24: Naïve Bayes

Lisa Yan and Jerry Cain November 6, 2020

Quick slide reference

- 3 Intro: Machine Learning
- ²¹ "Brute Force Bayes"
- Naïve Bayes Classifier

24c_naive_bayes

24b_brute_force_bayes

24a_intro

LIVE

LIVE

- 43 Naïve Bayes: MLE/MAP with TV shows
- 71 Naïve Bayes: MAP with email classification

24a_intro

Intro: Machine Learning

Our path from here

Stanford University

Our path from here

Stanford University

Machine Learning (formally)

Many different forms of "Machine Learning"

• We focus on the problem of prediction based on observations.

Machine Learning uses a lot of data.

Supervised learning: A category of machine learning where you have labeled data on the problem you are solving.

Task: Identify what a chair is Data: All the chairs ever

Supervised learning

Supervised learning

Model and dataset

Many different forms of "Machine Learning"

We focus on the problem of prediction based on observations.

Goal

Based on observed X, predict unseen Y Vector **X** of *m* observed variables Features $\boldsymbol{X} = (X_1, X_2, \dots, X_m)$

Variable Y (also called class label if discrete) Output

 $\hat{Y} = q(X)$, a function of observations X Model

Training data

Patient *n* 0

 $\boldsymbol{X} = (X_1, X_2, X_3, \dots, X_{300})$

0

1

 \leftarrow

¢

 \leq

Feature 1 Feature 2 Feature 300 Output pinarguletor Patient 1 1 0 1 1 ... Patient 2 1 1 0 0 . . . 2 • . . .

...

Training data notation

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$$

i-th datapoint $(x^{(i)}, y^{(i)})$:

- *m* features: $\mathbf{x}^{(i)} = \left(x_1^{(i)}, x_2^{(i)}, \dots, x_m^{(i)}\right)$ A single output $y^{(i)}$
- Independent of all other datapoints

Training Goal:

Use these *n* datapoints to learn a model $\hat{Y} = q(X)$ that predicts Y

Supervised learning

Testing data notation

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$$

 n_{test} other datapoints, generated i.i.d.

i-th datapoint $(x^{(i)}, y^{(i)})$:

Has the same structure as your training data

Testing Goal:

Using the model $\hat{Y} = g(X)$ that you trained, see how well you can predict Y on known data

Two prediction tasks

Many different forms of "Machine Learning"

• We focus on the problem of **prediction** based on observations.

Goal

Based on observed X, predict unseen Y

• Features Vector **X** of *m* observed variables $X = (X_1, X_2, ..., X_m)$

• **Output** Variable *Y* (also called **class label** if discrete)

Model

- $\hat{Y} = g(X)$, a function of observations X
- **Regression** prediction when *Y* is continuous
- **Classification** prediction when *Y* is discrete

Regression: Predicting real numbers

Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

Classification: Predicting class labels

 $X = (X_1, X_2, X_3, \dots, X_{300})$

0

Feature 300

1

0

- - -

•

...

Feature 1 Feature 2

Patient 1 1 0 ...

Patient 2 1 1 ...

Patient n = 0

...

Classification: Harry Potter Sorting Hat

$X = (1, 1, 1, 0, 0, \dots, 1)$

Our focus today!

Classification: Example datasets

Heart

Netflix

24b_brute_force_bayes

"Brute Force Bayes"

Classification: Having a healthy heart

 $X = (X_1)$ "feature vector" = observation

Output

0

Feature 1

Patient 1 1

Patient 2 1

Patient n 0

Single feature: Region of Interest (ROI) is healthy (1) or unhealthy (0)

How can we predict the class label

heart is healthy (1) or unhealthy (0)?

The following strategy is **not used in practice** but helps us understand how we approach classification.

 $\hat{Y} = g(\boldsymbol{X})$

Our prediction for *Y* is a function of *X*

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} P(Y \mid X)$$

Proposed model: Choose the *Y* that is most likely given *X*

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \frac{P(\boldsymbol{X}|Y)P(Y)}{P(\boldsymbol{X})}$$

 $= \underset{y=\{0,1\}}{\operatorname{arg\,max}} P(\boldsymbol{X}|Y)P(Y)$

(Bayes' Theorem)

(1/P(X) is constant w.r.t. y)

If we estimate P(X|Y) and P(Y), we can classify datapoints!

Y: Fact X: Evidweel Observation

Training: Estimate parameters

Ŭ	~				
$\boldsymbol{X} = (X_1)$			$\hat{Y} = ar$	g max $\hat{P}(\boldsymbol{X} Y)$	$\hat{P}(Y)$
1000	Output		$y = \{0, 1\}$		
		Conditional probability		$\widehat{P}(\boldsymbol{X} \boldsymbol{Y}=\boldsymbol{0})$	$\hat{P}(\boldsymbol{X} Y=1)$
Feature 1			$X_1 = 0$	$ heta_1$	$ heta_3$
		tables $\widehat{P}(X Y)$	$X_1 = 1$	θ_2	$ heta_4$
Patient 1 1	0	Marginal		$\widehat{P}(Y)$	
Patient 2 1	1	probability	Y = 0	θ_5	
:	:	table $\widehat{P}(Y)$	<i>Y</i> = 1	θ_6	
Patient $n 0$	1	Tr	raining	Use n datapo	ints to learn
			Goal:	$2 \cdot 2 + 2 = 6$	parameters.

Training: Estimate parameters $\hat{P}(X|Y)$

Training: MLE estimates, $\hat{P}(X|Y)$

Training: Laplace (MAP) estimates, $\hat{P}(X|Y)$

Training: Laplace (MAP) estimates, $\hat{P}(X|Y)$

Testing

Laplace e	stivates	$\widehat{Y} = \underset{y \in \{0,1\}}{\operatorname{arg max}}$		
(MAP)	$\widehat{P}(\boldsymbol{X} \boldsymbol{Y}=\boldsymbol{0})$	$\widehat{P}(\boldsymbol{X} Y=1)$	(MLE)	$\widehat{P}(Y)$
$X_1 = 0$	0.42	0.01	Y = 0	0.09 = 10
$X_1 = 1$	0.58	0.99	Y = 1	0.91 - (00)

New patient has a healthy ROI ($X_1 = 1$). What is your prediction, \hat{Y} ?

 $\hat{P}(X_1 = 1 | Y = 0) \hat{P}(Y = 0) = 0.58 \cdot 0.09 \approx 0.052$ $\hat{P}(X_1 = 1 | Y = 1) \hat{P}(Y = 1) = 0.99 \cdot 0.91 \approx 0.901$ A. $0.052 < 0.5 \implies \hat{Y} = 1$ B. $0.901 > 0.5 \implies \hat{Y} = 1$ C. $0.052 < 0.901 \implies \hat{Y} = 1$ Sanity check: Why don't these sum to 1?

$\widehat{Y} = \arg \max \widehat{P}(X Y)\widehat{P}(Y)$ $y = \{0,1\}$								
(MAP)	$\widehat{P}(\boldsymbol{X} Y=0)$	$\widehat{P}(\boldsymbol{X} Y=1)$	(MLE)	$\widehat{P}(Y)$				
$X_1 = 0$	0.42	0.01	Y = 0	0.09				
$X_1 = 1$	0.58	0.99	Y = 1	0.91				

New patient has a healthy ROI ($X_1 = 1$). What is your prediction, \hat{Y} ?

 $\hat{P}(X_1 = 1 | Y = 0) \hat{P}(Y = 0) = 0.58 \cdot 0.09 \approx 0.052 \quad \leftarrow \hat{P}(X_1 = 1, Y = 0) \hat{P}(Y = 1) = 0.99 \cdot 0.91 \approx 0.901 \quad \leftarrow \hat{P}(X_1 = 1, Y = 1) \hat{P}(Y = 1) = 0.99 \cdot 0.91 \approx 0.901 \quad \leftarrow \hat{P}(X_1 = 1, Y = 1) \hat{P}(X_1 = 1, Y =$

Lisa Yan, CS109, 2020

"Brute Force Bayes" classifier

$$\widehat{Y} = \underset{y = \{0,1\}}{\arg \max} \widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)$$

 $(\hat{P}(Y) \text{ is an estimate of } P(Y),$ $\hat{P}(X|Y) \text{ is an estimate of } P(X|Y))$

Estimate these probabilities, i.e., "learn" these parameters using MLE or Laplace (MAP)

 $\hat{P}(X_1, X_2, ..., X_m | Y = 1)$ $\hat{P}(X_1, X_2, ..., X_m | Y = 0)$ $\hat{P}(Y = 1) \qquad \hat{P}(Y = 0)$

Testing

Training

Given an observation $X = (X_1, X_2, ..., X_m)$, predict $\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\widehat{P}(X_1, X_2, ..., X_m | Y) \widehat{P}(Y) \right)$

Lisa Yan, CS109, 2020

24c_naive_bayes

Naïve Bayes Classifier

Brute Force Bayes: m = 300 (# features)

- - -

...

•

 $X = (X_1, X_2, X_3, \dots, X_{300})$

0

1

0

Feature 1 Feature 2

Patient 1 1

Patient 2 1

Patient *n* 0

. . .

Feature 300

1

0

1

Output

1

()

1

This won't be too bad, right?

Brute Force Bayes: m = 300 (# features)

This won't be too bad, right?

Brute Force Bayes

Review

$$\widehat{Y} = \arg \max_{y \in \{0,1\}} \widehat{P}(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \frac{\widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)}{\widehat{P}(\boldsymbol{X})}$$

 $= \underset{y=\{0,1\}}{\arg \max} \widehat{P}(\boldsymbol{X}|Y) \widehat{P}(Y)$

Learn parameters through MLE or MAP Choose the *Y* that is most likely given *X*

(Bayes' Theorem)

(1/P(X) is constant w.r.t. y)

Brute Force Bayes: m = 300 (# features)

$$\widehat{Y} = \underset{y = \{0,1\}}{\operatorname{arg\,max}} \widehat{P}(Y \mid X)$$

 $= \arg \max_{y=\{0,1\}} \widehat{P}(\boldsymbol{X}|Y) \widehat{P}(Y)$

Learn parameters through MLE or MAP

- $\hat{P}(Y = 1 | \mathbf{x})$: estimated probability a heart is healthy given \mathbf{x}
- $X = (X_1, X_2, ..., X_{300})$: whether 300 regions of interest (ROI) are healthy (1) or unhealthy (0)

How many parameters do we have to learn? $\hat{P}(X|Y) \quad \hat{P}(Y)$ A. $2 \cdot 2 \quad +2 = 6$ B. $2 \cdot 300 + 2 = 602$ C. $2 \cdot 2^{300} + 2 = a$ lot

Brute Force Bayes: m = 300 (# features)

$$\widehat{Y} = \underset{y = \{0,1\}}{\operatorname{arg\,max}} \widehat{P}(Y \mid X)$$

 $= \arg \max_{y \in \{0,1\}} \widehat{P}(\boldsymbol{X}|Y) \widehat{P}(Y)$

Learn parameters through MLE or MAP

This approach requires you to learn $O(2^m)$ parameters.

- $\hat{P}(Y = 1 | x)$: estimated probability a heart is healthy given x
- $X = (X_1, X_2, ..., X_{300})$: whether 300 regions of interest (ROI) are healthy (1) or unhealthy (0)

How many parameters do we have to learn? $\hat{P}(X|Y) \quad \hat{P}(Y)$ A. $2 \cdot 2 \quad + 2 = 6$ B. $2 \cdot 300 + 2 = 602$ C. $2 \cdot 2^{300} + 2 = a \log 2^{300}$ $\hat{P}(X_{1}=X_{1}, X_{2}=X_{2}, \dots, X_{2}=X_{3}00 | Y=0) \quad \hat{P}(Y=0)$ $\hat{P}(X_{1}=X_{1}, X_{2}=X_{2}, \dots, X_{3}00=X_{3}00 | Y=0) \quad \hat{P}(Y=0)$

Stanford University 37

Brute Force Bayes: m = 300 (# features)

This approach requires you to learn $O(2^m)$ parameters.

 $\hat{P}(Y = 1 \mid x)$: estimated probability a heart is healthy given x $X = (X_1, X_2, ..., X_{300})$: whether 300 regions of interest (ROI) are healthy (1) or unhealthy (0)

How many parameters do we have to learn?

$$\hat{P}(\boldsymbol{X}|\boldsymbol{Y}) \qquad \hat{P}(\boldsymbol{Y}) \\
2 \cdot 2 \qquad + 2 = 6$$

$$2 \cdot 300 + 2 = 602$$

$$2 \cdot 2^{300} + 2 = a \text{ lot}$$

Lisa Yan, CS109, 2020

The problem with our current classifier

$$\hat{P} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \hat{P}(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \frac{\hat{P}(X|Y)\hat{P}(Y)}{\hat{P}(X)}$$

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \frac{\hat{P}(X|Y)\hat{P}(Y)}{\hat{P}(X)}$$

$$(Bayes' \text{ Theorem})$$

$$(1/P(X) \text{ is constant w.r.t. } y)$$

$$\stackrel{P}{=} \sum_{y=\{0,1\}} \hat{P}(X_1, X_2, \dots, X_m \mid Y)$$

$$\stackrel{Estimating this distribution is constant w.r.t. } = \sum_{x=\{0,1\}} \hat{P}(X_1, X_2, \dots, X_m \mid Y)$$

Estimating this joint conditional distribution is often intractable.

What if we could make a simplifying (but naïve) assumption to make estimation easier?

The Naïve Bayes assumption

$$\widehat{Y} = \underset{y = \{0,1\}}{\operatorname{arg\,max}} \widehat{P}(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \frac{\widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)}{\widehat{P}(\boldsymbol{X})}$$

$$= \arg \max_{y=\{0,1\}} \widehat{P}(X|Y) \widehat{P}(Y)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{j=1}^{m} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$

Assumption:

 X_1, \ldots, X_m are conditionally independent given Y.

$$\widehat{P}(X|Y) = \widehat{P}(X, X_{2}, ..., X_{300}|Y)$$

$$= \prod_{i=1}^{m} \widehat{P}(X_{i}|Y)$$
Naïve Bayes
Assumption
$$X_{i} \text{ are often only middly}$$

$$Conditionally dep. given i$$

$$Conditionally dep. given i$$

$$\# of parames becomes
$$4\pi ehebe \ b \ conput$$$$

Naïve Bayes Classifier

$$\widehat{Y} = \underset{y \in \{0,1\}}{\operatorname{arg\,max}} \left(\prod_{j=1}^{m} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$

Training

What is the Big-O of # of parameters we need to learn? A. O(m)B. $O(2^m)$ C. other

Naïve Bayes Classifier

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{j=1}^{m} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$
for $j = 1, ..., m$: $\widehat{P}(X_j = 1 | Y = 0)$, Use MLE or
 $\widehat{P}(X_j = 1 | Y = 1)$ Use MLE or
 $\widehat{P}(Y = 1) = 1 - \widehat{P}(Y_{i=0}) - \widehat{P}(X_i : \operatorname{col} Y_{i=1})$ Laplace (MAP)
 $\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\log \widehat{P}(Y) + \sum_{j=1}^{m} \log \widehat{P}(X_j | Y) \right)$ (for numeric stability)

24: Naïve Bayes

Lisa Yan and Jerry Cain November 6, 2020

Classification terminology check

Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

A. $x^{(i)}$ B. $y^{(i)}$ C. $(x^{(i)}, y^{(i)})$ D. $x_j^{(i)}$

1: like movie
 0: dislike movie

Classification terminology check

Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

 $\mathbf{x}^{(i)}$

 $v^{(i)}$

 $(\boldsymbol{x}^{(i)}, y^{(i)})$

B.

C.

and Learn

Will a user like the Pokémon TV series?

Observe indicator variables $X = (X_1, X_2)$:

Output *Y* indicator:

 $X_1 = 1$: "likes Star Wars"

 $X_{2} = 1:$ Y = 1: $\hat{Y} = 1:$ $\hat{Y} = 0$ $\hat{Y} = 1:$ $\hat{Y} = 0$ $\hat{Y} = 0$ $\hat{Y} = 1:$ $\hat{Y} = 0$ $\hat{Y} = 0$

The model, and the Naïve Bayes assumption

$$\hat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \hat{P}(Y \mid X)$$

$$= \underset{(y)=\{0,1\}}{\operatorname{arg\,max}} \frac{\hat{P}(X|Y)\hat{P}(Y)}{\hat{P}(X) \leftarrow \underset{(x) \neq t}{\operatorname{construt}}} \xrightarrow{X_1, \ldots, X_m \text{ are conditionally independent given } Y.$$

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \frac{\hat{P}(X|Y)\hat{P}(Y)}{\hat{P}(X)} \hat{P}(Y)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{j=1}^m \hat{P}(X_j|Y) \right) \hat{P}(Y)$$

Review

Breakout Rooms

Check out the questions on the next slide (Slide 50). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/169796

Breakout rooms: 3 min

Predicting user TV preferences

- 4 Which probabilities do you need to estimate? How many are there? $\hat{P}(X_1 = \dots, X_2 = \dots) Y = \dots) \hat{P}(Y = \dots)$
 - Brute Force Bayes (strawman, without NB assumption)
 - Naïve Bayes
- \mathcal{V} During training, how to estimate the prob $\widehat{P}(X_1 = 1, X_2 = 1 | Y = 0)$ with MLE? with Laplace? Naïve Bayes
 - **Brute Force Bayes**

 $P(X_j|Y)$

 $\hat{Y} = \arg \max_{y \in \{0,1\}} \hat{P}(\boldsymbol{X}|Y)\hat{P}(Y)$

Naïve Bayes P(X|Y) =

Assumption

(strawman brute force) Multinomial MLE and MAP

Model: Multinomial, m outcomes: p_j probability of outcome j

Observe:

 $n_j = #$ of trials with outcome jTotal of $\sum_{j=1}^m n_j$ trials

MLE

 $\widehat{p}_{j} = \frac{n_{j}}{\sum_{j=1}^{m} n_{j}}$ $\widehat{p}_{j} = \frac{n_{j} + 1}{\sum_{j=1}^{m} n_{j} + m}$

$$\hat{P}(X_{1} = 1 X_{2} = 1 | Y = 0)$$

$$\text{ME} \underbrace{\# (X_{1} = 1 \cap X_{2} = 1 \cap Y = 0)}_{\# (X_{1} = 1 \cap X_{2} = 1 \cap Y = 0)}_{\# (Y = 0)}_{\# (X_{1} = 1 \cap X_{2} = 1 \cap Y = 0) + 1}_{\# (Y = 0) + [Y]}$$

(Naïve Bayes) Multinomial MLE and MAP

Model: Multinomial, m outcomes: p_i probability of outcome j

Observe:

 $n_j = \#$ of trials with outcome jTotal of $\sum_{j=1}^m n_j$ trials

Laplace estimate (MAP w/Laplace smoothing)

MLE

 $\frac{n_j}{\sum_{j=1}^m n_j}$ $\widehat{p_j} = \frac{n_j + 1}{\sum_{j=1}^m n_j + m}$

training data

$$\hat{P}(X_{1} = 1, X_{2} = 1 | Y = 0) \xrightarrow{\text{NB}} \hat{P}(X_{1} = 1 | Y = 0) \hat{P}(X_{2} = 1 | Y = 0) \hat{P}(X_{2} = 1 | Y = 0) \xrightarrow{\text{MLB}} \frac{1}{2}$$

$$\hat{P}(X_{1} = 1 | Y = 0) \xrightarrow{\text{MLB}} \frac{1}{2}$$

$$\hat{P}(X_{2} = 1 | Y = 0) \xrightarrow{\text{MLB}} \frac{1}{2}$$

$$\hat{P}(X_{2} = 1 | Y = 0) \xrightarrow{\text{MLB}} \frac{1}{2}$$

and Learn naively

Ex 1. Naïve Bayes Classifier (MLE)

$$\widehat{Y} = \underset{y \in \{0,1\}}{\operatorname{arg\,max}} \left(\prod_{j=1}^{m} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$

$$\forall i: \ \hat{P}(X_j = 1 | Y = 0), \ \hat{P}(X_j = 0 | Y = 0), \ \text{Use MLE or} \\ \hat{P}(X_j = 1 | Y = 1), \ \hat{P}(X_j = 0 | Y = 0), \ \text{Laplace (MAP)} \\ \hat{P}(Y = 1), \ \hat{P}(Y = 0) \end{aligned}$$

Testing

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{j=1}^{m} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$

Think

Slide 59 has two questions to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/153773

Think by yourself: 1 min

Training: Naïve Bayes for TV shows (MLE)

Observe indicator vars. $X = (X_1, X_2)$:

- X₁: "likes Star Wars"
- X₂: "likes Harry Potter"

Predict *Y*: "likes Pokémon"

- 1. How many datapoints (*n*) are in our train data?
- 2. Compute MLE estimates for $\hat{P}(X_1|Y)$:

Training: Naïve Bayes for TV shows (MLE)

Observe indicator vars. $X = (X_1, X_2)$:

- X₁: "likes Star Wars"
- X₂: "likes Harry Potter"

Predict *Y*: "likes Pokémon"

Training data counts

N = 3D

- 1. How many datapoints (*n*) are in our train data?
- 2. Compute MLE estimates for $\hat{P}(X_1|Y)$:

Training: Naïve Bayes for TV shows (MLE)

Training : Naïve Bayes for TV shows (MLE)

Now that we've trained and found parameters, It's time to classify new users!

Ex 1. Naïve Bayes Classifier (MLE)

$$\widehat{Y} = \underset{y \in \{0,1\}}{\operatorname{arg\,max}} \left(\prod_{j=1}^{m} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$

Training
$$\forall i: \hat{P}(X_j = 1 | Y = 0), \hat{P}(X_j = 0 | Y = 0), \text{ Use MLE or}$$

 $\hat{P}(X_j = 1 | Y = 1), \hat{P}(X_j = 0 | Y = 0), \text{ Laplace (MAP)}$
 $\hat{P}(Y = 1), \hat{P}(Y = 0)$

Testing

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{j=1}^{m} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$

Lisa Yan, CS109, 2020

Testing: Naïve Bayes for TV shows (MLE)

Observe indicator vars. $X = (X_1, X_2)$: X_1 X_2 0 0 • X₁: "likes Star Wars" X_2 : "likes Harry Potter" 0 0.23 0.77 0 0.38 0.62 0 0.43 0.24 0.76 0.41 0.59 0.57Predict *Y*: "likes Pokémon" Suppose a new person "likes Star Wars" ($X_1 = 1$) but "dislikes Harry Potter" ($X_2 = 0$). Will they like Pokemon? Need to predict Y: $\widehat{Y} = \arg \max \widehat{P}(X|Y)\widehat{P}(Y) = \arg \max \widehat{P}(X_1|Y)\widehat{P}(X_2|Y)\widehat{P}(Y)$ $y = \{0, 1\}$ $y = \{0, 1\}$ $\hat{P}(X_1 = 1 | Y = 0)\hat{P}(X_2 = 0 | Y = 0)\hat{P}(Y = 0) = 0.77 \cdot 0.38 \cdot 0.43 = 0.126$ If Y = 0: If Y = 1: $\hat{P}(X_1 = 1 | Y = 1)\hat{P}(X_2 = 0 | Y = 1)\hat{P}(Y = 1) = 0.76 \cdot 0.41 \cdot 0.57 = 0.178$ Since term is greatest when Y = 1, predict $\hat{Y} = 1$

NISt

 Θ, X

Out: Due: Grace period: Covers:

later today Monday 11/16 Wednesday 11/18 through Lecture 26 W 🔗

Ex 2. Naïve Bayes Classifier (MAP) Laplace

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{j=1}^{m} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$

Training
$$\forall i: \hat{P}(X_j = 1 | Y = 0), \hat{P}(X_j = 0 | Y = 0), \text{ Use MLE or}$$

 $\hat{P}(X_j = 1 | Y = 1), \hat{P}(X_j = 0 | Y = 0), \text{ Laplace (MAP)}$
 $\hat{P}(Y = 1), \hat{P}(Y = 0)$

Testing

$$\widehat{Y} = \underset{y \in \{0,1\}}{\operatorname{arg\,max}} \left(\prod_{j=1}^{m} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$

(note the same as before)

Training: Naïve Bayes for TV shows (MAP)

Observe indicator vars. $X = (X_1, X_2)$:

- X₁: "likes Star Wars"
- X₂: "likes Harry Potter"

Predict Y: "likes Pokémon"

Training data counts

What are our MAP estimates using Laplace smoothing for $\hat{P}(X_i|Y)$?

$$\widehat{P}(X_{j} = x | Y = y):$$
A.
$$\frac{\#(X_{j} = x, Y = y)}{\#(Y = y)}$$
B.
$$\frac{\#(X_{j} = x, Y = y) + 1}{\#(Y = y) + 2}$$
C.
$$\frac{\#(X_{j} = x, Y = y) + 1}{\#(Y = y) + 4}$$

D. other Lisa Yan, CS109, 2020

Training: Naïve Bayes for TV shows (MAP)

Observe indicator vars. $X = (X_1, X_2)$:

- X₁: "likes Star Wars"
- X₂: "likes Harry Potter"

Predict Y: "likes Pokémon"

Y	0	1	Y	0	1
0	3	10	0	5	8
1	4	13	1	7	10

Training data counts

What are our MAP estimates using Laplace smoothing for $\hat{P}(X_j|Y)$ and $\hat{P}(Y)$?

$$\hat{P}(X_{j} = x | Y = y):$$
A.
$$\frac{\#(X_{j} = x, Y = y)}{\#(Y = y)}$$
B.
$$\frac{\#(X_{j} = x, Y = y) + 1}{\#(Y = y) + 2}$$
C.
$$\frac{\#(X_{j} = x, Y = y) + 1}{\#(Y = y) + 4}$$
D. otheor

Lisa Yan, CS109, 2020

Lisa Yan, CS109, 2020

Stanford University 68

Naïve Bayes Model is a Bayesian Network

Naïve Bayes
Assumption
$$P(X|Y) = \prod_{j=1}^{m} P(X_j|Y)$$

Which Bayesian Network encodes this conditional independence?

S109, 2020

Naïve Bayes Model is a Bayesian Network

Naïve Bayes
Assumption
$$P(X|Y) = \prod_{i=1}^{m} P(X_i|Y) \implies P(X,Y) = P(Y) \prod_{j=1}^{m} P(X_j|Y)$$

Which Bayesian Network encodes this conditional independence?

Stanford University 70

and Learn naively

What is Bayes doing in my mail server?

From: Abey Chavez [tristramu@deleteddomains.com] Sent: Sat 5/22/3610 4:08 AN To: sahami@robotics.stanford.edu		Let's get Bayesian on your spam:				
Cc: Subject:	For excellent metabolism		Content analysis details: 0.9 RCVD_IN_PBL	(49.5 hits, 7.0 required)		
	Canadian *** Pharmacy			RBL: Received via a relay in Spamhaus PBL [93.40.189.29 listed in zen.spamhaus.org]		
	#1 Internet Inline Drugstore					
	Viagra Our price \$1.15	Cialis	Viagra Professional Our price \$3.73	1.5 URIBL_WS_SURBL	Contains an URL listed in the WS SURBL blocklist	
		Our price \$1.99			[URIs: recragas.cn]	
	Cialis ProfessionslViagOur price \$4.17Our		Cialis Super Active Our price \$3.66	5.0 URIBL_JP_SURBL	Contains an URL listed in the JP SURBL blocklist	
		Viagra Super Active Our price \$2.82			[URIs: recragas.cn]	
				5.0 URIBL_OB_SURBL	Contains an URL listed in the OB SURBL blocklist	
	. .		C' 1' 0 0 T 1		[URIs: recragas.cn]	
	Our price \$2.93	Our price \$1.64	Our price \$3.51	5.0 URIBL_SC_SURBL	Contains an URL listed in the SC SURBL blocklist	
		•	*		[URIs: recragas.cn]	
And more				2.0 URIBL_BLACK	Contains an URL listed in the URIBL blacklist	
	l l l l l l l l l l l l l l l l l l l				[URIs: recragas.cn] 🚽 🖉	
	<u>Click here</u>			8.0 BAYES_99	BODY: Bayesian spam probability is 99 to 100%	
					[score: 1.0000]	

Lisa Yan, CS109, 2020
Ex 3. Naïve Bayes Classifier (*m*, *n* large)

Goal Based on email content *X*, predict if email is spam or not.

FeaturesConsider a lexicon m words (for English: $m \approx 100,000$). $X = (X_1, X_2, \dots, X_m), m$ indicator variables $X_j = 1$ if word j appeared in documentOutputY = 1 if email is spam

Note: *m* is huge. Make Naïve Bayes assumption: $P(X|\text{spam}) = \prod_{j=1}^{m} P(X_j|\text{spam})$

Appearances of words in email are conditionally independent given the email is spam or not

Training: Naïve Bayes Email classification

Train set

$$n$$
 previous emails $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

 $\begin{aligned} \boldsymbol{x}^{(i)} &= \left(x_1^{(i)}, x_2^{(i)}, \dots, x_m^{(i)} \right) & \text{for each word, whether it} \\ \text{appears in email } i \\ v^{(i)} &= 1 \text{ if spam, 0 if not spam} \end{aligned}$

Note: *m* is huge.

Which estimator should we use for $\hat{P}(X_i|Y)$?

- A. MLE
- B. Laplace estimate (MAP)
- C. Other MAP estimate
- D. Both A and B

Training: Naïve Bayes Email classification

Train set

$$n$$
 previous emails $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

 $\begin{aligned} \boldsymbol{x}^{(i)} &= \left(x_1^{(i)}, x_2^{(i)}, \dots, x_m^{(i)} \right) & \text{for each word, whether it} \\ \text{appears in email } i \\ v^{(i)} &= 1 \text{ if spam, 0 if not spam} \end{aligned}$

Note: *m* is huge.

Which estimator should we use for $\hat{P}(X_i|Y)$?

A. MLE
B. Laplace estimate (MAP)
C. Other MAP estimate
D. Both A and B

Many words are likely to not appear at all in the training set!

Ex 3. Naïve Bayes Classifier (*m*, *n* large)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{j=1}^{m} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$

$$\forall i: \ \hat{P}(X_j = 1 | Y = 0), \ \hat{P}(X_j = 0 | Y = 0), \ \text{Use MLE or} \\ \hat{P}(X_j = 1 | Y = 1), \ \hat{P}(X_j = 0 | Y = 0), \ \text{Laplace (MAP)} \\ \hat{P}(Y = 1), \ \hat{P}(Y = 0)$$

Testing

$$\widehat{Y} = \underset{y \in \{0,1\}}{\operatorname{arg\,max}} \left(\prod_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=$$

Laplace (MAP) estimates avoid estimating O probabilities for events that don't occur in your training data.

 \mathcal{M}

Testing: Naïve Bayes Email classification

For a new email:

- Generate $X = (X_1, X_2, ..., X_m)$
- Classify as spam or not using Naïve Bayes assumption

Note: *m* is huge.

Suppose train set size *n* also huge (many labeled emails).

Can we still use the below prediction?

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{j=1}^{m} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$

Testing: Naïve Bayes Email classification

For a new email:

- Generate $X = (X_1, X_2, ..., X_m)$
- Classify as spam or not using Naïve Bayes assumption

Note: *m* is huge.

Suppose train set size *n* also huge (many labeled emails).

Can we still use the below prediction?

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{j=1}^{m} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$

Will probably lead to underflow!

Ex 3. Naïve Bayes Classifier (*m*, *n* large)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{j=1}^{m} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$

Training
$$\forall i: \hat{P}(X_j = 1 | Y = 0), \hat{P}(X_j = 0 | Y = 0)$$

 $\hat{P}(X_j = 1 | Y = 1), \hat{P}(X_j = 0 | Y = 0)$
 $\hat{P}(Y = 1), \hat{P}(Y = 0)$
Use sums of log-
probabilities for
numerical stability.

esting
$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\log \widehat{P}(Y) + \sum_{j=1}^{m} \log \widehat{P}(X_j | Y) \right)$$

How well does Naïve Bayes perform?

After training, you can test with another set of data, called the test set.

Test set also has known values for Y so we can see how often we were right/wrong in our predictions \hat{Y} .

Typical workflow:

- Have a dataset of 1789 emails (1578 spam, 211 ham)
- Train set: First 1538 emails (by time)
- Test set: Next 251 messages

Evaluation criteria on test set:			Spam		Non-spam	
precisio	$n - \frac{(\# \text{ correctly predicted class } Y)}{(\# \text{ correctly predicted class } Y)}$		Prec.	Recall	Prec.	Recall
	(# predicted class Y)	Words only	97.1%	94.3%	87.7%	93.4%
recall =	(# correctly predicted class Y)	Words +				
	(# real class Y messages)	addtl features	100%	98.3%	96.2%	100%
	Lisa Yan, CS109, 2020			Stanford University 81		

What are precision and recall?

Accuracy (# correct)/(# total) sometimes just doesn't cut it.

Precision: Of the emails you predicted as spam, how many are actually spam?

Measure of false positives

Recall:Of the emails that are actually spam,Measure ofhow many did you predict?false negatives

More on Wikipedia (<u>https://en.wikipedia.org/wiki/Precision_and_recall</u>) and Problem Set 6!

Lisa Yan, CS109, 2020