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Machine Learning (formally)
Many different forms of “Machine Learning”
• We focus on the problem of prediction based on observations.

6
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Machine Learning uses a lot of data.

Task: Identify what a chair is
Data: All the chairs ever

Supervised learning: A category 
of machine learning where you 
have labeled data on the 
problem you are solving.
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Model and dataset
Many different forms of “Machine Learning”
• We focus on the problem of prediction based on observations.

Goal Based on observed 𝑿, predict unseen 𝑌
• Features Vector 𝑿 of 𝑚 observed variables

𝑿 = 𝑋!, 𝑋", … , 𝑋#
• Output Variable 𝑌 (also called class label if discrete)

Model (𝑌 = 𝑔 𝑿 , a function of observations 𝑿

11
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Training data

12

…

Feature 1 Feature 2 Feature 300 Output

Patient 1 1 0 … 1 1
Patient 2 1 1 … 0 0

…
Patient 𝑛 0 0 … 1 1

… …

𝑿 = 𝑋!, 𝑋", 𝑋#, … , 𝑋#$$
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Training data notation

𝒙 ! , 𝑦 ! , 𝒙 " , 𝑦 " , …, 𝒙 $ , 𝑦 $

𝑛 datapoints, generated i.i.d.

𝑖–th datapoint 𝒙 % , 𝑦 % :
• 𝑚 features: 𝒙 % = 𝑥!

% , 𝑥"
% , … , 𝑥#

%

• A single output 𝑦 %

• Independent of all other datapoints

13

Training Goal: Use these 𝑛 datapoints to learn a
model (𝑌 = 𝑔 𝑿 that predicts 𝑌
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Testing data notation

𝒙 ! , 𝑦 ! , 𝒙 " , 𝑦 " , …, 𝒙 $ , 𝑦 $

𝑛&'(& other datapoints, generated i.i.d.

𝑖–th datapoint 𝒙 % , 𝑦 % :
• Has the same structure as your training data

15

Testing Goal: Using the model (𝑌 = 𝑔 𝑿 that you trained, 
see how well you can predict 𝑌 on known data
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Two prediction tasks
Many different forms of “Machine Learning”
• We focus on the problem of prediction based on observations.

Goal Based on observed 𝑿, predict unseen 𝑌
• Features Vector 𝑿 of 𝑚 observed variables

𝑿 = 𝑋!, 𝑋", … , 𝑋#
• Output Variable 𝑌 (also called class label if discrete)

Model (𝑌 = 𝑔 𝑿 , a function of observations 𝑿
• Regression prediction when 𝑌 is continuous
• Classification prediction when 𝑌 is discrete

16
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Regression: Predicting real numbers

17

Training data: 𝒙 ' , 𝑦 ' , 𝒙 $ , 𝑦 $ , …, 𝒙 ( , 𝑦 (

…

CO2 levels Output

… …
Year 1 338.8 0 … 1 0.26
Year 2 340.0 1 … 0 0.32

…
Year 𝑛 340.76 0 … 1 0.14

Feature 𝑚Sea
level

Global Land-
Ocean
temperature
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Classification: Predicting class labels

18

…

Feature 1 Feature 2 Feature 300 Output

Patient 1 1 0 … 1 1
Patient 2 1 1 … 0 0

…
Patient 𝑛 0 0 … 1 1

… …

𝑿 = 𝑋!, 𝑋", 𝑋#, … , 𝑋#$$



Lisa Yan, CS109, 2020

Classification: Harry Potter Sorting Hat

19

𝑿 = 1, 1, 1, 0, 0, … , 1

!𝑌 = 1

Our focus today!
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Classification: Example datasets

20

Heart

Ancestry Netflix



“Brute Force 
Bayes”

21

24b_brute_force_bayes
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Classification: Having a healthy heart

Single feature: Region of Interest (ROI) is
healthy (1) or unhealthy (0) 

How can we predict the class label
heart is healthy (1) or unhealthy (0)?

22

Patient 1 1 0
Patient 2 1 1

Patient 𝑛 0 1

Feature 1 Output

… …

The following strategy is not used in practice but 
helps us understand how we approach classification.

𝑿 = 𝑋!
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Classification: “Brute Force Bayes”

23

(𝑌 = 𝑔 𝑿 Our prediction for 𝑌
is a function of 𝑿

Proposed model: Choose the 
𝑌 that is most likely given 𝑿

If we estimate 𝑃 𝑿|𝑌 and 𝑃 𝑌 , we can classify datapoints!

= arg max
)* +,!

𝑃 𝑿|𝑌 𝑃 𝑌

(Bayes’ Theorem)

(1/𝑃 𝑿 is constant w.r.t. 𝑦)

= arg max
)* +,!

𝑃 𝑌 | 𝑿

= arg max
)* +,!

𝑃 𝑿|𝑌 𝑃 𝑌
𝑃 𝑿
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Training: Estimate parameters

24

Patient 1 1 0
Patient 2 1 1

Patient 𝑛 0 1

Feature 1 Output

… …

𝑿 = 𝑋!

Conditional 
probability 

tables 1𝑃 𝑿|𝑌

1𝑃 𝑿|𝑌 = 0 1𝑃 𝑿|𝑌 = 1
𝑋' = 0 𝜃' 𝜃)
𝑋' = 1 𝜃$ 𝜃*

Marginal 
probability 
table 1𝑃 𝑌

1𝑃 𝑌
𝑌 = 0 𝜃+
𝑌 = 1 𝜃,

(𝑌 = arg max
)* +,!

(𝑃 𝑿|𝑌 (𝑃 𝑌

Training 
Goal:

Use 𝑛 datapoints to learn
2 ⋅ 2 + 2 = 6 parameters.
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Use MLE or Laplace (MAP) estimate 
for parameters 1𝑃 𝑿|𝑌 and 1𝑃 𝑌

Training: Estimate parameters '𝑃 𝑿|𝑌

25

1𝑃 𝑿|𝑌 = 0 1𝑃 𝑿|𝑌 = 1
𝑋' = 0 𝜃' 𝜃)
𝑋' = 1 𝜃$ 𝜃*

𝑿|𝑌 = 0 and 𝑿|𝑌 = 1
are each multinomials with 2 outcomes!

Patient 1 1 0
Patient 2 1 1

Patient 𝑛 0 1

Feature 1 Output

… …
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Training: MLE estimates, '𝑃 𝑿|𝑌

26

1𝑃 𝑿|𝑌 = 0 1𝑃 𝑿|𝑌 = 1
𝑋' = 0 0.4 0.0
𝑋' = 1 0.6 1.0

MLE of 1𝑃 𝑋' = 𝑥|𝑌 = 𝑦 =
# 𝑋' = 𝑥,𝑌 = 𝑦

# 𝑌 = 𝑦MLE
Just count!

Patient 1 1 0
Patient 2 1 1

Patient 𝑛 0 1

Feature 1 Output

… …

Count: # datapoints
𝑋' = 0, Y = 0: 4
𝑋' = 1, Y = 0: 6
𝑋' = 0, Y = 1: 0
𝑋' = 1, Y = 1: 100
Total: 110
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Patient 1 1 0
Patient 2 1 1

Patient 𝑛 0 1

Training: Laplace (MAP) estimates, '𝑃 𝑿|𝑌

27

Feature 1 Output

… …

1𝑃 𝑿|𝑌 = 0 1𝑃 𝑿|𝑌 = 1
𝑋' = 0 0.4 0.0
𝑋' = 1 0.6 1.0

MLE of 1𝑃 𝑋' = 𝑥|𝑌 = 𝑦 =
# 𝑋' = 𝑥,𝑌 = 𝑦

# 𝑌 = 𝑦MLE
Just count!

Just count + add imaginary trials!

MAP

🤔Laplace of 1𝑃 𝑋' = 𝑥|𝑌 = 𝑦 = ?

Count: # datapoints
𝑋' = 0, Y = 0: 4
𝑋' = 1, Y = 0: 6
𝑋' = 0, Y = 1: 0
𝑋' = 1, Y = 1: 100
Total: 110
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Patient 1 1 0
Patient 2 1 1

Patient 𝑛 0 1

Training: Laplace (MAP) estimates, '𝑃 𝑿|𝑌

28

Feature 1 Output

… …

1𝑃 𝑿|𝑌 = 0 1𝑃 𝑿|𝑌 = 1
𝑋' = 0 0.4 0.0
𝑋' = 1 0.6 1.0

MLE of 1𝑃 𝑋' = 𝑥|𝑌 = 𝑦 =
# 𝑋' = 𝑥,𝑌 = 𝑦

# 𝑌 = 𝑦MLE
Just count!

1𝑃 𝑿|𝑌 = 0 1𝑃 𝑿|𝑌 = 1
𝑋' = 0 0.42 0.01
𝑋' = 1 0.58 0.99

Just count + add imaginary trials!

MAP

# 𝑋' = 𝑥,𝑌 = 𝑦 + 1
# 𝑌 = 𝑦 + 2Laplace of 1𝑃 𝑋' = 𝑥|𝑌 = 𝑦 =

Count: # datapoints
𝑋' = 0, Y = 0: 4
𝑋' = 1, Y = 0: 6
𝑋' = 0, Y = 1: 0
𝑋' = 1, Y = 1: 100
Total: 110
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Testing

New patient has a healthy ROI (𝑋! = 1). What is your prediction, (𝑌?
(𝑃 𝑋! = 1|𝑌 = 0 (𝑃 𝑌 = 0 = 0.58 ⋅ 0.09 ≈ 0.052
(𝑃 𝑋! = 1|𝑌 = 1 (𝑃 𝑌 = 1 = 0.99 ⋅ 0.91 ≈ 0.901

A. 0.052 < 0.5 ⇒ (𝑌 = 1
B. 0.901 > 0.5 ⇒ (𝑌 = 1
C. 0.052 < 0.901 ⇒ (𝑌 = 1

29

(𝑌 = arg max
)* +,!

(𝑃 𝑿|𝑌 (𝑃 𝑌

1𝑃 𝑿|𝑌 = 0 1𝑃 𝑿|𝑌 = 1
𝑋' = 0 0.42 0.01
𝑋' = 1 0.58 0.99

1𝑃 𝑌
𝑌 = 0 0.09
𝑌 = 1 0.91

(MAP) (MLE)

🤔Sanity check: Why don’t these sum to 1?
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Testing

New patient has a healthy ROI (𝑋! = 1). What is your prediction, (𝑌?
(𝑃 𝑋! = 1|𝑌 = 0 (𝑃 𝑌 = 0 = 0.58 ⋅ 0.09 ≈ 0.052
(𝑃 𝑋! = 1|𝑌 = 1 (𝑃 𝑌 = 1 = 0.99 ⋅ 0.91 ≈ 0.901

A. 0.052 < 0.5 ⇒ (𝑌 = 1
B. 0.901 > 0.5 ⇒ (𝑌 = 1
C. 0.052 < 0.901 ⇒ (𝑌 = 1

30

(𝑌 = arg max
)* +,!

(𝑃 𝑿|𝑌 (𝑃 𝑌

1𝑃 𝑿|𝑌 = 0 1𝑃 𝑿|𝑌 = 1
𝑋' = 0 0.42 0.01
𝑋' = 1 0.58 0.99

1𝑃 𝑌
𝑌 = 0 0.09
𝑌 = 1 0.91

(MAP) (MLE)

Sanity check: Why don’t these sum to 1?
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“Brute Force Bayes” classifier

31

(𝑌 = arg max
)* +,!

(𝑃 𝑿|𝑌 (𝑃 𝑌

31

(𝑃 𝑋!, 𝑋", … , 𝑋#|𝑌 = 1

Testing
(𝑌 = arg max

)* +,!
(𝑃 𝑋!, 𝑋", … , 𝑋#|𝑌 (𝑃 𝑌

Training
(𝑃 𝑌 = 1

Estimate these 
probabilities, i.e.,
“learn” these parameters
using MLE or Laplace (MAP)

( 1𝑃 𝑌 is an estimate of 𝑃 𝑌 ,
1𝑃 𝑿|𝑌 is an estimate of 𝑃 𝑿|𝑌 )

(𝑃 𝑋!, 𝑋", … , 𝑋#|𝑌 = 0
(𝑃 𝑌 = 0

Given an observation 𝑿 = 𝑋!, 𝑋", … , 𝑋# , predict



Naïve Bayes 
Classifier

32

24c_naive_bayes
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Brute Force Bayes: 𝑚 = 300 (# features)

33

…

Feature 1 Feature 2 Feature 300 Output

Patient 1 1 0 … 1 1
Patient 2 1 1 … 0 0

…
Patient 𝑛 0 0 … 1 1

… …

This won’t be
too bad, right?

𝑿 = 𝑋!, 𝑋", 𝑋#, … , 𝑋#$$
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Brute Force Bayes: 𝑚 = 300 (# features)

34

…

Feature 1 Feature 2 Feature 300 Output

Patient 1 1 0 … 1 1
Patient 2 1 1 … 0 0

…
Patient 𝑛 0 0 … 1 1

… …

This won’t be
too bad, right?

𝑿 = 𝑋!, 𝑋", 𝑋#, … , 𝑋#$$

Count: # datapoints
𝑋' = 0, 𝑋$ = 0, …, 𝑋$-- = 0, 𝑋).. = 0, Y = 0: 0
𝑋' = 0, 𝑋$ = 0, …, 𝑋$-- = 0, 𝑋).. = 1, Y = 0: 0
𝑋' = 0, 𝑋$ = 0, …, 𝑋$-- = 1, 𝑋).. = 0, Y = 0: 1
…
𝑋' = 0, 𝑋$ = 0, …, 𝑋$-- = 0, 𝑋).. = 0, Y = 1: 2
𝑋' = 0, 𝑋$ = 0, …, 𝑋$-- = 0, 𝑋).. = 1, Y = 1: 1
𝑋' = 0, 𝑋$ = 0, …, 𝑋$-- = 1, 𝑋).. = 0, Y = 1: 1
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Brute Force Bayes

35

= arg max
)* +,!

(𝑃 𝑿|𝑌 (𝑃 𝑌

Learn parameters
through MLE or MAP

(𝑌 = arg max
)* +,!

(𝑃 𝑌 | 𝑿

= arg max
)* +,!

(𝑃 𝑿|𝑌 (𝑃 𝑌
(𝑃 𝑿

Choose the 𝑌 that is 
most likely given 𝑿

(Bayes’ Theorem)

(1/𝑃 𝑿 is constant w.r.t. 𝑦)

Review
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Brute Force Bayes: 𝑚 = 300 (# features)

36

• 1𝑃 𝑌 = 1 | 𝒙 : estimated probability a 
heart is healthy given 𝒙

• 𝑿 = 𝑋', 𝑋$, … , 𝑋).. : whether 300
regions of interest (ROI) are healthy (1) 
or unhealthy (0)

= arg max
)* +,!

(𝑃 𝑿|𝑌 (𝑃 𝑌

How many parameters do we 
have to learn?

A. 2 ⋅ 2 + 2 = 6
B. 2 ⋅ 300 + 2 = 602
C. 2 ⋅ 22++ + 2 = a lot

1𝑃 𝑿|𝑌 1𝑃 𝑌

Learn parameters
through MLE or MAP

(𝑌 = arg max
)* +,!

(𝑃 𝑌 | 𝑿

= arg max
)* +,!

(𝑃 𝑿|𝑌 (𝑃 𝑌
(𝑃 𝑿

🤔
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This approach requires you to learn 
𝑂 2/ parameters.

Brute Force Bayes: 𝑚 = 300 (# features)

37

• 1𝑃 𝑌 = 1 | 𝒙 : estimated probability a 
heart is healthy given 𝒙

• 𝑿 = 𝑋', 𝑋$, … , 𝑋).. : whether 300
regions of interest (ROI) are healthy (1) 
or unhealthy (0)

= arg max
)* +,!

(𝑃 𝑿|𝑌 (𝑃 𝑌

How many parameters do we 
have to learn?

A. 2 ⋅ 2 + 2 = 6
B. 2 ⋅ 300 + 2 = 602
C. 2 ⋅ 22++ + 2 = a lot

1𝑃 𝑿|𝑌 1𝑃 𝑌

Learn parameters
through MLE or MAP

(𝑌 = arg max
)* +,!

(𝑃 𝑌 | 𝑿

= arg max
)* +,!

(𝑃 𝑿|𝑌 (𝑃 𝑌
(𝑃 𝑿
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Brute Force Bayes: 𝑚 = 300 (# features)

38

• 1𝑃 𝑌 = 1 | 𝒙 : estimated probability a 
heart is healthy given 𝒙

• 𝑿 = 𝑋', 𝑋$, … , 𝑋).. : whether 300
regions of interest (ROI) are healthy (1) 
or unhealthy (0)

= arg max
)* +,!

(𝑃 𝑿|𝑌 (𝑃 𝑌

How many parameters do we 
have to learn?

A. 2 ⋅ 2 + 2 = 6
B. 2 ⋅ 300 + 2 = 602
C. 2 ⋅ 22++ + 2 = a lot

1𝑃 𝑿|𝑌 1𝑃 𝑌

Learn parameters
through MLE or MAP

(𝑌 = arg max
)* +,!

(𝑃 𝑌 | 𝑿

= arg max
)* +,!

(𝑃 𝑿|𝑌 (𝑃 𝑌
(𝑃 𝑿

Number of atoms in 
the universe: 2$0$

This approach requires you to learn 
𝑂 2/ parameters.
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The problem with our current classifier

39

(𝑌 = arg max
)* +,!

(𝑃 𝑌 | 𝑿

= arg max
)* +,!

(𝑃 𝑿|𝑌 (𝑃 𝑌
(𝑃 𝑿

= arg max
)* +,!

(𝑃 𝑿|𝑌 (𝑃 𝑌

(𝑃 𝑋!, 𝑋", … , 𝑋#|𝑌
Estimating this joint conditional 
distribution is often intractable.

What if we could make a simplifying (but naïve) assumption
to make estimation easier?

Choose the 𝑌 that is 
most likely given 𝑿

(Bayes’ Theorem)

(1/𝑃 𝑿 is constant w.r.t. 𝑦)
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The Naïve Bayes assumption

40

(𝑌 = arg max
)* +,!

(𝑃 𝑌 | 𝑿

= arg max
)* +,!

(𝑃 𝑿|𝑌 (𝑃 𝑌
(𝑃 𝑿

= arg max
)* +,!

(𝑃 𝑿|𝑌 (𝑃 𝑌

= arg max
)* +,!

G
3*!

#

(𝑃 𝑋3|𝑌 (𝑃 𝑌
Naïve Bayes 
Assumption

𝑋!, … , 𝑋% are conditionally 
independent given 𝑌.

Assumption:
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Naïve Bayes Classifier

41

(𝑌 = arg max
)* +,!

G
3*!

#

(𝑃 𝑋3|𝑌 (𝑃 𝑌

41

Training
What is the Big-O of # of 
parameters we need to learn?
A. 𝑂 𝑚
B. 𝑂 2#
C. other

🤔
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Naïve Bayes Classifier

42

(𝑌 = arg max
)* +,!

G
3*!

#

(𝑃 𝑋3|𝑌 (𝑃 𝑌

42

for 𝑗 = 1,… ,𝑚:

(𝑃 𝑌 = 1

(𝑃 𝑋3 = 1|𝑌 = 0 ,
(𝑃 𝑋3 = 1|𝑌 = 1

Testing (𝑌 = arg max
)* +,!

log (𝑃 𝑌 +L
3*!

#

log (𝑃 𝑋3|𝑌
(for numeric 
stability)

Training Use MLE or
Laplace (MAP)
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1. 2.
3.

Classification terminology check
Training data: 𝒙 ' , 𝑦 ' , 𝒙 $ , 𝑦 $ , …, 𝒙 ( , 𝑦 (

44

A. 𝒙 %

B. 𝑦 %

C. 𝒙 % , 𝑦 %

D. 𝑥3
%

…

Movie 1 Movie 2 Movie 𝑚 Output

User 1 1 0 … 1 1
User 2 1 1 … 0 0

…
User 𝑛 0 0 … 1 1

… …

4.

1: like movie
0: dislike movie

🤔(by yourself)
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User 1 1 0 … 1 1
User 2 1 1 … 0 0

…
User 𝑛 0 0 … 1 1

Classification terminology check
Training data: 𝒙 ' , 𝑦 ' , 𝒙 $ , 𝑦 $ , …, 𝒙 ( , 𝑦 (

45

…

Movie 1 Movie 2 Movie 𝑚 Output

… …
1.

4.

2.

A. 𝒙 %

B. 𝑦 %

C. 𝒙 % , 𝑦 %

D. 𝑥3
%

𝑖: 𝑖-th user
𝑗: movie 𝑗

3.

1: like movie
0: dislike movie



and Learn
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Predicting user TV preferences

Will a user like the Pokémon TV series?

47

Observe indicator variables 𝑿 = 𝑋!, 𝑋" :

𝑋! = 1:
“likes Star Wars”

𝑋" = 1:
“likes Harry Potter”

Output 𝑌 indicator:

𝑌 = 1:
“likes Pokémon”

Predict (𝑌 = arg max
)* +,!

(𝑃 𝑌 | 𝑿
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The model, and the Naïve Bayes assumption

48

(𝑌 = arg max
)* +,!

(𝑃 𝑌 | 𝑿

= arg max
)* +,!

(𝑃 𝑿|𝑌 (𝑃 𝑌
(𝑃 𝑿

= arg max
)* +,!

(𝑃 𝑿|𝑌 (𝑃 𝑌

= arg max
)* +,!

G
3*!

#

(𝑃 𝑋3|𝑌 (𝑃 𝑌

𝑋!, … , 𝑋% are conditionally 
independent given 𝑌.

Naïve Bayes Assumption:

Review



Breakout 
Rooms

Check out the questions on the next slide 
(Slide 50). Post any clarifications here!
https://us.edstem.org/courses/2678/discussion/169796

Breakout rooms: 3 min

49

🤔

https://us.edstem.org/courses/2678/discussion/169796
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Predicting user TV preferences

Which probabilities do you need to estimate?
How many are there?
• Brute Force Bayes

(strawman, without
NB assumption)

• Naïve Bayes

During training, how to estimate the prob
(𝑃 𝑋! = 1, 𝑋" = 1|𝑌 = 0 with MLE? with Laplace?
• Brute Force Bayes

50

4𝑌 = arg max
!" #,%

4𝑃 𝑿|𝑌 4𝑃 𝑌

𝑃 𝑿|𝑌 =6
!"#

$

𝑃 𝑋!|𝑌Naïve Bayes 
Assumption

🤔
• Naïve Bayes
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Predicting user TV preferences

Which probabilities do you need to estimate?
How many are there?
• Brute Force Bayes

(strawman, without
NB assumption)

• Naïve Bayes

During training, how to estimate the prob
(𝑃 𝑋! = 1, 𝑋" = 1|𝑌 = 0 with MLE? with Laplace?
• Brute Force Bayes

51

4𝑌 = arg max
!" #,%

4𝑃 𝑿|𝑌 4𝑃 𝑌

𝑃 𝑿|𝑌 =6
!"#

$

𝑃 𝑋!|𝑌Naïve Bayes 
Assumption

• Naïve Bayes
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(strawman brute force) Multinomial MLE and MAP

52

N𝑝3 =
𝑛3

∑3*!# 𝑛3
Model: Multinomial, 𝑚 outcomes:

𝑝3 probability of outcome 𝑗
Observe: 𝑛3 = # of trials with outcome 𝑗

Total of ∑3*!# 𝑛3 trials

MLE

Laplace
estimate
(MAP w/Laplace 
smoothing)

N𝑝3 =
𝑛3 + 1

∑3*!# 𝑛3 +𝑚

(𝑃 𝑋! = 1 𝑋" = 1|𝑌 = 0
0 1
1 1
1 0
… …
1 1

1
0
1
…
1

𝑋' 𝑋$ 𝑌

training data
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(Naïve Bayes) Multinomial MLE and MAP

53

N𝑝3 =
𝑛3

∑3*!# 𝑛3
Model: Multinomial, 𝑚 outcomes:

𝑝3 probability of outcome 𝑗
Observe: 𝑛3 = # of trials with outcome 𝑗

Total of ∑3*!# 𝑛3 trials

MLE

Laplace
estimate
(MAP w/Laplace 
smoothing)

N𝑝3 =
𝑛3 + 1

∑3*!# 𝑛3 +𝑚

(𝑃 𝑋! = 1 𝑋" = 1|𝑌 = 0
0 1
1 1
1 0
… …
1 1

1
0
1
…
1

𝑋' 𝑋$ 𝑌

training data



and Learn
naively
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Ex 1. Naïve Bayes Classifier (MLE)

55

(𝑌 = arg max
)* +,!

G
3*!

#

(𝑃 𝑋3|𝑌 (𝑃 𝑌

55

∀𝑖:

(𝑃 𝑌 = 1 , (𝑃 𝑌 = 0

(𝑃 𝑋3 = 1|𝑌 = 0 , (𝑃 𝑋3 = 0|𝑌 = 0 ,
(𝑃 𝑋3 = 1|𝑌 = 1 , (𝑃 𝑋3 = 0|𝑌 = 0 ,

Testing (𝑌 = arg max
)* +,!

G
3*!

#

(𝑃 𝑋3|𝑌 (𝑃 𝑌

Training
Use MLE or
Laplace (MAP)



Think
Slide 59 has two questions to go over by 
yourself.

Post any clarifications here!
https://us.edstem.org/courses/2678/discussion/153773

Think by yourself: 1 min

56

🤔(by yourself)

https://us.edstem.org/courses/2678/discussion/153773
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Training: Naïve Bayes for TV shows (MLE)
Observe indicator vars. 𝑿 = 𝑋', 𝑋$ :
• 𝑋': “likes Star Wars”
• 𝑋$: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

1. How many datapoints (𝑛)
are in our train data?

2. Compute MLE estimates
for (𝑃 𝑋!|𝑌 :

57

Training data counts

𝑋'
𝑌 0 1

0 3 10
1 4 13

𝑋$
𝑌 0 1

0 5 8
1 7 10

𝑋'
𝑌 0 1

0 1𝑃 𝑋' = 0|𝑌 = 0 1𝑃 𝑋' = 1|𝑌 = 0
1 1𝑃 𝑋' = 0|𝑌 = 1 1𝑃 𝑋' = 1|𝑌 = 1

🤔(by yourself)
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𝑋'
𝑌 0 1

0 1𝑃 𝑋' = 0|𝑌 = 0 1𝑃 𝑋' = 1|𝑌 = 0
1 1𝑃 𝑋' = 0|𝑌 = 1 1𝑃 𝑋' = 1|𝑌 = 1

Training: Naïve Bayes for TV shows (MLE)
Observe indicator vars. 𝑿 = 𝑋', 𝑋$ :
• 𝑋': “likes Star Wars”
• 𝑋$: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

1. How many datapoints (𝑛)
are in our train data?

2. Compute MLE estimates
for (𝑃 𝑋!|𝑌 :

58

Training data counts

𝑋'
𝑌 0 1

0 3 10
1 4 13

𝑋$
𝑌 0 1

0 5 8
1 7 10
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Training data counts

𝑋'
𝑌 0 1

0 3 10
1 4 13

𝑋$
𝑌 0 1

0 5 8
1 7 10

Training: Naïve Bayes for TV shows (MLE)
Observe indicator vars. 𝑿 = 𝑋', 𝑋$ :
• 𝑋': “likes Star Wars”
• 𝑋$: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

59

𝑌
0 13/30 ≈ 0.43
1 17/30 ≈ 0.57

𝑋$
𝑌 0 1

0 5/13 ≈ 0.38 8/13 ≈ 0.62
1 7/17 ≈ 0.41 10/17 ≈ 0.59

𝑋'
𝑌 0 1

0 0.23 0.77
1 0.24 0.76
(from last slide)

𝑌
0 13
1 17
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Training : Naïve Bayes for TV shows (MLE)
Observe indicator vars. 𝑿 = 𝑋', 𝑋$ :
• 𝑋': “likes Star Wars”
• 𝑋$: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

60

𝑋'
𝑌 0 1

0 0.23 0.77
1 0.24 0.76

𝑋$
𝑌 0 1

0 0.38 0.62
1 0.41 0.59

𝑌
0 0.43
1 0.57

Now that we’ve trained and found parameters,
It’s time to classify new users!
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Ex 1. Naïve Bayes Classifier (MLE)

61

(𝑌 = arg max
)* +,!

G
3*!

#

(𝑃 𝑋3|𝑌 (𝑃 𝑌

61

∀𝑖:

(𝑃 𝑌 = 1 , (𝑃 𝑌 = 0

(𝑃 𝑋3 = 1|𝑌 = 0 , (𝑃 𝑋3 = 0|𝑌 = 0 ,
(𝑃 𝑋3 = 1|𝑌 = 1 , (𝑃 𝑋3 = 0|𝑌 = 0 ,

Testing (𝑌 = arg max
)* +,!

G
3*!

#

(𝑃 𝑋3|𝑌 (𝑃 𝑌

Training
Use MLE or
Laplace (MAP)
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Testing: Naïve Bayes for TV shows (MLE)
Observe indicator vars. 𝑿 = 𝑋', 𝑋$ :
• 𝑋': “likes Star Wars”
• 𝑋$: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

Suppose a new person “likes Star Wars” (𝑋' = 1) but “dislikes Harry Potter” (𝑋$ = 0).
Will they like Pokemon? Need to predict 𝑌:

62

𝑋'
𝑌 0 1

0 0.23 0.77
1 0.24 0.76

𝑋$
𝑌 0 1

0 0.38 0.62
1 0.41 0.59

𝑌
0 0.43
1 0.57

1𝑌 = arg max
89 .,'

1𝑃 𝑿|𝑌 1𝑃 𝑌 = arg max
89 .,'

1𝑃 𝑋'|𝑌 1𝑃 𝑋$|𝑌 1𝑃 𝑌

If 𝑌 = 0: 1𝑃 𝑋' = 1|𝑌 = 0 1𝑃 𝑋$ = 0|𝑌 = 0 1𝑃 𝑌 = 0 = 0.77 ⋅ 0.38 ⋅ 0.43 = 0.126

If 𝑌 = 1: 1𝑃 𝑋' = 1|𝑌 = 1 1𝑃 𝑋$ = 0|𝑌 = 1 1𝑃 𝑌 = 1 = 0.76 ⋅ 0.41 ⋅ 0.57 = 0.178

Since term is greatest when Y = 1, predict 1𝑌 = 1



Interlude for 
jokes/announcements

63
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Announcements

64

Problem Set 6

Out: later today
Due: Monday 11/16
Grace period: Wednesday 11/18
Covers: through Lecture 26

Problem Set 5

Super on-time due (+8%): earlier today
On-time due (+5%): Monday 11/9 1:00pm
Grace period ends (+0%): Wednesday 11/11 1:00pm
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Ex 2. Naïve Bayes Classifier (MAP)

65

(𝑌 = arg max
)* +,!

G
3*!

#

(𝑃 𝑋3|𝑌 (𝑃 𝑌

65

∀𝑖:

(𝑃 𝑌 = 1 , (𝑃 𝑌 = 0

(𝑃 𝑋3 = 1|𝑌 = 0 , (𝑃 𝑋3 = 0|𝑌 = 0 ,
(𝑃 𝑋3 = 1|𝑌 = 1 , (𝑃 𝑋3 = 0|𝑌 = 0 ,

Testing

Training
Use MLE or
Laplace (MAP)

(𝑌 = arg max
)* +,!

G
3*!

#

(𝑃 𝑋3|𝑌 (𝑃 𝑌 (note the same as before)
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Training: Naïve Bayes for TV shows (MAP)
Observe indicator vars. 𝑿 = 𝑋', 𝑋$ :
• 𝑋': “likes Star Wars”
• 𝑋$: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

What are our MAP estimates
using Laplace smoothing
for (𝑃 𝑋3|𝑌 ?

66

Training data counts

𝑋'
𝑌 0 1

0 3 10
1 4 13

𝑋$
𝑌 0 1

0 5 8
1 7 10

1𝑃 𝑋; = 𝑥|𝑌 = 𝑦 : 

A.
# @!*A,B*)

# B*)

B.
# @!*A,B*) C!

# B*) C"

C.
# @!*A,B*) C!

# B*) CD

D. other 🤔(by yourself)
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Training: Naïve Bayes for TV shows (MAP)
Observe indicator vars. 𝑿 = 𝑋', 𝑋$ :
• 𝑋': “likes Star Wars”
• 𝑋$: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

What are our MAP estimates
using Laplace smoothing
for (𝑃 𝑋3|𝑌 and (𝑃 𝑌 ?

67

𝑋'
𝑌 0 1

0 3 10
1 4 13

𝑋$
𝑌 0 1

0 5 8
1 7 10

1𝑃 𝑋; = 𝑥|𝑌 = 𝑦 : 

A.
# @!*A,B*)

# B*)

B.
# @!*A,B*) C!

# B*) C"

C.
# @!*A,B*) C!

# B*) CD

D. other

Training data counts
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Training data counts

𝑋'
𝑌 0 1

0 3 10
1 4 13

𝑋$
𝑌 0 1

0 5 8
1 7 10

𝑌
0 13
1 17

Training: Naïve Bayes for TV shows (MAP)
Observe indicator vars. 𝑿 = 𝑋', 𝑋$ :
• 𝑋': “likes Star Wars”
• 𝑋$: “likes Harry Potter”

Predict 𝑌: “likes Pokémon”

68

𝑋'
𝑌 0 1

0 0.27 0.73
1 0.26 0.74

𝑋$
𝑌 0 1

0 0.40 0.60
1 0.42 0.58

!𝑌 = arg max
!" #,%

)
&"%

'

!𝑃 𝑋&|𝑌 !𝑃 𝑌

In practice:
• We use Laplace for !𝑃 𝑋-|𝑌 in case 

some events 𝑋& = 𝑥& don’t appear
• We don’t use Laplace for !𝑃 𝑌 , 

because all class labels should 
appear reasonably often
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Naïve Bayes Model is a Bayesian Network

69

𝑃 𝑿|𝑌 =G
3*!

#

𝑃 𝑋3|𝑌
Naïve Bayes 
Assumption

A. B.𝑌

𝑋' 𝑋$

…

𝑋(… 𝑌

𝑋' 𝑋$

…

𝑋(…

Which Bayesian Network encodes this conditional independence?

𝑋< are conditionally independent given 𝑌
🤔(by yourself)
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Naïve Bayes Model is a Bayesian Network

70

Naïve Bayes 
Assumption

Which Bayesian Network encodes this conditional independence?

A. B.𝑌

𝑋' 𝑋$

…

𝑋(… 𝑌

𝑋' 𝑋$

…

𝑋(…

𝑋< are conditionally independent given parent 𝑌

𝑃 𝑿|𝑌 =G
%*!

#

𝑃 𝑋%|𝑌 𝑃 𝑿, 𝑌 = 𝑃 𝑌 G
3*!

#

𝑃 𝑋3|𝑌⇒



and Learn
naively
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What is Bayes doing in my mail server?

72

Let’s get Bayesian on your spam:
Content analysis details:   (49.5 hits, 7.0 required)
0.9 RCVD_IN_PBL            RBL: Received via a relay in Spamhaus PBL

[93.40.189.29 listed in zen.spamhaus.org]
1.5 URIBL_WS_SURBL         Contains an URL listed in the WS SURBL blocklist

[URIs: recragas.cn]
5.0 URIBL_JP_SURBL         Contains an URL listed in the JP SURBL blocklist

[URIs: recragas.cn]
5.0 URIBL_OB_SURBL         Contains an URL listed in the OB SURBL blocklist

[URIs: recragas.cn]
5.0 URIBL_SC_SURBL         Contains an URL listed in the SC SURBL blocklist

[URIs: recragas.cn]
2.0 URIBL_BLACK            Contains an URL listed in the URIBL blacklist

[URIs: recragas.cn]
8.0 BAYES_99               BODY: Bayesian spam probability is 99 to 100%

[score: 1.0000]
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Ex 3. Naïve Bayes Classifier (𝑚,𝑛 large)

73

(𝑌 = arg max
)* +,!

G
%*!

#

(𝑃 𝑋%|𝑌 (𝑃 𝑌

73

∀𝑖:

(𝑃 𝑌 = 1 , (𝑃 𝑌 = 0

(𝑃 𝑋% = 1|𝑌 = 0 , (𝑃 𝑋% = 0|𝑌 = 0 ,
(𝑃 𝑋% = 1|𝑌 = 1 , (𝑃 𝑋% = 0|𝑌 = 0 ,

Testing (𝑌 = arg max
)* +,!

G
%*!

#

(𝑃 𝑋%|𝑌 (𝑃 𝑌

Training
Use MLE or
Laplace (MAP)

What changes

are necessary?
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Email classification
Goal Based on email content 𝑿, predict if email is spam or not.

Features Consider a lexicon 𝑚 words (for English: 𝑚 ≈ 100,000).
𝑿 = 𝑋!, 𝑋", … , 𝑋# , 𝑚 indicator variables
𝑋3 = 1 if word 𝑗 appeared in document

Output 𝑌 = 1 if email is spam

Note: 𝑚 is huge. Make Naïve Bayes assumption:

74

𝑃 𝑿|spam =I
;9'

/

𝑃 𝑋;|spam

Appearances of words in email are conditionally independent 
given the email is spam or not
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Training: Naïve Bayes Email classification

Train set 𝑛 previous emails 𝒙 ! , 𝑦 ! , 𝒙 " , 𝑦 " , …, 𝒙 $ , 𝑦 $

𝒙 % = 𝑥!
% , 𝑥"

% , … , 𝑥#
%

𝑦 % = 1 if spam, 0 if not spam

Note: 𝑚 is huge. 

Which estimator should
we use for (𝑃 𝑋3|𝑌 ?

75

for each word, whether it 
appears in email 𝑖

A. MLE
B. Laplace estimate (MAP)
C. Other MAP estimate
D. Both A and B 🤔(by yourself)
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Training: Naïve Bayes Email classification

Train set 𝑛 previous emails 𝒙 ! , 𝑦 ! , 𝒙 " , 𝑦 " , …, 𝒙 $ , 𝑦 $

𝒙 % = 𝑥!
% , 𝑥"

% , … , 𝑥#
%

𝑦 % = 1 if spam, 0 if not spam

Note: 𝑚 is huge. 

Which estimator should
we use for (𝑃 𝑋3|𝑌 ?

76

for each word, whether it 
appears in email 𝑖

A. MLE
B. Laplace estimate (MAP)
C. Other MAP estimate
D. Both A and B

Many words are 
likely to not 
appear at all in 
the training set!
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Ex 3. Naïve Bayes Classifier (𝑚,𝑛 large)

77

(𝑌 = arg max
)* +,!

G
3*!

#

(𝑃 𝑋3|𝑌 (𝑃 𝑌

77

∀𝑖:

(𝑃 𝑌 = 1 , (𝑃 𝑌 = 0

(𝑃 𝑋3 = 1|𝑌 = 0 , (𝑃 𝑋3 = 0|𝑌 = 0 ,
(𝑃 𝑋3 = 1|𝑌 = 1 , (𝑃 𝑋3 = 0|𝑌 = 0 ,

Testing

Training
Use MLE or
Laplace (MAP)

(𝑌 = arg max
)* +,!

G
3*!

#

(𝑃 𝑋3|𝑌 (𝑃 𝑌Laplace (MAP) estimates avoid estimating 
0 probabilities for events that don’t occur 
in your training data.
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Testing: Naïve Bayes Email classification
For a new email:
• Generate 𝑿 = 𝑋', 𝑋$, … , 𝑋/
• Classify as spam or not using Naïve Bayes assumption

Note: 𝑚 is huge.
Suppose train set size 𝑛 also huge (many labeled emails).
Can we still use the below prediction?

78

(𝑌 = arg max
)* +,!

G
3*!

#

(𝑃 𝑋3|𝑌 (𝑃 𝑌
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Testing: Naïve Bayes Email classification
For a new email:
• Generate 𝑿 = 𝑋', 𝑋$, … , 𝑋/
• Classify as spam or not using Naïve Bayes assumption

Note: 𝑚 is huge.
Suppose train set size 𝑛 also huge (many labeled emails).
Can we still use the below prediction?

79

(𝑌 = arg max
)* +,!

G
3*!

#

(𝑃 𝑋3|𝑌 (𝑃 𝑌 Will probably lead to underflow!
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Ex 3. Naïve Bayes Classifier (𝑚,𝑛 large)

80

(𝑌 = arg max
)* +,!

G
3*!

#

(𝑃 𝑋3|𝑌 (𝑃 𝑌

80

∀𝑖:

(𝑃 𝑌 = 1 , (𝑃 𝑌 = 0

(𝑃 𝑋3 = 1|𝑌 = 0 , (𝑃 𝑋3 = 0|𝑌 = 0 ,
(𝑃 𝑋3 = 1|𝑌 = 1 , (𝑃 𝑋3 = 0|𝑌 = 0 ,

Testing

Training
Use MLE or
Laplace (MAP)

(𝑌 = arg max
)* +,!

log (𝑃 𝑌 +L
3*!

#

log (𝑃 𝑋3|𝑌

Use sums of log-
probabilities for 
numerical stability.
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How well does Naïve Bayes perform?
After training, you can test with another set of data, called the test set.
• Test set also has known values for 𝑌 so we can see how often

we were right/wrong in our predictions (𝑌.
Typical workflow:
• Have a dataset of 1789 emails (1578 spam, 211 ham)
• Train set: First 1538 emails (by time)
• Test set:  Next 251 messages

Evaluation criteria on test set:

81

precision =
# correctly predicted class 𝑌

# predicted class 𝑌

recall =
# correctly predicted class 𝑌

# real class 𝑌 messages

Spam Non-spam
Prec. Recall Prec. Recall

Words only 97.1% 94.3% 87.7% 93.4%
Words +
addtl features 100% 98.3% 96.2% 100%
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What are precision and recall?
Accuracy (# correct)/(# total) sometimes just doesn’t cut it.

Precision: Of the emails you predicted as spam,
how many are actually spam?

Recall: Of the emails that are actually spam,
how many did you predict?

82

Measure of 
false positives

Measure of 
false negatives

More on Wikipedia (https://en.wikipedia.org/wiki/Precision_and_recall)
and Problem Set 6!

https://en.wikipedia.org/wiki/Precision_and_recall

