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Intro: Machine
Learning




Our path from here
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Machine Learning (formally)

Many different forms of “Machine Learning”
* We focus on the problem of prediction based on observations.

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVeI‘Sity 6




Machine Learning uses a lot of data.

Task: ldentify what a chair is
Data: All the chairs ever

Supervised learning: A category
of machine learning where you
have labeled data on the
problem you are solving.
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Supervised learning

Real World Problem

1
Model the problem
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Supervised learning
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Model and dataset

Many different forms of “Machine Learning”
We focus on the problem of prediction based on observations.

Goal Based on observed X, predict unseen Y
Features Vector X of m observed variables
X=X, Xy, .0, X))
Output Variable Y (also called class label if discrete)

Model ¥ = g(X), a function of observations X
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Training data

X — (X]JXZ’XB’ ...,XSOO)

N . S
Feature 1 Feature 2 Feature 300 Output
Patient1 1 0 1 1
Patient 2 1 1 0 0
Patientn 0 0 1 1
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Training data notation

(x(l),y(l)), (x(z),y(z))’ (x(n),y(n))
n datapoints, generated i.i.d.

i-th datapoint (x®,y®)
m features: x() = (xfi),xéi), x,g?)

A single output y®
Independent of all other datapoints

Use these n datapoints to learn a

Training Goal: model ¥ = g(X) that predicts Y
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Supervised learning

Testing
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Testing data notation

(x(l),y(l)), (x(z),y(z))’ (x(n),y(n))
N;est Other datapoints, generated i.i.d.

i-th datapoint (x®,y®)
Has the same structure as your training data

Using the model ¥ = g(X) that you trained,

Testing Goal: see how well you can predict Y on known data
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Two tasks we will focus on

Output Variable Y (also called class label if discrete)

Model ¥ = g(X), a function of observations X
Regression prediction when Y is continuous

Classification prediction when Y is discrete
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Regression: Predicting real numbers

Training data: (x@,y®), (x®@,y@), .., (x™,y™)

@ A [

Global Land-
5 Ocean
Q temperature

nnnnnnnn

CO2 levels Feature m Output
Ievel - ~N
Year 1 338.8 0o .. 1 0.26
Year 2 340.0 1 0 0.32
Year n 340.76 0o .. 1 0.14
N\ Y,
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Classification: Predicting class labels

X — (X]JXZ’XB’ ...,XSOO)

N . S
Feature 1 Feature 2 Feature 300 Output
4 )
Patient1 1 0 1 1
Patient 2 1 1 0 0
Patientn 0 0 1 1
\_ J
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Classification: Harry Potter Sorting Hat

X = (1, 1, 1, O, O, ...,1) Our focus today!

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 19




Classification: Example datasets

Heart

NETELIX

Ancestry Netflix
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24b_brute_force_bayes

“Brute Force
Bayes”




Classification: Having a healthy heart

X = (X1)

Feature 1 Output

Patient 1 1 0
Patient 2 1 1
Patientn 0 1

Single feature:  Region of Interest (ROI) is
healthy (1) or unhealthy (O)

How can we predict the class label
heart is healthy (1) or unhealthy (0)?

The following strategy is not used in practice but
helps us understand how we approach classification.
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Classification: “Brute Force Bayes”

G Our prediction for Y
¥'=gX) is a function of X
= arg max P(Y | X) Proposed model: Choose the
y={0,1} Y that is most likely given X
= arg max P(le)P(Y) (Bayes’ Theorem)
y=(013 PX)
= arg max P(X|Y)P(Y) (1/P(X) is constant w.r.t. y)
y={0,1}

If we estimate P(X|Y) and P(Y), we can classify datapoints!
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Training: Estimate parameters

X = (Xy) Y = arg max P(X|Y)P(Y)
y={0,1}

PX|Yy=0) | PX|IY =1

Conditional
Feature 1 Output probability X1 =0 01 03
tables P(X|Y) X;=1 0, 0,
Patient1 1 0 p
_ Marginal PY)
Patient 2 1 1 probability Y=0 O«
table P(Y) Y =1 B¢
Patientn 0 1 Training Use n datapoints to learn

Goal: 22+ 2 = 6 parameters.
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Training: Estimate parameters P(X|Y)

PX|Yy=0) | PX|IY=1)

Xl — 0 01 93
Xl — 1 82 94
Count: # datapoints
X1=0,Y=0: 4
X1=1,Y=0: 6
Pa Y —ov=1 o0 X|Y = 0and X|Y = 1
P3a X, = 1’ Y =1 100 are each multinomials with 2 outcomes!
Total: 110
Patientn 0 1 Use MLE or Laplace (MAP) estimate

for parameters P(X|Y) and P(Y)
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Training: MLE estimates, P(X|Y)

PXX|lYy=0) | PX|IY =1
X;=0 0.4 0.0
X =1 0.6 1.0

N X =xY =
_ _ & MLEof P(X; = x|Y = y) = <! i 2
Count: # datapoints Just count! #(Y =y)

X1=0,Y=0: 4
X1=1,Y=0: §)
X1=0,Y=1: 0
X1=1,Y=1 100
Total: 110
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Training: Laplace (MAP) estimates, P(X|Y)

Count: # datapoints
X1=0,Y=0: 4
Xl = 1, Y =0: 6

Xl = O, Y =1: 0] MAP
X;=1,Y=1: 100
Total: 110
Laplace of P(X; = x|Y =y) = ? Kl'?')

Just count + add imaginary trials!
Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 27




Training: Laplace (MAP) estimates, P(X|Y)

Count: # datapoints
X1=0,Y=0: 4
Xl = 1, Y =0: 6

X,=0,Y=1: 0 Map P(X|Y =0) | PX|lY =1)
X,=1,Y=1: 100 X, =0 0.42 0.01
Total: 110 X, =1 0.58 0.99

5 # X1 =xY=y)+1
Laplace of P(X; = x|V =y) = ( ;e o y)z
Just count + add imaginary trials! ( _ y) T
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Testing

Y = arg max P(X|Y)P(Y)

y={0,1}
(MAP) | P(X|Y =0) | P(X|Y =1) (MLE) P(Y)
X;=0 0.42 0.01 Y =0 0.09
X1 =1 0.58 0.99 Y=1 0.91
New patient has a healthy ROl (X; = 1). What is your prediction, Y?

P(X, =1Y =0)P(Y =0) =0.58-0.09 = 0.052

P(X,=1Y =1DP(Y =1)=0.99-091 = 0.901
0.052<05 = IZ= 1
0901 >05 = Y=1 A~
0.052<0901=> Y=1 \~.;.j
Sanity check: Why don’t these sum to 1? o .
Lisa Yan and Jerry Cain, CS109, 2020 tanior niversity 29




Testing

Y = arg max P(X|Y)P(Y)

y={0,1}
(MAP) | P(X|Y =0) | P(X|Y =1) (MLE) P(Y)
X;=0 0.42 0.01 Y =0 0.09
X1 =1 0.58 0.99 Y=1 0.91
New patient has a healthy ROl (X; = 1). What is your prediction, Y?

P(X, =1Y =0)P(Y =0) =0.58-0.09 = 0.052

P(X,=1Y =1DP(Y =1)=0.99-091 = 0.901
0.052<05 = Y=1
0901>05 = V=1
0.052<0901= Y =1

Sanity check: Why don’t these sum to 1? o
Stanford University 30
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“Brute Force Bayes” classifier

¥ = arg max P(X|Y)P(Y) (P(Y) is an estimate of P(Y),
y=10,1} P(X|Y) is an estimate of P(X|Y))
ohooiice, ¢ P(a Yoy o) Xl ¥ = 1)
Training D T P(X{,X,, ..., X,|Y =0)

“learn” these parameters

using MLE or Laplace (MAP) =1 P(¥ =0)

| Given an observation X = (X, X5, ..., X,,,), predict
Testing

A\

Y = arg max (P(Xl,Xz, ,Xm|Y)P(Y))
y={0,1}
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24c_naive_bayes

Naive Bayes
Classifier




Brute Force Bayes: m = 300 (# features)

X — (X]JXZ’XB’ ...,XSOO)

no o

Feature 1 Feature 2 Feature 300 Output
Patient1 1 0 1 1
Patient 2 1 1 0 0
Patientn 0 0 1 1 This won’t be

too bad, right?
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Brute Force Bayes: m = 300 (# features)

X — (X]JXZ’XB’ ...,XSOO)

NN M

Count: # datapoints

Xl = O, X2 = O, cery X299 = O X300 = O Y =0: O

Xl = O, X2 = O, X299 O X300 1 Y =0: O

Xl = O, X2 = O, X299 1 X300 O, Y =0: 1
Pat ...
Pa.l Xl = O, X2 = O, X299 O X300 O Y =1: 2

Xl = O, X2 = O, X299 O X300 1 Y = 1: 1

" Xl = O, X2 = O, X299 1 X300 O, Y = 1: 1 Thi b

. S wWon e

Patientn 0 0 .. 1 1 o

too bad, right?
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Brute Force Bayes

¥ =argmaxP(Y | X)
y={0,1}

P(X|Y)P(Y)
= arg max =
y={0,1} P(X)

arg max P(X|Y)P(Y)
y={0,1}

Learn parameters
through MLE or MAP

Lisa

Choose the Y that is
most likely given X

(Bayes’ Theorem)

(1/P(X) is constant w.r.t. y)

Yan and Jerry Cain, CS109, 2020
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Brute Force Bayes: m = 300 (# features)

Y

= arg max P(X|Y)P(Y)
y={0,1}

Learn parameters
through MLE or MAP

an and Jerry Cain, CS109, 2020

P(Y = 1| x) : estimated probability a
heart is healthy given x

X = (Xll Xz, ...,Xgoo): whether 300
regions of interest (ROI) are healthy (1)
or unhealthy (0)

How many parameters do we
have to learn?

PX|Y) P(Y)

2:2 +2 =6
2300 +2 =602
2-2300 42 =3alot

-

&)
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Brute Force Bayes: m = 300 (# features)

Y

= arg max P(X|Y)P(Y)
y={0,1}

Learn parameters
through MLE or MAP

This approach requires you to learn
0(2™) parameters.

P(Y = 1| x) : estimated probability a
heart is healthy given x

X = (Xll Xz, ...,Xgoo): whether 300
regions of interest (ROI) are healthy (1)
or unhealthy (0)

How many parameters do we
have to learn?
PX|Y) P(Y)
2:-2 +2 =6
2-300 +2 =602
2-2300 42 =alot
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Brute Force Bayes: m = 300 (# features)

mermn P(Y = 1| x) : estimated probability a
el heart is healthy given x

| X = (Xl' Xz, ""XBOO): whether 300
e cgions of interest (ROI) are healthy (1)
BRI O unhealthy (0)

B -low many parameters do we
f o TR 10 Ve TO learn?
e X . ‘Nuivoer.of atomsdn. .- SRS SRS
AR SRR CHV oA 2 - 300 +2 = 602
oL T % e R L 2. 2300 + 2 =alot
This approach requires you to learn
0(2™) parameters.
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The problem with our current classifier

Y

= arg max P(X|Y)P(Y)

y={0,1} . . L .
‘ ~ Estimating this joint conditional
P(X1, X3 s Xm [Y) distribution is often intractable.

What if we could make a simplifying (but naive) assumption
to make estimation easier?

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVeI‘Sity 39




The Naive Bayes assumption

Y Assumption:

X4, ..., X,; are conditionally
independent given Y.

= arg max P(X|Y)P(Y)
y={0,1}

= R . Naive Bayes
— arg max 1_[ P(Xj |Y) P(Y) Assumption
y={0,1} i=1

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVeI‘Sity 40




Naive Bayes Classifier

N

m
Y = arg max Hﬁ(XﬂY) P(Y)
y={01} \ 51

What is the Big-O of # of
Training rameters we need to learn?
(A) 0(m)
B. 0(2™)
C. other

2

Stanford University 41
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Naive Bayes Classifier

m
Y = arg max HP(X]-W) P(Y)
y={01} \ 51

forj=1,...m: P(X;=1|Y =0),

. ~ Use MLE
Training P(X; = 1|Y = 1) S€ or

Laplace (MAP)

m
Testing Y = arg max| log P(Y) + z log P(X;|Y) (forbhlgmeric
y={0,1} = stability)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 42




(live)
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MICHAEL CAINE ¢
BENJAMIN BRATT

GANDICE BERGEN |

: l[iIke movie
: dislike movie

CONGENALTY

s . (i
Classification terminology check X
B. y{
Training data: (x(,yW), (x®,y®), ., (x®,y™) C. (x®,yW)
D. xV
SANDRA BULLOGK i ! ]
1
0
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BENJAMIN BRATT

: l[iIke movie
: dislike movie
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Movie 1  Movie 2 Movie Output
User1l 1. 1 0 1 2.1
User2 3. 1 1 0
_ : i i-th user
Usern 0 4.0 1 1 J- Movie J
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Predicting user TV preferences

Will a user like the Pokémon TV series?

Observe indicator variables X = (X, X,) : Output Y indicator:

A
Y
7,f
’
»

o 24-7‘*' ;-’
5 g
p @ QE

Xz — 1: Y — 1.
“likes Star Wars” “likes Harry Potter” “likes Pokémon”

Predict ¥ = arg max P(Y | X)
y={0,1}

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 47



The model, and the Naive Bayes assumption Review

Y = arg{ma}x P(Y | X) Naive Bayes Assumption:
y=10,1

X4, ..., X,; are conditionally
P(X|V)P(Y) independent given Y.
= arg max =
y={0,1) P(X)

= arg max P(X|Y)P(Y)
y={0,1}

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVeI‘Sity 48




Check out the questions on the next slide
(Slide 50). Post any clarifications here!

Bl'eakOUt https://us.edstem.org/courses/2678/discussion/169796
Rooms

Breakout rooms: 3 min

49



https://us.edstem.org/courses/2678/discussion/169796

Y = arg max P(X|Y)P(Y)

Predicting user TV preferences y2i01)
. . Naive Baves  poxyy = | | p(x;|v
Which probabilities do you need to estimate? Assumption (1Y) B (%;1Y)

How many are there?

Brute Force Bayes
(strawman, without
NB assumption)

Naive Bayes

During training, how to estimate the prob
P(X, =1,X, = 1|Y = 0) with MLE? with Laplace?
Brute Force Bayes Naive Bayes

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 50



Y = arg max P(X|Y)P(Y)

Predicting user TV preferences y2i01)
. . Naive Baves  poxyy = | | p(x;|v
Which probabilities do you need to estimate? Assumption (1Y) B (%;1Y)

How many are there?

Brute Force Bayes
(strawman, without
NB assumption)

Naive Bayes

During training, how to estimate the prob
P(X, =1,X, = 1|Y = 0) with MLE? with Laplace?
Brute Force Bayes Naive Bayes
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(strawman brute force) Multinomial MLE and MAP

n.
Model: Multinomial, m outcomes: MLE ;= m’
p; probability of outcome j j=1 1
. . . Lapl i
Observe: n; = # of trials with outcome ezgrigfe p; = +1
. m
Total of )" j=1 1y trials (MAP w/Laplace j=11 +m
smoothing)
Xl XZ Y p(X1:1X2:1|Y:O)
0 1 1
1 0
1 0 1
1 1 1

training data

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 52




(Naive Bayes) Multinomial MLE and MAP

n.
Model: Multinomial, m outcomes: MLE ;= m’
p; probability of outcome j j=1 1
. . . Lapl i
Observe: n; = # of trials with outcome ezgrigfe p; = +1
. m
Total of )" j=1 1y trials (MAP w/Laplace j=11 +m
smoothing)
Xl XZ Y p(X1:1X2:1|Y:O)
0 1 1
1 0
1 0 1
1 1 1

training data
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Fx 1. Naive Bayes Classifier (MLE)

m
Y = arg max 1_[ X|Y) P(Y)

y={0,1}

Vi: P(X; =1|Y =0), P(X; = 0]Y =0), Use MLE
Training P(X; =1|y =1),P(X; = 0]y = 0),
P(Y=1),P(Y =0)
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Slide 59 has two questions to go over by

Think yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/153773

Think by yourself: 1 min

(b If)

56
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Training: Naive Bayes for TV shows (MLE)

Observe indicator vars. X = (X1, X5): 1l o 1 2l 0 1
X;: “likes Star Wars” Y Y
X5 “likes Harry Potter” 0 3 10 0 5 8
Predict Y: “likes Pokémon” 1 | 4 13 1 7 10

Training data counts

How many datapoints (n)
are in our train data”?

Compute MLE estimates X,
for P(X{|Y): Y

0 (byyourseln
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Training: Naive Bayes for TV shows (MLE)

Observe indicator vars. X = (X1, X5): 1l o 1 2l 0 1
X;: “likes Star Wars” Y Y
X5 “likes Harry Potter” 0 3 10 0 5 8
Predict Y: “likes Pokémon” 1 | 4 13 1 7 10

Training data counts

How many datapoints (n)
are in our train data”?

Compute MLE estimates X,
for P(X{|Y): Y
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Training: Naive Bayes for TV shows (MLE)

Observe indicator vars. X = (X1, X5): 1l o 1 2l 0 1

Xq: “likes Star Wars” Y Y Y

X,: “likes Harry Potter” 0 3 10 0 5 8 0 13
Predict Y: “likes Pokémon” 1 4 13 1 7 10 1 17

Training data-counts
v o 1 v X2 0 1 v
0 10.23 0.77 0 5/13 038 8/13 = 0.62 0 | 13/30 = 0.43
1 10.24 0.76 1 7/17 = 041 10/17 = 0.59 1 | 17/30 = 0.57

(from last slide)

Lisa Yan and Jerry Cain, CS109, 2020
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Training : Naive Bayes for TV shows (MLE)

Observe indicator vars. X = (X1, X5):
Xq: “likes Star Wars”

X5 “likes Harry Potter”

Predict Y: “likes Pokémon”

1
v 0 1

0 10.23 0.77
1 (0.24 0.76

2

0 1

Y Y
0 10.38 0.62 0 | 0.43
1 10.41 0.59 1 |0.57

Now that we've trained and found parameters,
It’s time to classify new users!

Lisa

Yan and Jerry Cain, CS109, 2020
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Fx 1. Naive Bayes Classifier (MLE)

Use MLE

Testing ¥ = arg max 1_[ XIY) P(Y)

y={0,1}

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVCI‘Sity 61




Testing: Naive Bayes for TV shows (MLE)

Observe indicator vars. X = (X1, X5): 1 2
. 0 1 0 1
Xq: “likes Star Wars” Y Y Y
X5 “likes Harry Potter” 0 10.23 0.77 0 |0.38 0.62 0 | 043
Predict Y: “likes Pokémon” 1 10.24 0.76 1 1]0.41 0.59 1 | 0.57

Suppose a new person “likes Star Wars” (X; = 1) but “dislikes Harry Potter” (X, = 0).

Will they like Pokemon? Need to predict Y:

Y = argmax P(X|Y)P(Y) = argmaxP(X{|Y)P(X,|Y)P(Y)
y={0,1} y={0,1}

fY =0 PX;=1|Y =0)P(X, =0|Y =0)P(Y =0) =0.77-0.38-0.43 = 0.126

fYy=1. PX;=1Y=1PX,=0|Y=1P(Y=1) =0.76-0.41-0.57 =0.178

Since term is greatest when Y = 1, predict ¥ = 1

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 62




Interlude for
jokes/announcements




Announcements

/

Problem Set 5

On-time due (+5%):

Super on-time due (+8%):

Grace period ends (+0%):

\

earlier today
Monday 11/9 1:00pm

Tuesday 11/10 1:00pm

N

/Problem Set 6 N
Out: later today
Due: Monday 11/16
Grace period: Wednesday 11/18

KCovers: through Lecture 26 )

Lisa Yan and Jerry Cain, CS109, 2020
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Fx 2. Naive Bayes Classifier (MAP)

m
Y = arg max 1_[ X|Y) P(Y)

y={0,1}

vi: P(X; = 1|Y =0), P(X; = 0]y = 0),
Training P(Xj =1|Y = 1),13()(]. = 0|Y = o), Laplace (MAP)
P(Y=1),P(Y =0)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVeI‘Sity 65




Training: Naive Bayes for TV shows (MAP)

Observe indicator vars. X = (X1, X5): 1l o 1 2| 0 1
X;: “likes Star Wars” Y Y
X,: “likes Harry Potter” 0 3 10 0 5 8
Predict Y: “likes Pokémon” 1 4 13 1 7 10

Training data counts
P(X; =x|Y =y):

#(Xj=x,y=y)
What are our MAP estimates #(Y=y)
usinAg Laplace smoothing #(Xj=x,y=y)+1
for P(X;|Y)? (V=) 12
#(Xj=x,y=y)+1
#(Y=y)+4 (byourshin

other

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 66



Training: Naive Bayes for TV shows (MAP)

Observe indicator vars. X = (X1, X5):
Xq: “likes Star Wars”

X,: “likes Harry Potter”

Predict Y: “likes Pokémon”

What are our MAP estimates
using Laplace smoothing

for P(X;|Y) and P(Y)?

Lisa

1 2
v 0 1 v 0 1
0 3 10 0 5 8
1 4 13 1 7 10

P(X; =x|Y =y):
#(Xj=x,y=y)

#(Y=y)
#(Xj=x,y=y)+1

#(Y=y)+2
#(Xj=x,y=y)+1

#(Y=y)+4
other

Yan and Jerry Cain, CS109, 2020
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Training: Naive Bayes for TV shows (MAP) '35 @P(Xi'”)ﬁm

Observe indicator vars. X = (X1, X5): 1l 0 1 2| 0 1

Xq: “likes Star Wars” Y Y Y

X,: “likes Harry Potter” 0 3 10 0 5 8 0 13
Predict Y: “likes Pokémon” 1 4 13 1 7 10 1 17

Training data-counts
v o 1 v 10 1
0 |0.27 0.73 0 |0.40 0.60 In practice:
1 1]0.26 0.74 1 1]0.42 0.58 *  We use Laplace for P(X;|Y) in case

some events X; = x; don’t appear

« We don’t use Laplace for P(Y),
because all class labels should
appear reasonably often
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Naive Bayes Model is a Bayesian Network

m

Nalve Bayes _

Assumption P(X|Y) = HP(X]-|Y)
j=1

Which Bayesian Network encodes this conditional independence?

O HOXORC
77 - Ny 2

OIONO O &

X; are conditionally independent given Y
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Naive Bayes Model is a Bayesian Network

m m

Nalve Bayes

reeommon PaM = [P = P =Pt | |PIY)
i=1 j=1

Which Bayesian Network encodes this conditional independence?

(. @ s @ @ @
77 - ANV "D

k@ @ @ ) @

X; are conditionally independent given parent Y
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What is Bayes doing in my mail server?

[ L _ ’ . .
e ————— - s LET'S get Bayesian on your spam:
To: sahami@robotics.stanford.edu
Subject: __For excellent metabolism | Content analysis details: (49.5 hits, 7.0 required)
1 0.9 RCVD_IN_PBL RBL: Received via a relay in Spamhaus PBL
S e i [93.40.189.29 listed in zen.spamhaus.org]
Viagra Cialis Viagra Professional 1.5 URIBL_WS_SURBL Contains an URL 1isted in the WS SURBL blocklist
Our price $1.15 Our price $1.99 Our price $3.73 [URIS: r.ecr.agas.cn]
5.0 URIBL_JP_SURBL Contains an URL listed in the JP SURBL blocklist
ColePrfesiondt  VagnSweracive Sl Super e | [URTs: recragas.cn] |
5.0 URIBL_OB_SURBL Contains an URL listed in the OB SURBL blocklist
Levitra Viagra Soft Tabs Cialis Soft Tabs [URIS: recr'agas'cn:l . .
Our price $2.93 Our price $1.64 Our price $3.51 5.0 URIBL_SC_SURBL Contains an URL 1isted in the SC SURBL blocklist
[URIs: recragas.cn]
And more... | 2.0 URIBL_BLACK Contains an URL listed in the URIBL blacklist
P [URIs: recragas.cn]
— 4 8.0 BAYES_99 BODY: Bayesian spam probability is 99 to 100%
[score: 1.0000]

A Bayesian Approach to Filtering Junk E-Mail

Mehran Sahami” Susan Dumais’ David Heckerman’ Eric Horvitz’
"(yates Building TA
Computer Science Department IMicrosoft Research
Stanford University Redmond, WA GR052-6354
Stanford, C'A 4305-9010 |sdumais, heckerma, horvitz|@microzoft.com

sahami@cs.stanford.edu

Abstract contain offensive material (such as graphic pornogra
phy). there is often a higher cost to users of actually
In addressing the growing problem of junk I mail on

’ viewing this mail than simply the time to sort out the
the Internet. we examine methaods for the automated . .

T G BT EERIETIRTY CARTTeeY BETVOC SPOvTY DERR T ey NPTy e S & TUTPIN LY}
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Naive Bayes Classifier (m, n large)
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Email classification

Goal Based on email content X, predict if email is spam or not.

Features Consider a lexicon m words (for English: m = 100,000).
X = (X, Xy, ..., X,,,), mindicator variables
X; = 1if word j appeared in document

Output Y =1 if email is spam

Note: m is huge. Make Naive Bayes assumption: P(X|spam) = HP(Xj|spam)
j=1

Appearances of words in email are conditionally independent
given the email is spam or not
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Training: Naive Bayes Email classification

Trainset  n previous emails (x(1),y()), (x(2),y2)) (x5 ()

x(D = (xil)’ xéz)’ » x,g?) for each word, whether it
appears in email i

y® =1 if spam, 0 if not spam
Note: m is huge.

Which estimator should MLE
we use for P(X;|Y)? Laplace estimate (MAP)
Other MAP estimate
Both A and B ohyoursh
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Training: Naive Bayes Email classification

Trainset  n previous emails (x(1),y()), (x(2),y2)) (x5 ()

x(D = (xil)’ xéz)’ » xw(v?) for each word, whether it
appears in email i

y® =1 if spam, 0 if not spam

Note: m is huge.

Which estirgator should MLE Many words are
we use for P(X;|Y)? Laplace estimate (MAP) likely to not
Other MAP estimate appear at all in

Both A and B the training set!
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Naive Bayes Classifier (m, n large)

vi: P(X; = 1|Y =0), P(X; = 0]y = 0),
Training P(Xj =1|Y = 1),}3()(]. = 0|Y = o), Laplace (MAP)
P(Y=1),P(Y =0)

Laplace (MAP) estimates avoid estimating
O probabilities for events that don’t occur
In your training data.
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Testing: Naive Bayes Email classification

For a new email:
Generate X = (X1, X5, ..., X))
Classify as spam or not using Naive Bayes assumption

Note: m is huge.

Suppose train set size n also huge (many labeled emails).
Can we still use the below prediction?

m
¥ = arg max HP(X]-W) P(Y)
y={01} \ 51
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Testing: Naive Bayes Email classification

For a new email:
Generate X = (X1, X5, ..., X))
Classify as spam or not using Naive Bayes assumption

Note: m is huge.

Suppose train set size n also huge (many labeled emails).
Can we still use the below prediction?

m
Y = arg max 1_[ p(Xj|Y) p‘(y) Will probably lead to underflow!
y={0,1} .
j=1
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Naive Bayes Classifier (m, n large)

Use sums of log-
probabilities for
numerical stability.

m
Testing ¥ = argmax| log P(Y) + Z log P(X;|Y)
y={0:1} ]
Jj=1
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How well does Naive Bayes perform?

After training, you can test with another set of data, called the test set.

Test set also has known values for Y so we can see how often
we were right/wrong in our predictions Y.

Typical workflow:
Have a dataset of 1/89 emails (1578 spam, 211 ham)

Train set: First 1538 emails (by time)
Test set: Next 251 messages

Evaluation criteria on test. set: Spam Non-spam
(# correctly predicted class Y) Prec. Recall|l Prec. Recall

precision = :
(# predicted class ¥) - Wordsonly | 97.1% 94.3%|87.7% 93.4%

(# correctly predicted class V) Words +
(# real class Y messages) addtl features | 100% 98.3%|96.2% 100%
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What are precision and recall?

Accuracy (# correct)/(# total) sometimes just doesn’t cut it.

Precision:  Of the emails you predicted as spam, Measure of
how many are actually spam? false positives

Recall: Of the emails that are actually spam, Measure of
how many did you predict? false negatives

More on Wikipedia (https://en.wikipedia.org/wiki/Precision_and_recall)
and Problem Set 6!
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