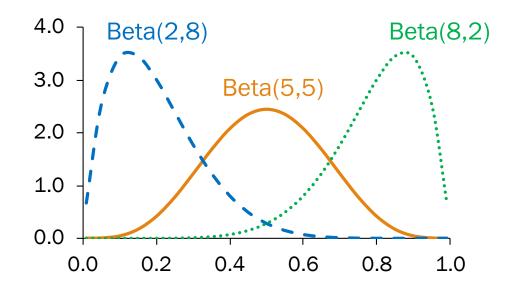
3. What is our posterior belief of the probability θ ?

- Start with a $\theta \sim \text{Uni}(0,1)$ over probability
- Observe n = 7 successes and m = 1 failures
- Your new belief about the probability of θ is:

$$f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1-x)^1$$
, where $c = \int_0^1 x^7 (1-x)^1 dx$



CS109 focus: Beta where a, b both positive integers $X \sim Beta(a, b)$



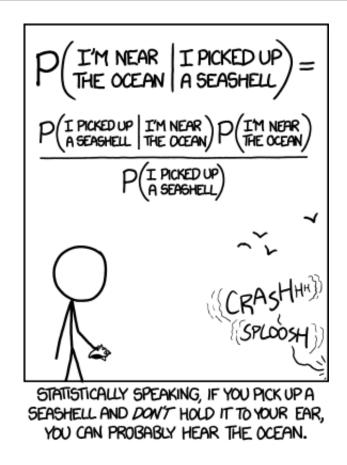
If *a*, *b* are positive integers, Beta parameters *a*, *b* could come from an experiment:

$$a =$$
 "successes" + 1
 $b =$ "failures" + 1

- Beta (in CS109) models the randomness of the probability of experiment success.
- Beta parameters depend our data and our prior.

Lisa Yan and Jerry Cain, CS109, 2020

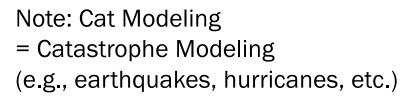
Bayes' on the waves



Lisa Yan and Jerry Cain, CS109, 2020

Interesting probability news

Why Rejection Sampling Is Useful in Cat Modeling



4b. Compute 2. Scale q(x) by 4a. Compute p(x) anc q(x) : a ы 5a. Dra fro Unif(0,C x2 🛀 3b. Another draw x2 from q(x) x1 3a. Draw x1 🗖 K 6a. Accept x1 X from q(x)6b. Reject x2 since $u1 \le p(x1)$ since u2>p(x2)

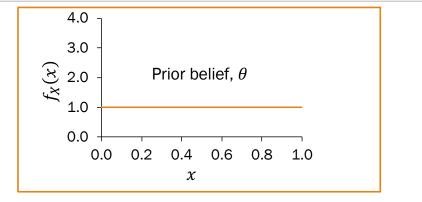
https://www.air-worldwide.com/blog/posts/2018/9/why-rejection-sampling-is-useful-in-cat-modeling/

Lisa Yan and Jerry Cain, CS109, 2020

Conjugate distributions

A note about our prior

1. Start with a $\theta \sim \text{Uni}(0,1)$ over probability that a coin lands heads.



- 2. Flip a coin 8 times. Observe n = 7 heads and m = 1 tail
- 3. What is our posterior belief of the probability θ ?

Lisa Yan and Jerry Cain, CS109, 2020

$$f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1-x)^1$$

 \boldsymbol{c} normalizes to valid PDF

Wait another minute!

Stanford University 41

okay

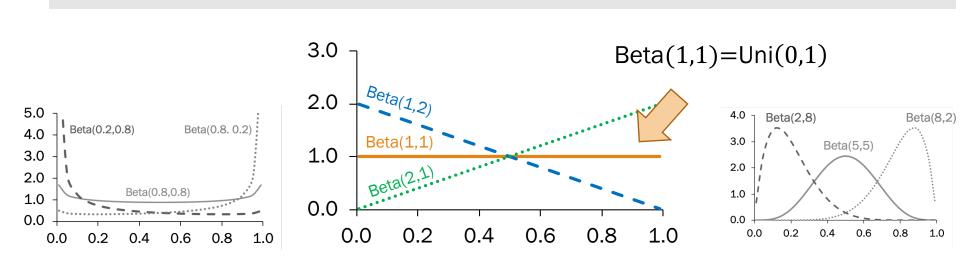
Beta RV with different *a*, *b*

 $X \sim \text{Beta}(a, b)$

a > 0, b > 0

Support of *X*: (0, 1)

Review



PDF $f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}$

where $B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$, normalizing constant

Note: PDF symmetric when a = b

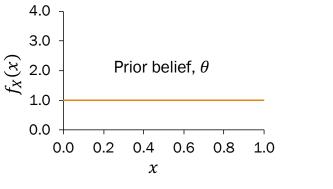
Lisa Yan and Jerry Cain, CS109, 2020

A note about our prior

1. Start with a $\theta \sim \text{Uni}(0,1)$ over probability that a coin lands heads.

Beta(1,1)

- 2. Flip a coin 8 times. Observe n = 7 heads and m = 1 tail
- 3. What is our posterior belief of the probability θ ?



Check this out. Beta(a = 1, b = 1):

$$f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}$$
$$= \frac{1}{\int_0^1 1 dx}$$

 $= 1 \qquad \text{where } 0 < x < 1$

Lisa Yan and Jerry Cain, CS109, 2020

Beta is a conjugate distribution for Bernoulli

Beta is a **conjugate distribution** for Bernoulli, meaning:

• Prior and posterior parametric forms are the same

(proof on next slide)

Lisa Yan and Jerry Cain, CS109, 2020

Beta is a conjugate distribution for Bernoulli

Beta is a conjugate distribution for Bernoulli, meaning:

- 1. If our prior belief of the parameter is Beta, and
- 2. Our experiment is Bernoulli, then
- 3. Our posterior is also Beta.

Proof: $\theta \sim \text{Beta}(a, b)$ $N | \theta \sim \text{Bin}(n + m, x)$ $f_{\theta|N}(x|n) = \frac{p_{N|\theta}(n|x)f_{\theta}(x)}{p_{N}(n)} = \frac{\binom{n+m}{m}x^{n}(1-x)^{m} \cdot \frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1}}{p_{N}(n)}$ $\stackrel{\text{constants that}}{= C \cdot x^{n}(1-x)^{m} \cdot x^{a-1}(1-x)^{b-1}} = C \cdot x^{n+a-1}(1-x)^{m+b-1} \checkmark$ $= C \cdot x^{n+a-1}(1-x)^{m+b-1} \checkmark$ Example 2 Stanford University 45

(observe *n* successes, *m* failures)

Beta is a conjugate distribution for Bernoulli

This is the main takeaway of Beta.

Beta is a **conjugate distribution** for Bernoulli, meaning:

- Prior and posterior parametric forms are the same
- Practically, conjugate means easy update: Add number of "heads" and "tails" seen to Beta parameters.

You can set the prior to reflect how biased you think the coin is a priori:

- $\theta \sim \text{Beta}(a, b)$: have seen (a + b 2) imaginary trials, where (a 1) are heads, (b 1) tails
- Then Beta(1, 1) = Uni(0, 1) means we haven't seen any imaginary trials

Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Experiment Observe *n* successes and *m* failures Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

Lisa Yan and Jerry Cain, CS109, 2020

The enchanted die

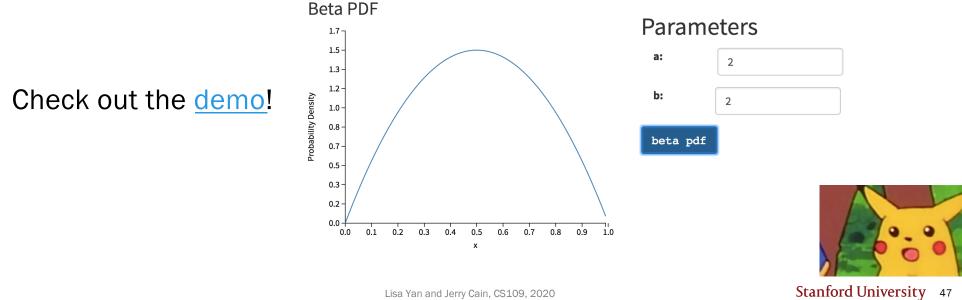
 $Beta(a = n_{imag} + 1, b = m_{imag} + 1)$ Prior Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

Let θ be the probability of rolling a 6 on Lisa's die.

Prior: Imagine 1 out of 6 die rolls where only 6 showed up •

Observation: roll it a few times...

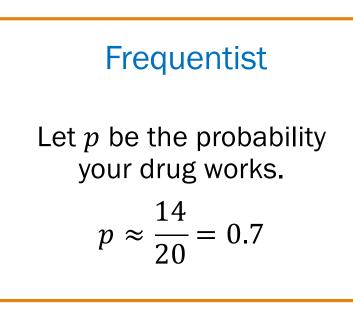
What is the updated distribution of θ after our observation?



Lisa Yan and Jerry Cain, CS109, 2020

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?



Bayesian

A frequentist view will not incorporate prior/expert belief about probability.

Lisa Yan and Jerry Cain, CS109, 2020

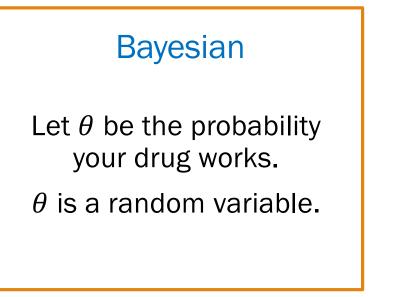
- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

Frequentist

Let *p* be the probability your drug works.

$$p \approx \frac{14}{20} = 0.7$$



Lisa Yan and Jerry Cain, CS109, 2020

Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

(Bayesian interpretation)

What is the prior distribution of θ ? (select all that apply)

- A. $\theta \sim \text{Beta}(1, 1) = \text{Uni}(0, 1)$
- B. $\theta \sim \text{Beta}(81, 101)$
- C. $\theta \sim \text{Beta}(80, 20)$
- D. $\theta \sim \text{Beta}(81, 21)$
- E. $\theta \sim \text{Beta}(5,2)$

Lisa Yan and Jerry Cain, CS109, 2020

 $Beta(a = n_{imag} + 1, b = m_{imag} + 1)$ Prior Posterior $Beta(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

(Bayesian interpretation)

What is the prior distribution of θ ? (select all that apply)

- $\theta \sim \text{Beta}(1,1) = \text{Uni}(0,1)$ Α.
- B. $\theta \sim \text{Beta}(81, 101)$
- C. $\theta \sim \text{Beta}(80, 20)$

 $\theta \sim \text{Beta}(81, 21)$ Interpretation: 80 successes / 100 imaginary trials

 $\theta \sim \text{Beta}(5,2)$

(you can choose either based on how strong your belief is (an engineering choice). We choose E on next slide)

Lisa Yan and Jerry Cain. CS109, 2020

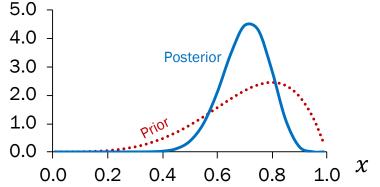
Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

What is your new belief that the drug "works"?

- Prior: $\theta \sim \text{Beta}(a = 5, b = 2)$
- Posterior: $\theta \sim \text{Beta}(a = 5 + 14, b = 2 + 6)$ ~Beta(a = 19, b = 8)

(Bayesian interpretation)



Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

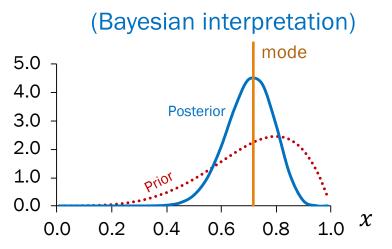
What is your new belief that the drug "works"?

Prior: $\theta \sim \text{Beta}(a = 5, b = 2)$

Posterior: $\theta \sim \text{Beta}(a = 5 + 14, b = 2 + 6)$ ~Beta(a = 19, b = 8)

What do you report to pharmacists?

- A. Expectation of posterior
- B. Mode of posterior
- C. Distribution of posterior
- D. Nothing



Lisa Yan and Jerry Cain, CS109, 2020

Prior Beta $(a = n_{imag} + 1, b = m_{imag} + 1)$ Posterior Beta $(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is tried on 20 patients.
- It "works" for 14, "doesn't work" for 6.

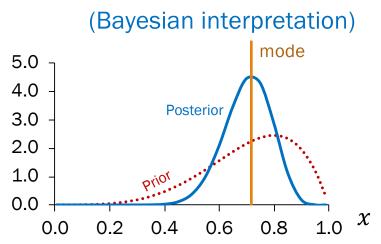
What is your new belief that the drug "works"?

Prior: $\theta \sim \text{Beta}(a = 5, b = 2)$

Posterior: $\theta \sim \text{Beta}(a = 5 + 14, b = 2 + 6)$ ~Beta(a = 19, b = 8)

What do you report to pharmacists?

$$E[\theta] = \frac{a}{a+b} = \frac{19}{19+8} \approx 0.70$$
$$mode(\theta) = \frac{a-1}{a+b-2} = \frac{18}{18+7} \approx 0.72$$



In CS109, we report the **mode**: The "most likely" parameter given the data.

Lisa Yan and Jerry Cain, CS109, 2020

Food for thought

In this lecture:

If we don't know the parameter p, Bayesian statisticians will:

- Treat the parameter as a random variable θ with a Beta prior distribution
- Perform an experiment
- Based on experiment outcomes, update the posterior distribution of θ

Food for thought:

Any parameter for a "parameterized" random variable can be thought of as a random variable.

 $Y \sim \mathcal{N}(\mu, \sigma^2)$

Lisa Yan and Jerry Cain, CS109, 2020

Estimating our parameter directly

(our focus so far)

Maximum Likelihood Estimator (MLE) What is the parameter θ that maximizes the likelihood of our observed data (x_1, x_2, \dots, x_n) ?

$$L(\theta) = f(X_1, X_2, \dots, X_n | \theta)$$
$$= \prod_{i=1}^n f(X_i | \theta)$$
$$= \arg \max f(X_i | X_i = X_i | \theta)$$

 $\theta_{MLE} = \arg \max_{\theta} f(X_1, X_2, \dots, X_n | \theta)$ likelihood of data

Observations:

- MLE maximizes probability of observing data given a parameter θ .
- If we are estimating θ , shouldn't we maximize the probability of θ directly?

See you next time!

Lisa Yan and Jerry Cain, CS109, 2020

(extra)

Extra: MLE: Multinomial derivation

Okay, just one more MLE with the Multinomial

Consider a sample of *n* i.i.d. random variables where

- Each element is drawn from one of *m* outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^m p_i = 1$
- $X_i = \#$ of trials with outcome *i*, where $\sum_{i=1}^m X_i = n$
- 1. What is the likelihood of observing $L(\theta) = \frac{n!}{X_1! X_2! \cdots X_m!} p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}$ the sample(X_1, X_2, \dots, X_m), given the probabilities p_1, p_2, \dots, p_m ?
- 2. What is θ_{MLE} ?

extra slides

$$LL(\theta) = \log(n!) - \sum_{i=1}^{m} \log(X_i!) + \sum_{i=1}^{m} X_i \log(p_i), \text{ such that } \sum_{i=1}^{m} p_i = 1$$

Optimize with
Lagrange multipliers in θ_{MLE} : $p_i = \frac{X_i}{n}$ Intuitively, probability
 $p_i = \text{proportion of outcomes}$

Lisa Yan and Jerry Cain, CS109, 2020

n

Optimizing MLE for Multinomial

$$\begin{array}{ll} \theta = (p_1, p_2, \dots, p_m) \\ \theta_{MLE} = \arg\max_{\theta} LL(\theta), \text{ where } \sum_{i=1}^m p_i = 1 & \text{Use Lagrange multipliers} \\ \text{to account for constraint} \\ \end{array}$$

$$\begin{array}{ll} \text{Lagrange} \\ \text{multipliers: } & A(\theta) = LL(\theta) + \lambda \left(\sum_{i=1}^m p_i - 1\right) = \sum_{i=1}^m X_i \log(p_i) + \lambda \left(\sum_{i=1}^m p_i - 1\right) \begin{array}{l} (\text{drop non-}p_i \\ \text{non-}p_i \\ \text{terms}) \end{array}$$

$$\begin{array}{ll} \text{Differentiate w.r.t.} \\ \text{each } p_i, \text{ in turn: } & \frac{\partial A(\theta)}{\partial p_i} = X_i \frac{1}{p_i} + \lambda = 0 \Rightarrow p_i = -\frac{X_i}{\lambda} \\ \text{Solve for } \lambda, \text{ noting } \\ \sum_{i=1}^m X_i = n, \sum_{i=1}^m p_i = 1: \\ \sum_{i=1}^m p_i = \sum_{i=1}^m -\frac{X_i}{\lambda} = 1 \quad \Rightarrow 1 = -\frac{n}{\lambda} \quad \Rightarrow \lambda = -n \\ \text{Substitute } \lambda \text{ into } p_i \quad p_i = \frac{X_i}{n} \end{array}$$

Lisa Yan and Jerry Cain, CS109, 2020