22: MAP

Lisa Yan and Jerry Cain November 2, 2020

Quick slide reference

3	Maximum a Posteriori Estimator	22a_map
11	Bernoulli MAP: Choosing a prior	23b_bernoulli_any_prior
15	Bernoulli MAP: Conjugate prior	22c_bernoulli_conjugate
24	Common conjugate distributions	LIVE
36	Choosing hyperparameters for conjugate prior L	
43	Bayesian Envelope demo	LIVE

Maximum a Posteriori Estimator

Maximum Likelihood Estimator

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n (data).

Maximum Likelihood Estimator (MLE) What is the parameter θ that maximizes the likelihood of our observed data $(X_1, X_2, ..., X_n)$?

$$L(\theta) = f(X_1, X_2, ..., X_n | \theta)$$

$$= \prod_{i=1}^{n} f(X_i | \theta)$$

$$\theta_{MLE} = \arg\max_{\theta} f(X_1, X_2, ..., X_n | \theta)$$
likelihood of data

Observations:

- MLE maximizes probability of observing data given a parameter θ .
- If we are estimating θ , shouldn't we maximize the probability of θ directly?

Today: Bayesian estimation using the Bayesian definition of probability!

Maximum A Posteriori (MAP) Estimator

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n (data).

Maximum Likelihood Estimator (MLE)

What is the parameter θ that maximizes the likelihood of our observed data $(X_1, X_2, ..., X_n)$?

$$L(\theta) = f(X_1, X_2, ..., X_n | \theta)$$

$$= \prod_{i=1}^{n} f(X_i | \theta)$$

$$\theta_{MLE} = \arg\max_{\theta} f(X_1, X_2, ..., X_n | \theta)$$
likelihood of data

Maximum a Posteriori (MAP) Estimator

Given our observed data $(X_1, X_2, ..., X_n)$, what is the most likely parameter θ ?

$$\theta_{MAP} = \underset{\theta}{\text{arg max}} \ f(\theta | X_1, X_2, \dots, X_n)$$
 posterior distribution of θ

Maximum A Posteriori (MAP) Estimator

Consider a sample of n i.i.d. random variables $X_1, X_2, ..., X_n$ (data).

def The Maximum a Posteriori (MAP) Estimator of θ is the value of θ that maximizes the posterior distribution of θ .

$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n)$$

Intuition with Bayes' Theorem:

After seeing data, posterior belief of θ

posterior $P(\theta|\text{data}) =$ $L(\theta)$, probability of data given parameter θ

likelihood prior

 $\frac{P(\mathsf{data}|\theta)P(\theta)}{P(\mathsf{data})}$

Before seeing data, prior belief of θ

Solving for θ_{MAP}

- Observe data: X_1, X_2, \dots, X_n , all i.i.d.
- Let likelihood be same as MLE: $f(X_1, X_2, ..., X_n | \theta) = \prod_{i=1}^n f(X_i | \theta)$
- Let the prior distribution of θ be $g(\theta)$.

$$\theta_{MAP} = \arg\max_{\theta} f(\theta|X_1, X_2, \dots, X_n) = \arg\max_{\theta} \frac{f(X_1, X_2, \dots, X_n|\theta)g(\theta)}{h(X_1, X_2, \dots, X_n)}$$
 (Bayes' Theorem)

$$= \arg\max_{\theta} \frac{g(\theta) \prod_{i=1}^{n} f(X_i | \theta)}{h(X_1, X_2, \dots, X_n)}$$

(independence)

$$= \arg \max_{\theta} g(\theta) \prod_{i=1}^{n} f(X_i | \theta)$$

 $(1/h(X_1,X_2,\ldots,X_n)$ is a positive constant w.r.t. $\theta)$

$$= \arg \max_{\theta} \left(\log g(\theta) + \sum_{i=1}^{n} \log f(X_i | \theta) \right)$$

θ_{MAP} : Interpretation 1

- Observe data: X_1, X_2, \dots, X_n , all i.i.d.
- Let likelihood be same as MLE: $f(X_1, X_2, ..., X_n | \theta) = \prod f(X_i | \theta)$
- Let the prior distribution of θ be $g(\theta)$.

$$\theta_{MAP} = \arg\max_{\theta} f(\theta|X_1, X_2, \dots, X_n) = \arg\max_{\theta} \frac{f(X_1, X_2, \dots, X_n|\theta)g(\theta)}{h(X_1, X_2, \dots, X_n)}$$
 (Bayes' Theorem)

$$= \arg\max_{\theta} \frac{g(\theta) \prod_{i=1}^{n} f(X_i | \theta)}{h(X_1, X_2, \dots, X_n)}$$

(independence)

$$= \arg \max_{\theta} g(\theta) \prod_{i=1}^{n} f(X_i | \theta)$$

 $(1/h(X_1, X_2, ..., X_n))$ is a positive constant w.r.t. θ)

$$= \arg \max_{\theta} \left(\log g(\theta) + \sum_{i=1}^{n} \log f(X_i | \theta) \right) \qquad \frac{\theta_{MAP} \text{ maximizes}}{\log \text{ prior} + \log\text{-likelihood}}$$

θ_{MAP} : Interpretation 2

- Observe data: X_1, X_2, \dots, X_n , all i.i.d.
- Let likelihood be same as MLE: $f(X_1, X_2, ..., X_n | \theta) = \prod_{i=1}^n f(X_i | \theta)$
- Let the prior distribution of θ be $g(\theta)$.

$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n) = \underset{\theta}{\operatorname{arg}}$$

The mode of the posterior distribution of heta

(Bayes' Theorem)

$$= \arg\max_{\theta} \frac{g(\theta) \prod_{i=1}^{n} f(X_i | \theta)}{h(X_1, X_2, \dots, X_n)}$$

(independence)

$$= \arg \max_{\theta} g(\theta) \prod_{i=1}^{n} f(X_i | \theta)$$

 $(1/h(X_1, X_2, ..., X_n))$ is a positive constant w.r.t. θ)

$$= \arg \max_{\theta} \left(\log g(\theta) + \sum_{i=1}^{n} \log f(X_i | \theta) \right) \qquad \frac{\theta_{MAP} \text{ maximizes}}{\log \text{ prior} + \log\text{-likelihood}}$$

Mode: A statistic of a random variable

The mode of a random variable X is defined as:

(X discrete,
$$\underset{x}{\operatorname{arg max}} p(x)$$
 $\underset{x}{\operatorname{arg max}} f(x)$ (X continuous, $\underset{x}{\operatorname{PDF}} f(x)$)

- Intuitively: The value of X that is "most likely."
- Note that some distributions may not have a unique mode (e.g., Uniform distribution, or Bernoulli(0.5))

$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n)$$

 θ_{MAP} is the most likely θ given the data $X_1, X_2, ..., X_n$.

Bernoulli MAP: Choosing a prior

How does MAP work? (for Bernoulli)

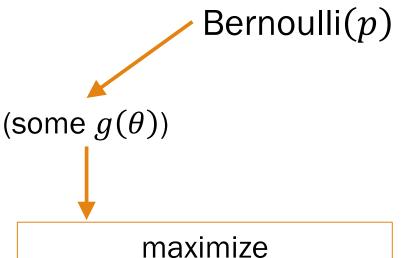
Observe data

Choose model

Choose prior on θ

Find $\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n)$

n heads, m tails



log prior + log-likelihood

$$\log g(\theta) + \sum_{i=1}^{n} \log f(X_i|\theta)$$

- Differentiate, set to 0
- Solve

A lot of our effort in MAP depends on the $g(\theta)$ we choose.

MAP for Bernoulli

- Flip a coin 8 times. Observe n=7 heads and m=1 tail.
- Choose a prior on θ . What is θ_{MAP} ?

Suppose we pick a prior $\theta \sim \mathcal{N}(0.5, 1^2)$. $g(\theta) = \frac{1}{\sqrt{2\pi}} e^{-(p-0.5)^2/2}$

- Determine log prior + log likelihood
- $\log g(\theta) + \log f(X_1, X_2, \dots, X_n | \theta)$ $= \log \left(\frac{1}{\sqrt{2\pi}} e^{-(p-0.5)^2/2} \right) + \log \left(\binom{n+m}{n} p^n (1-p)^m \right)$

$$= -\log(\sqrt{2\pi}) - (p - 0.5)^2/2 + \log\binom{n+m}{n} + n\log p + m\log(1-p)$$

- 2. Differentiate w.r.t. (each) θ , set to 0
- 3. Solve resulting equations

$$-(p-0.5) + \frac{n}{p} - \frac{m}{1-p} = 0$$

cubic equations why

We should choose an "easier" prior. This one is hard!

A better approach: Use conjugate distributions

Observe data

Choose model

Choose prior on θ

Find
$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n)$$

n heads, m tails

Bernoulli(p)

(some
$$g(\theta)$$
)

maximize log prior + log-likelihood

$$\log g(\theta) + \sum_{i=1}^{n} \log f(X_i | \theta)$$

- Differentiate, set to 0
- Solve

(choose conjugate distribution)

Up next: Conjugate priors are great for MAP!

Bernoulli MAP: Conjugate prior

Beta is a conjugate distribution for Bernoulli

Beta is a conjugate distribution for Bernoulli, meaning:

- Prior and posterior parametric forms are the same
- Practically, conjugate means easy update: Add numbers of "successes" and "failures" seen to Beta parameters.
- You can set the prior to reflect how fair/biased you think the experiment is apriori.

Prior Beta
$$(a = n_{imag} + 1, b = m_{imag} + 1)$$

Experiment Observe n successes and m failures

Posterior Beta
$$(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$$

Mode of Beta
$$(a,b)$$
:
$$\frac{a-1}{a+b-2}$$

Beta parameters a, b are called hyperparameters. Interpret Beta(a, b): a + b - 2 trials, of which a-1 are successes

How does MAP work? (for Bernoulli)

Observe data

Choose model

Choose prior on θ

Find
$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n)$$

n heads, m tails

Bernoulli(p)

maximize log prior + log-likelihood

$$\log g(\theta) + \sum_{i=1}^{n} \log f(X_i | \theta)$$

- Differentiate, set to 0
- Solve

(choose conjugate distribution)

Mode of posterior distribution of θ

(posterior is also conjugate)

Conjugate strategy: MAP for Bernoulli

- Flip a coin 8 times. Observe n=7 heads and m=1 tail. \blacktriangleright Define as data, D
- Choose a prior on θ . What is θ_{MAP} ?

1. Choose a prior

Suppose we pick a prior $\theta \sim \text{Beta}(a, b)$.

2. Determine posterior

Because Beta is a conjugate distribution for Bernoulli, the posterior distribution is $\theta | D \sim \text{Beta}(a + n, b + m)$

3. Compute MAP

$$\theta_{MAP} = \frac{a+n-1}{a+n+b+m-2} \quad \text{(mode of Beta}(a+n,b+m))$$

MAP in practice

- Flip a coin 8 times. Observe n=7 heads and m=1 tail.
- What is the MAP estimator of the Bernoulli parameter p, if we assume a prior on p of Beta(2, 2)?

MAP in practice

- Flip a coin 8 times. Observe n=7 heads and m=1 tail.
- What is the MAP estimator of the Bernoulli parameter p, if we assume a prior on p of Beta(2, 2)?
- 1. Choose a prior

 $\theta \sim \text{Beta}(2,2)$.

Before flipping the coin, we imagined 2 trials: 1 imaginary head, 1 imaginary tail.

2. Determine posterior

Posterior distribution of θ given observed data is Beta(9, 3)

3. Compute MAP

$$\theta_{MAP} = \frac{8}{10}$$

After the coin, we saw 10 trials: 8 heads (imaginary and real), 2 tails (imaginary and real).

Proving the mode of Beta

Observe data

Choose model

Choose prior on θ

Find
$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n)$$

These are equivalent interpretations of θ_{MAP} . We'll use this equivalence to prove the mode of Beta.

n heads, m tails

Bernoulli(p)

(some $g(\theta)$)

maximize

log prior + log-likelihood

$$\log g(\theta) + \sum_{i=1}^{n} \log f(X_i | \theta)$$

- Differentiate, set to 0
- Solve

(choose conjugate) Beta(a, b)

Mode of posterior distribution of θ

(posterior is also conjugate)

From first principles: MAP for Bernoulli, conjugate prior

- Flip a coin 8 times. Observe n=7 heads and m=1 tail.
- Choose a prior on θ . What is θ_{MAP} ?

normalizing Suppose we pick a prior $\theta \sim \text{Beta}(a, b)$. $g(\theta = p) = \frac{1}{\beta}p^{a-1}(1-p)^{b-1}$ constant, β

1. Determine log prior + log likelihood

$$\log g(\theta) + \log f(X_1, X_2, ..., X_n | \theta) = \log \left(\frac{1}{\beta} p^{a-1} (1-p)^{b-1} \right) + \log \left(\binom{n+m}{n} p^n (1-p)^m \right)$$

$$= \log \frac{1}{\beta} + (a-1) \log(p) + (b-1) \log(1-p) + \log \binom{n+m}{n} + n \log p + m \log(1-p)$$

2. Differentiate w.r.t. (each) θ , $\frac{a-1}{p} + \frac{n}{p} - \frac{b-1}{1-p} - \frac{m}{1-p} = 0$ set to 0

3. Solve

(next slide)

From first principles: MAP for Bernoulli, conjugate prior

- Flip a coin 8 times. Observe n=7 heads and m=1 tail.
- Choose a prior θ . What is θ_{MAP} ?

Suppose we pick a prior $\theta \sim \text{Beta}(a, b)$. $g(\theta) = \frac{1}{\beta}p^{a-1}(1-p)^{b-1}$

normalizing constant, β

3. Solve for
$$\frac{a-1}{p} + \frac{n}{p} - \frac{b-1}{1-p} - \frac{m}{1-p} = 0$$
 (from previous slide)
$$\Rightarrow \frac{a+n-1}{p} - \frac{b+m-1}{1-p} = 0$$

$$\theta_{MAP} = \frac{a+n-1}{a+n+b+m-2}$$

The mode of the posterior, Beta(a + n, b + m)!

If we choose a conjugate prior, we avoid calculus with MAP: just report mode of posterior.

(live)

22: MAP

Lisa Yan and Jerry Cain November 2, 2020

Maximum A Posteriori (MAP) Estimator

Consider a sample of n i.i.d. random variables $X_1, X_2, ..., X_n$ (data).

Maximum Likelihood Estimator (MLE)

What is the parameter θ that maximizes the likelihood of our observed data $(X_1, X_2, ..., X_n)$?

$$L(\theta) = f(X_1, X_2, ..., X_n | \theta)$$

$$= \prod_{i=1}^{n} f(X_i | \theta)$$

$$\theta_{MLE} = \arg\max_{\theta} f(X_1, X_2, ..., X_n | \theta)$$
likelihood of data

Maximum a Posteriori (MAP) **Estimator**

Given our observed data $(X_1, X_2, ..., X_n),$ what is the most likely parameter θ ?

Bayes Me $\theta_{MAP} = \arg\max f(\theta|X_1, X_2, ..., X_n)$ posterior distribution of θ

Observe data

Choose model with parameter θ

Choose prior on θ

Find
$$\theta_{MAP} = \arg \max_{\theta} f(\theta) X_1, X_2, ..., X_n$$

$$= \arg \max_{\theta} \left(\log g(\theta) + \sum_{i=1}^{n} \log f(X_i | \theta) \right)$$

Two valid approaches to computing θ_{MAP}

> Mode of posterior distribution of θ

> > or

maximize

log prior + log-likelihood

If we choose a conjugate prior, we avoid calculus with MAP: just report mode of posterior.

Conjugate distributions

Quick MAP for Bernoulli and Binomial

Beta(a,b) is a conjugate prior for the probability of success in Bernoulli and Binomial distributions.

$$f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}$$

Prior

Beta(a,b)Saw a+b-2 imaginary trials: a-1 successes, b-1 failures

Experiment Observe n + m new trials: n successes, m failures

Posterior

$$Beta(a+n,b+m)$$

$$p = \frac{a+n-1}{a+b+n+m-2}$$

Conjugate distributions

MAP estimator:

$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} f(\theta | X_1, X_2, ..., X_n)$$

The mode of the posterior distribution of θ

		Distribution parameter	Conjugate distribution
4		$oldsymbol{arphi}$ Bernoulli p	Beta
		Binomial p	Beta >
		, Multinomial p_i	Dirichlet
	-	Poisson λ	Gamma
	× 3	Exponential λ	Gamma
	Í	Normal μ (σ^2)	Normal
	4	Normal μ (σ^2) Normal σ^2 (μ)	Inverse Gamma

Don't need to know Inverse Gamma... but it will know you ©

CS109: We'll only focus on MAP for Bernoulli/Binomial p_i , Multinomial p_i , and Poisson λ .

Multinomial is Multiple times the fun

Dirichlet $(a_1, a_2, ..., a_m)$ is a conjugate for Multinomial.

Generalizes Beta in the same way Multinomial generalizes Bernoulli/Binomial:

$$f(x_1, x_2, ..., x_m) = \frac{1}{B(a_1, a_2, ..., a_m)} \prod_{i=1}^{m} x_i^{a_i - 1}$$

Prior

 $Dirichlet(a_1, a_2, ..., a_m)$

 $(a_{i}-1)+(a_{2}-1)+(a_{m-1})$ Saw $(\sum_{i=1}^{m} a_i) - m$ imaginary trials, with $a_i - 1$ of outcome i

Experiment Observe $n_1 + n_2 + \cdots + n_m$ new trials, with n_i of outcome i

Posterior

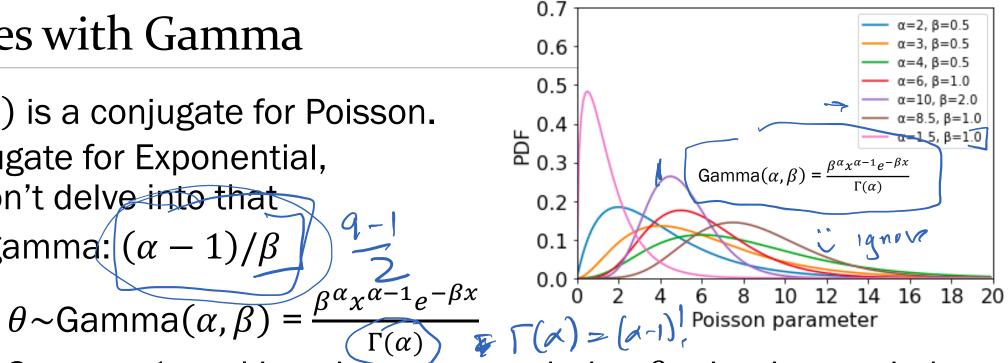
Dirichlet $(a_1 + n_1, a_2 + n_2, ..., a_m + n_m)$

$$p_{i} = \frac{a_{i} + n_{i} - 1}{\left(\sum_{i=1}^{m} a_{i}\right) + \left(\sum_{i=1}^{m} n_{i}\right) - m}$$
(isa Yan and Jerry Cain, CS 108, 2020)

Good times with Gamma

Gamma(α, β) is a conjugate for Poisson.

- Also conjugate for Exponential, but we won't delve into that
- Mode of gamma: $(\alpha 1)/\beta$



Prior

Saw $\alpha - 1$ total imaginary events during β prior time periods

Experiment Observe n events during next k time periods

Posterior $(\theta | n \text{ events in } k \text{ periods}) \sim \text{Gamma}(\alpha + n, \beta + k)$

MAP:
$$\theta_{MAP} = \frac{a+n-1}{\beta+k}$$

Let λ be the average # of successes in a time period.

1. What does it mean to have a prior of $\theta \sim \text{Gamma}(11,5)$?

Observe 10 imaginary events in 5 time periods, i.e., observe at Poisson rate = 2

Now perform the experiment and see 11 events in next 2 time periods.

2. Given your prior, what is the posterior distribution?

3. What is θ_{MAP} ?

Let λ be the average # of successes in a time period.

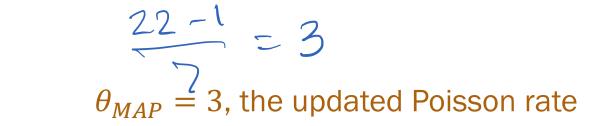
1. What does it mean to have a prior of $\theta \sim \text{Gamma}(11,5)$?

Observe 10 imaginary events in 5 time periods, i.e., observe at Poisson rate = 2

Now perform the experiment and see 11 events in next 2 time periods.

2. Given your prior, what is the posterior distribution?

 $(\theta | n \text{ events in } k \text{ periods}) \sim \text{Gamma}(22,7)$



Gauss, Divichlet, Laplace

group theory

Abe

Interlude for jokes/announcements

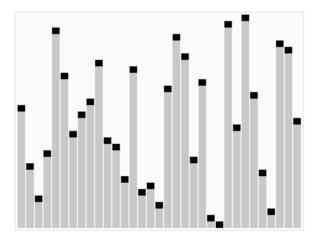
Announcements

Quiz 2 Grades Released Soon

Wednesday's Lecture: Optional

No Discussion Section This Week!

Lisa and I Still Have Wednesday OH!

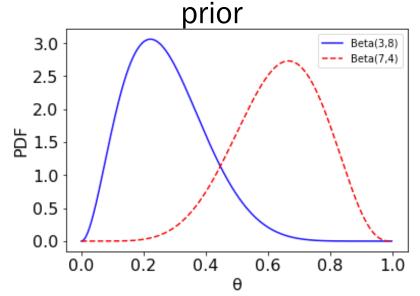


https://en.wikipedia.org/wiki/Quicksort

Choosing hyperparameters for conjugate prior

Where'd you get them priors?

- Let θ be the probability a coin turns up heads.
- Model θ with 2 different priors:
 - Prior 1: Beta(3,8): 2 imaginary heads, mode: $\frac{2}{3}$ 7 imaginary tails
 - Prior 2: Beta(7,4): 6 imaginary heads, mode: $\frac{6}{2}$ 3 imaginary tails

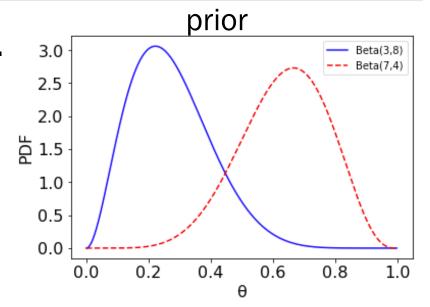


Now flip 100 coins and get 58 heads and 42 tails.

- What are the two posterior distributions?
- What are the modes of the two posterior distributions?

Where'd you get them priors?

- Let θ be the probability a coin turns up heads.
- Model θ with 2 different priors:
 - Prior 1: Beta(3,8): 2 imaginary heads, 7 imaginary tails $\frac{2}{9}$
 - Prior 2: Beta(7,4): 6 imaginary heads, $\frac{6}{9}$ 3 imaginary tails

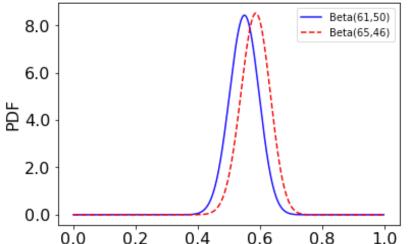


Now flip 100 coins and get 58 heads and 42 tails.

Posterior 1: Beta(61,50) mode: $\frac{60}{109}$

Posterior 2: Beta(65,46) mode: $\frac{64}{109}$

Provided we collect enough data, posteriors will converge to the true value.



posterior

Laplace smoothing

MAP with Laplace smoothing: a prior which represents k imagined observations of each outcome.

- Categorical data (i.e., Multinomial, Bernoulli/Binomial)
- Also known as additive smoothing

Laplace estimate Imagine k = 1 of each outcome (follows from Laplace's "law of succession")

Example: Laplace estimate for coin probabilities from aforementioned experiment (100 coins: 58 heads, 42 tails)

heads $\frac{59}{102}$ tails $\frac{43}{102}$

Laplace smoothing:

Easy to implement/remember

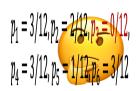
Back to our happy Laplace

Consider our previous 6-sided die.

- Roll the dice n=12 times.
- 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes Observe:

Recall
$$\theta_{MLE}$$
: $p_1 = 3/12, p_2 = 2/12, p_3 = 0/12, p_4 = 3/12, p_5 = 1/12, p_6 = 3/12$

What are your Laplace estimates for each roll outcome?



Back to our happy Laplace

Consider our previous 6-sided die.

- Roll the dice n=12 times.
- 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes Observe:

Recall
$$\theta_{MLE}$$
: $p_1 = 3/12, p_2 = 2/12, p_3 = 0/12, p_4 = 3/12, p_5 = 1/12, p_6 = 3/12$

What are your Laplace estimates for each roll outcome?

$$p_i = \frac{X_i + 1}{n + m}$$

$$p_1 = 4/18, p_2 = 3/18, p_3 = 1/18,$$
 \checkmark $p_4 = 4/18, p_5 = 2/18, p_6 = 4/18$

Laplace smoothing:

- Easy to implement/remember
- Avoids estimating a parameter of 0

Bayesian Envelope Demo

Two envelopes

Two envelopes: One contains \$X, the other contains \$2X.

- Select an envelope and <u>open it</u>.
- Before opening the envelope, think either equally good.

Is the following reasoning valid?

- Let Y = \$ in envelope you selected.
- Let Z = \$ in other envelope.

$$E[Z|Y] = \frac{1}{2} \cdot \frac{Y}{2} + \frac{1}{2} \cdot 2Y = \frac{5}{4}Y$$

$$\frac{1}{2} (-x) + \frac{1}{2} (x) = 0$$

Follow-up: What happened by opening the envelope?

Two envelopes

Two envelopes: One contains \$X, the other contains \$2X.

- Select an envelope and open it.
- Before opening the envelope, think either <u>equally</u> good.

Is the following reasoning valid?

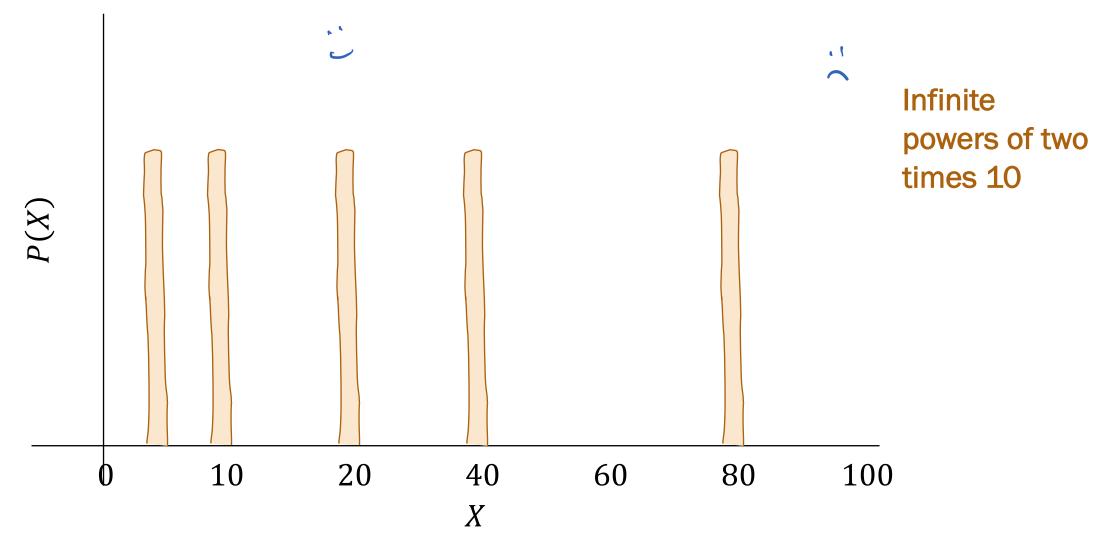
- Let Y = \$ in envelope you selected.
- Let Z = \$ in other envelope.

$$E[Z|Y] = \frac{1}{2} \cdot \frac{Y}{2} + \frac{1}{2} \cdot 2Y = \frac{5}{4}Y$$

- Assumes all values of X (where $0 < X < \infty$) equally likely
- Infinitely many values of X
 - So not a true probability distribution over *X* (does not integrate to 1)

Follow-up: What happened by opening the envelope?

Are all values equally likely?



Two envelopes: The subjectivity of probability

Your belief about the content of envelopes:

 Since implied distribution over X is not a true probability distribution, what is our distribution over X?

Frequentist

Play game infinitely many times, see how often different values come up

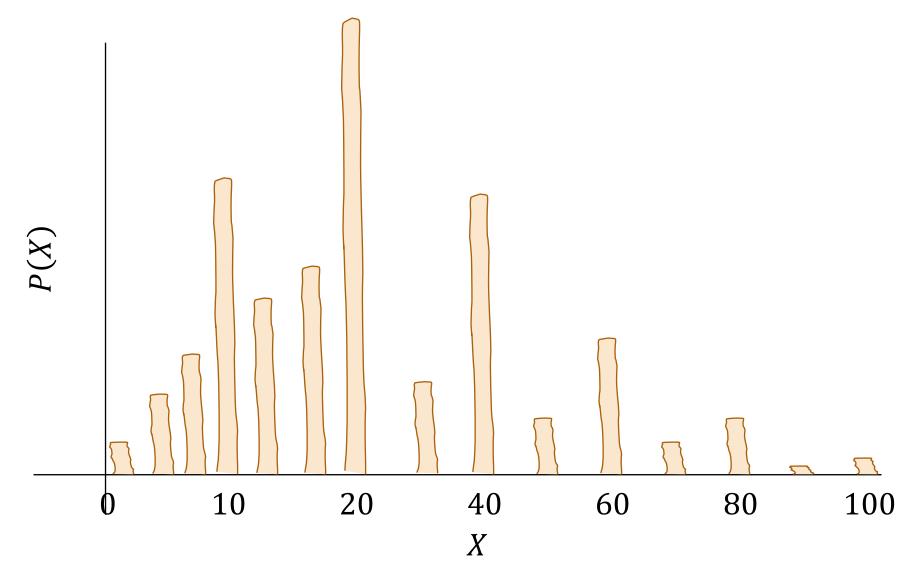
Dilemma: You can only play the game once!

Bayesian

Have <u>prior</u> belief of distribution of *X*

- Prior belief is a *subjective* probability
- Allows us to answer questions with limited data, or even no data at all
- As we run more experiments, all prior beliefs are eclipsed by data

Two envelopes: The subjectivity of probability



The envelope, please

Bayesian: Have a prior distribution over X, P(X)

- Let Y = \$ in envelope you selected. Open envelope to determine Y.
- Let Z = \$ in other envelope.

If Y > E[Z|Y], keep your envelope, otherwise switch. No inconsistency!!

- Opening envelope provides data to compute P(X|Y)
- ...which allows you to compute E[Z|Y]

Of course, need to think about your prior distribution over X, but...

Bayesian probability: It doesn't matter how you construct your prior, but you must have one (whatever it is)

Imagine if envelope you opened contained \$20.01. Should you switch?

How much is a half cent?

Have a wonderful Monday!

