24: Naïve Bayes

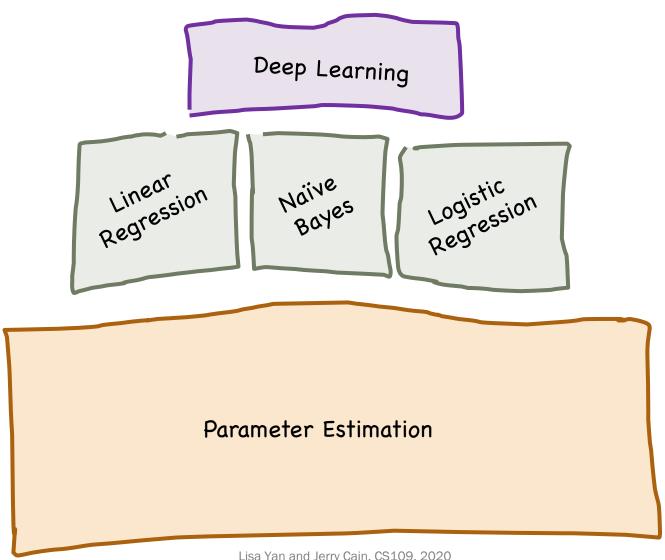
Lisa Yan November 6, 2020

Quick slide reference

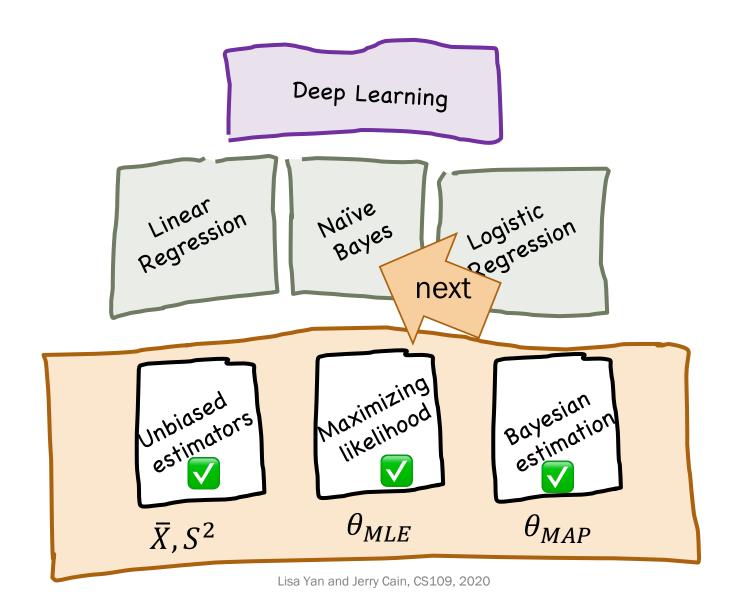
3	Intro: Machine Learning	23a_intro
21	"Brute Force Bayes"	24b_brute_force_bayes
32	Naïve Bayes Classifier	24c_naive_bayes
43	Naïve Bayes: MLE/MAP with TV shows	LIVE
71	Naïve Bayes: MAP with email classification	LIVE

Intro: Machine Learning

Our path from here



Our path from here



Machine Learning (formally)

Many different forms of "Machine Learning"

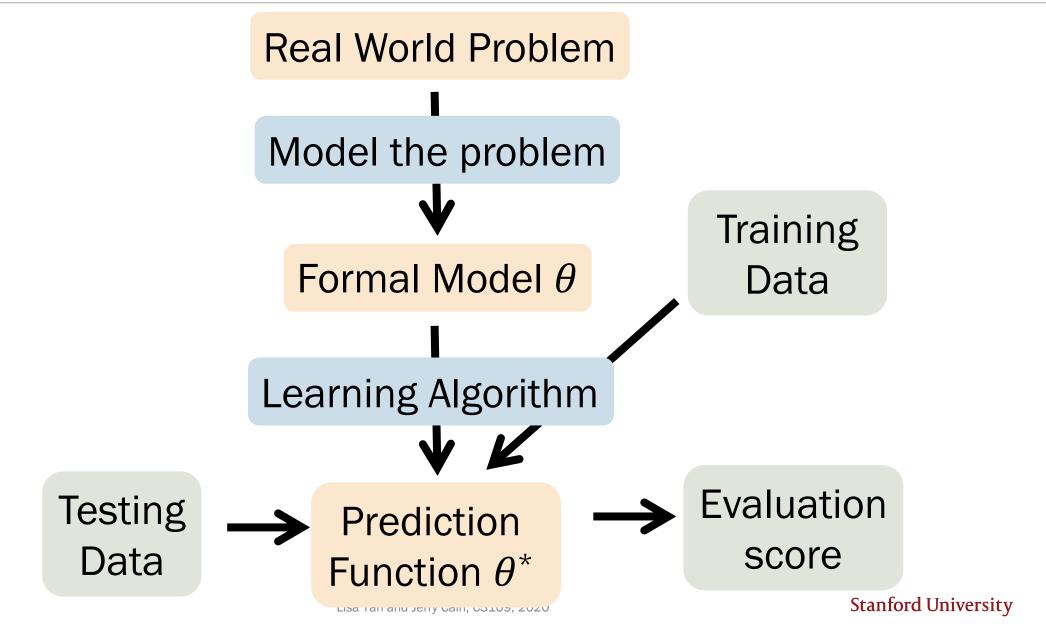
We focus on the problem of prediction based on observations.

Machine Learning uses a lot of data.

Task: Identify what a chair is

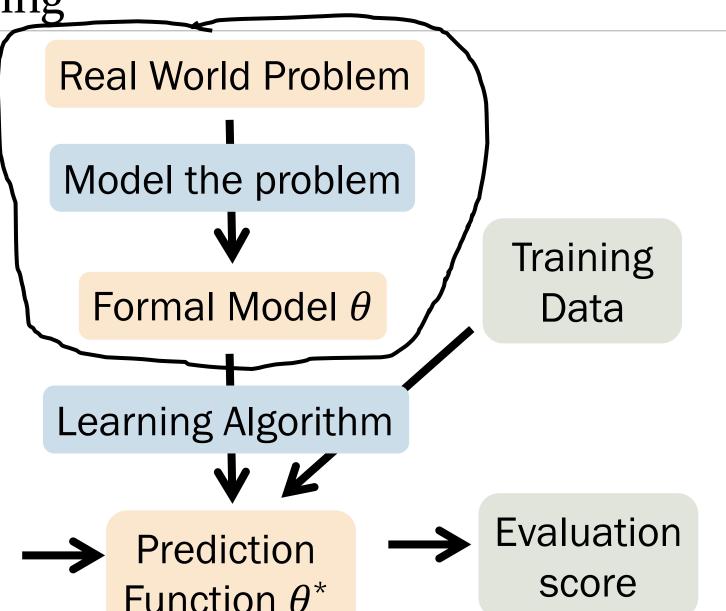
Data: All the chairs ever

Supervised learning: A category of machine learning where you have labeled data on the problem you are solving.



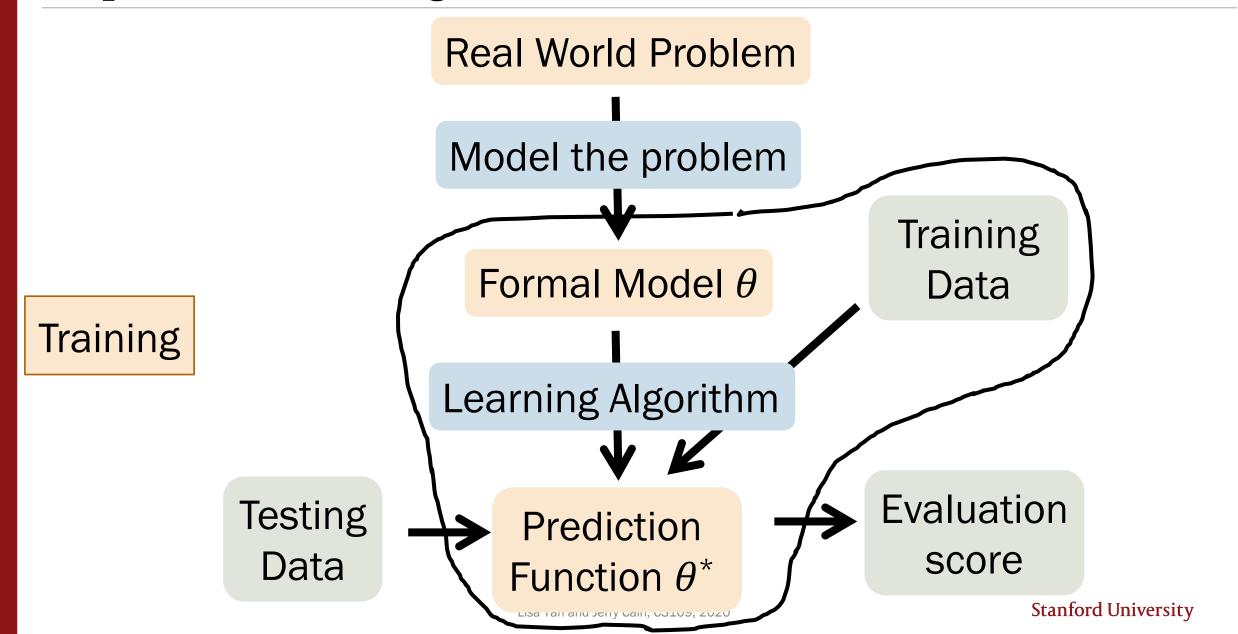
Modeling

(not the focus of this class)



Testing Data

Function θ^*



Model and dataset

Many different forms of "Machine Learning"

We focus on the problem of prediction based on observations.

Goal

Features

Output

Based on observed X, predict unseen Y Vector **X** of m observed variables

 $X = (X_1, X_2, ..., X_m)$

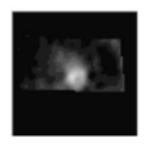
Variable *Y* (also called class label if discrete)

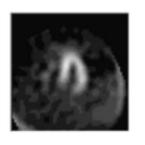
Model

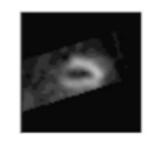
 $\hat{Y} = g(X)$, a function of observations X

Training data

$$X = (X_1, X_2, X_3, ..., X_{300})$$







Feature 1 Feature 2 Feature 300

Output

Patient 1 1

Patient 2 1

Patient *n* 0

Training data notation

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$$

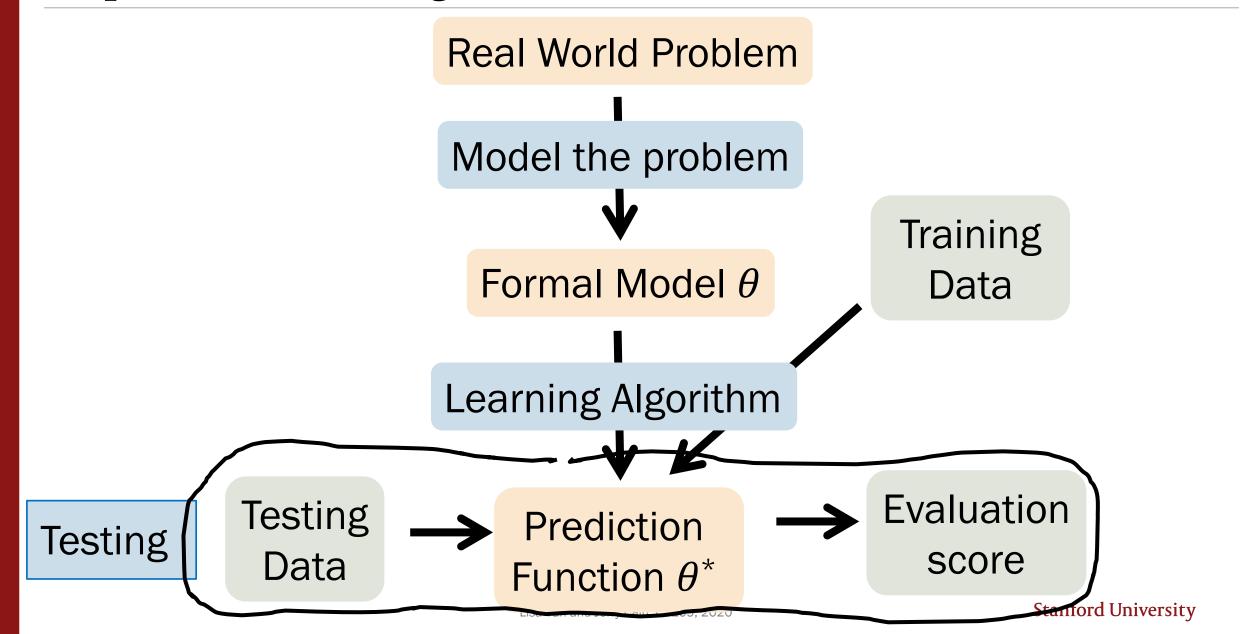
n datapoints, generated i.i.d.

i-th datapoint $(x^{(i)}, y^{(i)})$:

- m features: $\mathbf{x}^{(i)} = (x_1^{(i)}, x_2^{(i)}, \dots, x_m^{(i)})$
- A single output $y^{(i)}$
- Independent of all other datapoints

Training Goal:

Use these n datapoints to learn a model $\hat{Y} = g(X)$ that predicts Y



Testing data notation

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$$

 n_{test} other datapoints, generated i.i.d.

i-th datapoint $(x^{(i)}, y^{(i)})$:

Has the same structure as your training data

Testing Goal:

Using the model $\hat{Y} = g(X)$ that you trained, see how well you can predict Y on known data

Two tasks we will focus on

Many different forms of "Machine Learning"

We focus on the problem of prediction based on observations.

Goal

Features

Based on observed X, predict unseen Y

Vector **X** of m observed variables

$$\boldsymbol{X} = (X_1, X_2, \dots, X_m)$$

Output

Variable *Y* (also called class label if discrete)

Model

Regression

Classification

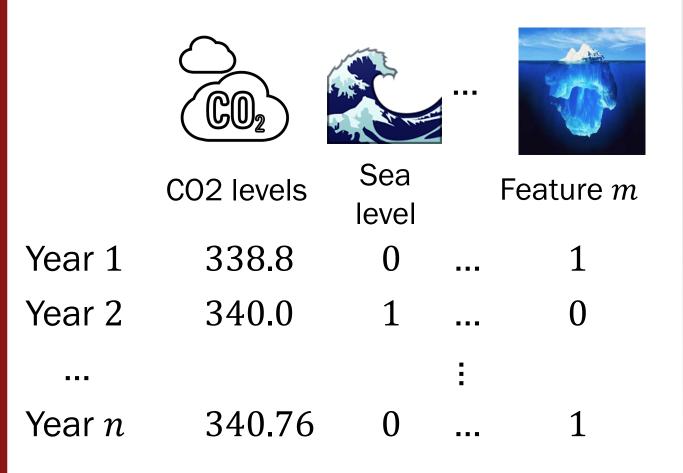
 $\hat{Y} = g(X)$, a function of observations X

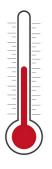
prediction when *Y* is continuous

prediction when *Y* is discrete

Regression: Predicting real numbers

Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$





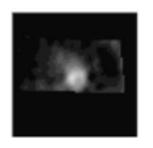
Global Land-Ocean temperature

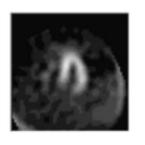
Output

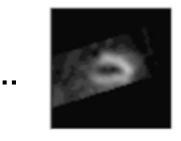
0.26 0.32 0.14

Classification: Predicting class labels

$$X = (X_1, X_2, X_3, ..., X_{300})$$







Feature 1 Feature 2

Feature 300

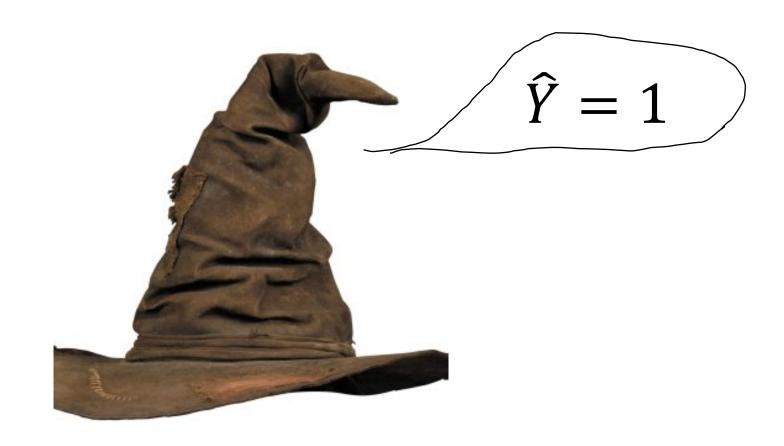
Patient 1 1

Patient 2 1

Patient *n* 0

Output

Classification: Harry Potter Sorting Hat

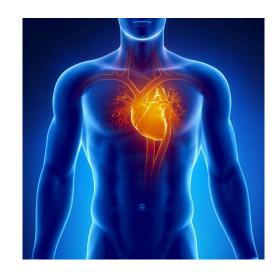


X = (1, 1, 1, 0, 0, ..., 1)

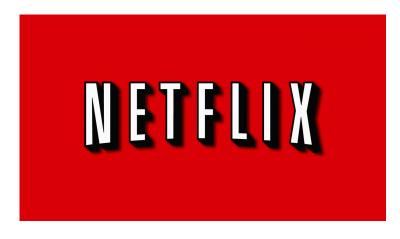
Our focus today!

Classification: Example datasets

Heart



Ancestry

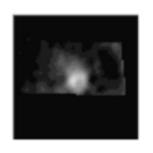


Netflix

"Brute Force Bayes"

Classification: Having a healthy heart

$$X = (X_1)$$



Feature 1

Output

Patient 1 1

Patient 2 1

Patient n = 0

Single feature:

Region of Interest (ROI) is healthy (1) or unhealthy (0)

How can we predict the class label

heart is healthy (1) or unhealthy (0)?

The following strategy is **not used in practice** but helps us understand how we approach classification.

Classification: "Brute Force Bayes"

$$\hat{Y} = g(X)$$

$$= \arg \max_{y=\{0,1\}} P(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \frac{P(\boldsymbol{X}|Y)P(Y)}{P(\boldsymbol{X})}$$

(Bayes' Theorem)

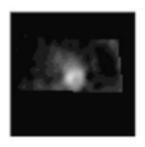
$$= \arg \max_{y=\{0,1\}} P(X|Y)P(Y)$$

(1/P(X)) is constant w.r.t. y

If we estimate P(X|Y) and P(Y), we can classify datapoints!

Training: Estimate parameters

$$X = (X_1)$$



Feature 1

Patient 1 1

Patient 2 1

Patient n = 0

Output

Conditional probability tables $\hat{P}(X|Y)$

Marginal probability

table $\hat{P}(Y)$

 $\hat{Y} = \arg \max \hat{P}(X|Y)\hat{P}(Y)$ $y = \{0,1\}$

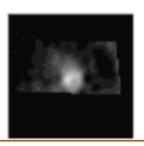
	$\widehat{P}(X Y=0)$	$\widehat{P}(\boldsymbol{X} Y=1)$
$X_1 = 0$	$ heta_1$	$ heta_3$
$X_1 = 1$	$ heta_2$	$ heta_4$

 $\widehat{P}(Y)$ Y = 0 θ_5 θ_6

Training Goal:

Use *n* datapoints to learn $2 \cdot 2 + 2 = 6$ parameters.

Training: Estimate parameters $\hat{P}(X|Y)$



Count:	# datapoints
Count.	<u># datapoints</u>

$$X_1 = 0, Y = 0$$
:

$$X_1 = 1, Y = 0$$
: 6

Pa
$$X_1 = 1$$
, Y = 0: 6
 $X_1 = 0$, Y = 1: 0

Pa
$$X_1 = 1$$
, Y = 1: 100

110 Total:

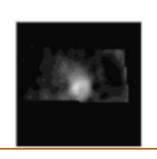
Patient n = 0

	$\widehat{P}(\boldsymbol{X} Y=0)$	$\widehat{P}(\boldsymbol{X} Y=1)$
$X_1 = 0$	$ heta_1$	θ_3
$X_1 = 1$	$ heta_2$	$ heta_4$

X|Y=0 and X|Y=1are each multinomials with 2 outcomes!

> Use MLE or Laplace (MAP) estimate for parameters $\hat{P}(X|Y)$ and $\hat{P}(Y)$

Training: MLE estimates, $\hat{P}(X|Y)$



Count:	
--------	--

datapoints

$$X_1 = 0, Y = 0$$
:

Pa
$$X_1 = 1$$
, Y = 0:
 $X_1 = 0$, Y = 1:

$$X_1 = 0, Y = 1$$
:

Pa
$$X_1 = 1$$
, Y = 1:

100

Total:

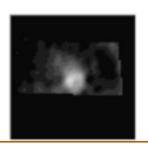
110

Patient *n* 0

	$\widehat{P}(\boldsymbol{X} Y=0)$	$\widehat{P}(\boldsymbol{X} Y=1)$
$X_1 = 0$	0.4	0.0
$X_1 = 1$	0.6	1.0

MLE of
$$\hat{P}(X_1 = x | Y = y) = \frac{\#(X_1 = x, Y = y)}{\#(Y = y)}$$
Just count!

Training: Laplace (MAP) estimates, $\hat{P}(X|Y)$



<u>int</u>

 $X_1 = 0, Y = 0$:

Pa $X_1 = 1, Y = 0$: $X_1 = 0, Y = 1$:

Pa $X_1 = 1$, Y = 1:

100

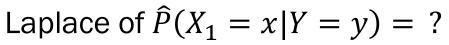
Total:

110

Patient n = 0

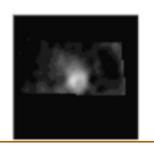
	$\widehat{P}(\boldsymbol{X} Y=0)$	$\widehat{P}(\boldsymbol{X} Y=1)$
$X_1 = 0$	0.4	0.0
$X_1 = 1$	0.6	1.0

MLE of
$$\hat{P}(X_1 = x | Y = y) = \frac{\#(X_1 = x, Y = y)}{\#(Y = y)}$$
Just count!



Just count + add imaginary trials!

Training: Laplace (MAP) estimates, $\hat{P}(X|Y)$



Count:	# datapoints
	<u> </u>

 $X_1 = 0, Y = 0$:

Pa $X_1 = 1, Y = 0$: $X_1 = 0, Y = 1$:

Pa $X_1 = 1$, Y = 1: 100

> 110 Total:

Patient n = 0

	$\widehat{P}(\boldsymbol{X} Y=0)$	$\widehat{P}(X Y=1)$
$X_1 = 0$	0.4	0.0
$X_1 = 1$	0.6	1.0

MLE of
$$\hat{P}(X_1 = x | Y = y) = \frac{\#(X_1 = x, Y = y)}{\#(Y = y)}$$
Just count!

	$\widehat{P}(\boldsymbol{X} Y=0)$	$\widehat{P}(\boldsymbol{X} Y=1)$
$X_1 = 0$	0.42	0.01
$X_1 = 1$	0.58	0.99

Laplace of
$$\widehat{P}(X_1 = x | Y = y) = \frac{\#(X_1 = x, Y = y) + 1}{\#(Y = y) + 2}$$
Just count + add imaginary trials!

Testing

$$\widehat{Y} = \arg \max_{y=\{0,1\}} \widehat{P}(X|Y)\widehat{P}(Y)$$

(MAP)	$\widehat{P}(\boldsymbol{X} Y=0)$	$\widehat{P}(\boldsymbol{X} Y=1)$
$X_1 = 0$	0.42	0.01
$X_1 = 1$	0.58	0.99

(MLE)

$$\hat{P}(Y)$$
 $Y = 0$
 0.09

 $Y = 1$
 0.91

New patient has a healthy ROI ($X_1 = 1$). What is your prediction, \widehat{Y} ?

$$\hat{P}(X_1 = 1|Y = 0)\hat{P}(Y = 0) = 0.58 \cdot 0.09 \approx 0.052$$

 $\hat{P}(X_1 = 1|Y = 1)\hat{P}(Y = 1) = 0.99 \cdot 0.91 \approx 0.901$

A.
$$0.052 < 0.5 \Rightarrow \hat{Y} = 1$$

B.
$$0.901 > 0.5 \implies \hat{Y} = 1$$

C.
$$0.052 < 0.901 \Rightarrow \hat{Y} = 1$$

Sanity check: Why don't these sum to 1?

Testing

$$\widehat{Y} = \arg \max_{y=\{0,1\}} \widehat{P}(X|Y)\widehat{P}(Y)$$

(MAP)	$\widehat{P}(\boldsymbol{X} Y=0)$	$\widehat{P}(\boldsymbol{X} Y=1)$
$X_1 = 0$	0.42	0.01
$X_1 = 1$	0.58	0.99

(MLE)

$$\hat{P}(Y)$$
 $Y = 0$
 0.09

 $Y = 1$
 0.91

New patient has a healthy ROI ($X_1 = 1$). What is your prediction, \widehat{Y} ?

$$\hat{P}(X_1 = 1 | Y = 0)\hat{P}(Y = 0) = 0.58 \cdot 0.09 \approx 0.052$$

 $\hat{P}(X_1 = 1 | Y = 1)\hat{P}(Y = 1) = 0.99 \cdot 0.91 \approx 0.901$

$$A. \quad 0.052 < 0.5 \quad \Rightarrow \quad \widehat{Y} = 1$$

$$B. \quad 0.901 > 0.5 \quad \Rightarrow \quad \hat{\hat{Y}} = 1$$

C.)
$$0.052 < 0.901 \Rightarrow \hat{Y} = 1$$

Sanity check: Why don't these sum to 1?

"Brute Force Bayes" classifier

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \widehat{P}(X|Y)\widehat{P}(Y)$$

 $(\widehat{P}(Y))$ is an estimate of P(Y), $\widehat{P}(X|Y)$ is an estimate of P(X|Y)

Training

Estimate these probabilities, i.e., "learn" these parameters using MLE or Laplace (MAP)

$$\hat{P}(X_1, X_2, ..., X_m | Y = 1)$$

 $\hat{P}(X_1, X_2, ..., X_m | Y = 0)$
 $\hat{P}(Y = 1)$ $\hat{P}(Y = 0)$

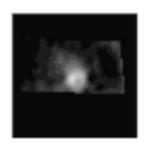
Testing

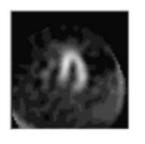
Given an observation
$$X = (X_1, X_2, ..., X_m)$$
, predict $\hat{Y} = \arg\max_{y=\{0,1\}} \left(\hat{P}(X_1, X_2, ..., X_m | Y)\hat{P}(Y)\right)$

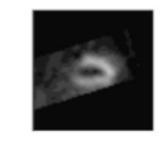
Naive Bayes Classifier

Brute Force Bayes: m = 300 (# features)

$$X = (X_1, X_2, X_3, ..., X_{300})$$







Feature 1 Feature 2

Feature 300

Output

Patient 1 1

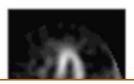
Patient 2 1

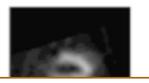
Patient *n* 0

This won't be too bad, right?

Brute Force Bayes: m = 300 (# features)

$$X = (X_1, X_2, X_3, ..., X_{300})$$





Count: # datapoints

$$X_1 = 0, X_2 = 0, ..., X_{299} = 0, X_{300} = 0, Y = 0$$
:

$$X_1 = 0, X_2 = 0, ..., X_{299} = 0, X_{300} = 1, Y = 0$$
:

$$X_1 = 0, X_2 = 0, ..., X_{299} = 1, X_{300} = 0, Y = 0$$
:

Pat ...

$$X_1 = 0, X_2 = 0, ..., X_{299} = 0, X_{300} = 0, Y = 1$$
:

Pat
$$X_1 = 0, X_2 = 0, ..., X_{299} = 0, X_{300} = 0, Y = 1:$$
 $X_1 = 0, X_2 = 0, ..., X_{299} = 0, X_{300} = 1, Y = 1:$ 1

$$X_1 = 0, X_2 = 0, ..., X_{299} = 1, X_{300} = 0, Y = 1$$
:

Patient
$$n = 0$$
 ... 1

This won't be too bad, right?

Brute Force Bayes

$$\widehat{Y} = \arg \max_{y = \{0,1\}} \widehat{P}(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \frac{\widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)}{\widehat{P}(\boldsymbol{X})}$$

$$= \arg \max_{y=\{0,1\}} \widehat{P}(X|Y)\widehat{P}(Y)$$

Learn parameters through MLE or MAP Choose the Y that is most likely given X

(Bayes' Theorem)

(1/P(X)) is constant w.r.t. y

Brute Force Bayes: m = 300 (# features)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \widehat{P}(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \frac{\widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)}{\widehat{P}(\boldsymbol{X})}$$

= arg max
$$\hat{P}(X|Y)\hat{P}(Y)$$

 $y=\{0,1\}$

Learn parameters through MLE or MAP

- $\hat{P}(Y=1 \mid x)$: estimated probability a heart is healthy given x
- $X = (X_1, X_2, ..., X_{300})$: whether 300 regions of interest (ROI) are healthy (1) or unhealthy (0)

How many parameters do we have to learn?

$$\hat{P}(X|Y)$$
 $\hat{P}(Y)$

A.
$$2 \cdot 2 + 2 = 6$$

B.
$$2 \cdot 300 + 2 = 602$$

C.
$$2 \cdot 2^{300} + 2 = a lot$$

Brute Force Bayes: m = 300 (# features)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \widehat{P}(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \frac{\widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)}{\widehat{P}(\boldsymbol{X})}$$

= arg max
$$\hat{P}(X|Y)\hat{P}(Y)$$

 $y=\{0,1\}$

Learn parameters through MLE or MAP

This approach requires you to learn $O(2^m)$ parameters.

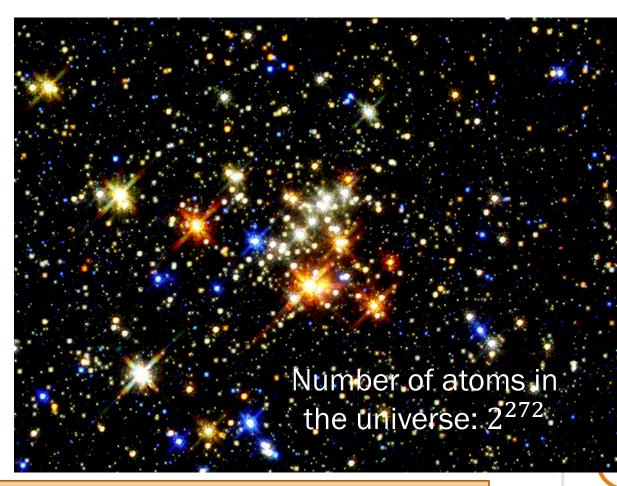
- $\hat{P}(Y=1 \mid x)$: estimated probability a heart is healthy given x
- $X = (X_1, X_2, ..., X_{300})$: whether 300 regions of interest (ROI) are healthy (1) or unhealthy (0)

How many parameters do we have to learn?

$$\hat{P}(X|Y)$$
 $\hat{P}(Y)$
A. $2 \cdot 2 + 2 = 6$
B. $2 \cdot 300 + 2 = 602$

(c.)
$$2 \cdot 2^{300} + 2 = a lot$$

Brute Force Bayes: m = 300 (# features)



 $\widehat{P}(Y = 1 \mid x)$: estimated probability a heart is healthy given x

 $X = (X_1, X_2, ..., X_{300})$: whether 300 regions of interest (ROI) are healthy (1) or unhealthy (0)

How many parameters do we nave to learn?

$$\hat{P}(X|Y)$$
 $\hat{P}(Y)$

$$4. \quad 2 \cdot 2 \quad +2 = 6$$

$$2 \cdot 300 + 2 = 602$$

$$2 \cdot 2^{300} + 2 = a lot$$

This approach requires you to learn $O(2^m)$ parameters.

The problem with our current classifier

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \, \widehat{P}(Y \mid X) \qquad \text{Choose the Y that is most likely given X}$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \, \frac{\widehat{P}(X|Y)\widehat{P}(Y)}{\widehat{P}(X)} \qquad \text{(Bayes' Theorem)}$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \, \widehat{P}(X|Y)\widehat{P}(Y) \qquad \text{(1/$P(X)$ is constant w.r.t. y)}$$

$$\stackrel{P}{=} \{0,1\} \qquad \widehat{P}(X_1, X_2, \dots, X_m \mid Y) \qquad \text{Estimating this joint conditional distribution is often intractable.}$$

What if we could make a simplifying (but naïve) assumption to make estimation easier?

The Naïve Bayes assumption

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \widehat{P}(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \frac{\widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)}{\widehat{P}(\boldsymbol{X})}$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \widehat{P}(\boldsymbol{X}|Y) \widehat{P}(Y)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{j=1}^{m} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$
 Naïve Bayes Assumption

Assumption:

 X_1, \dots, X_m are conditionally independent given Y.

Naïve Bayes

Naïve Bayes Classifier

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{j=1}^{m} \widehat{P}(X_{j}|Y) \right) \widehat{P}(Y)$$

Training

What is the Big-O of # of parameters we need to learn?

- O(m)
 - $O(2^{m})$
 - C. other

Naïve Bayes Classifier

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left(\prod_{j=1}^{m} \widehat{P}(X_{j}|Y) \right) \widehat{P}(Y)$$

Training

for
$$j = 1, ..., m$$
:

 $\widehat{P}(Y=1)$

for
$$j = 1, ..., m$$
: $\widehat{P}(X_j = 1 | Y = 0)$, $\widehat{P}(X_j = 1 | Y = 1)$

Use MLE or Laplace (MAP)

Testing

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\log \widehat{P}(Y) + \sum_{j=1}^{m} \log \widehat{P}(X_j | Y) \right) \text{ (for numeric stability)}$$

(live)

24: Naïve Bayes

Lisa Yan and Jerry Cain November 6, 2020

Classification terminology check

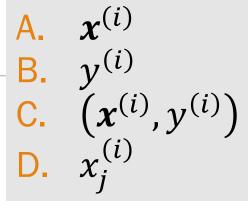
Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

Movie 1 Movie 2

Movie m

Output

User 1 1.	1	0	•••	1	2. 1
User 2 3.	1	1		0	0
•••			:		:
User n	0	4. 0		1	1



1: like movie

0: dislike movie

Classification terminology check

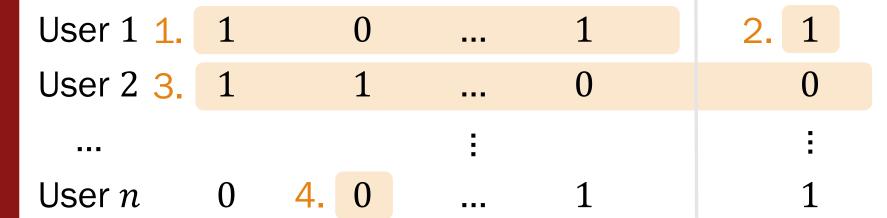
Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

Movie 1

Movie 2

Movie *m*

Output



 $\boldsymbol{x}^{(i)}$

1: like movie

0: dislike movie

i: i-th user j: movie j

and Learn

Predicting user TV preferences

Will a user like the Pokémon TV series?

Observe indicator variables $X = (X_1, X_2)$:

 $X_1 = 1$: "likes Star Wars"

 $X_2 = 1$: "likes Harry Potter"

Output *Y* indicator:

Y = 1: "likes Pokémon"

Predict
$$\hat{Y} = \arg \max_{y=\{0,1\}} \hat{P}(Y \mid X)$$

The model, and the Naïve Bayes assumption

$$\widehat{Y} = \arg \max_{y = \{0,1\}} \widehat{P}(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \frac{\widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)}{\widehat{P}(\boldsymbol{X})}$$

$$= \arg \max_{y=\{0,1\}} \widehat{P}(X|Y)\widehat{P}(Y)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \left(\prod_{j=1}^{m} \widehat{P}(X_{j}|Y) \right) \widehat{P}(Y) \leftarrow$$

Naïve Bayes Assumption:

 X_1, \dots, X_m are conditionally independent given Y.

Breakout Rooms

Check out the questions on the next slide (Slide 50). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/169796

Breakout rooms: 3 min

Predicting user TV preferences

$\hat{Y} = \arg \max \hat{P}(X|Y)\hat{P}(Y)$ $y = \{0,1\}$

Assumption

Naïve Bayes
Assumption
$$P(X|Y) = \prod_{j=1}^{m} P(X_j|Y)$$

Which probabilities do you need to estimate? How many are there?

- **Brute Force Bayes** (strawman, without NB assumption)
- Naïve Bayes

During training, how to estimate the prob $\widehat{P}(X_1 = 1, X_2 = 1 | Y = 0)$ with MLE? with Laplace?

Brute Force Bayes

Naïve Bayes

Predicting user TV preferences

$\hat{Y} = \arg \max \hat{P}(X|Y)\hat{P}(Y)$ $y = \{0,1\}$ Naïve Bayes P(X|Y) =**Assumption**

Which probabilities do you need to estimate? How many are there?

- **Brute Force Bayes** (strawman, without NB assumption)
- Naïve Bayes

During training, how to estimate the prob $\widehat{P}(X_1 = 1, X_2 = 1 | Y = 0)$ with MLE? with Laplace?

Brute Force Bayes

Naïve Bayes

(strawman brute force) Multinomial MLE and MAP

Model: Multinomial, *m* outcomes:

 p_i probability of outcome j

 $n_i = \#$ of trials with outcome jObserve:

Total of $\sum_{i=1}^{m} n_i$ trials

MLE

$$\widehat{p_j} = \frac{n_j}{\sum_{j=1}^m n_j}$$

<u>Laplace</u> estimate (MAP w/Laplace smoothing)

$$\widehat{p}_j = \frac{n_j + 1}{\sum_{j=1}^m n_j + m}$$

$$\hat{P}(X_1 = 1 | X_2 = 1 | Y = 0)$$

training data

(Naïve Bayes) Multinomial MLE and MAP

Model: Multinomial, *m* outcomes:

 p_j probability of outcome j

 $n_i = \#$ of trials with outcome jObserve:

Total of $\sum_{i=1}^{m} n_i$ trials

MLE

$$\widehat{p_j} = \frac{n_j}{\sum_{j=1}^m n_j}$$

<u>Laplace</u> estimate (MAP w/Laplace smoothing)

$$\widehat{p_j} = \frac{n_j + 1}{\sum_{j=1}^m n_j + m}$$

$$\hat{P}(X_1 = 1 | X_2 = 1 | Y = 0)$$

training data

and Learn naively

Ex 1. Naïve Bayes Classifier (MLE)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left(\prod_{j=1}^{m} \widehat{P}(X_{j}|Y) \right) \widehat{P}(Y)$$

Training

$$\forall i$$
: $\hat{P}(X_j = 1 | Y = 0)$, $\hat{P}(X_j = 0 | Y = 0)$, Use MLE or $\hat{P}(X_j = 1 | Y = 1)$, $\hat{P}(X_j = 0 | Y = 0)$, Laplace (MAP) $\hat{P}(Y = 1)$, $\hat{P}(Y = 0)$

Testing

$$\widehat{Y} = \arg \max_{y = \{0,1\}} \left(\frac{m}{\prod_{j=1}^{m} \widehat{P}(X_j | Y)} \widehat{P}(Y) \right)$$

Think

Slide 59 has two questions to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/153773

Think by yourself: 1 min

Observe indicator vars. $X = (X_1, X_2)$:

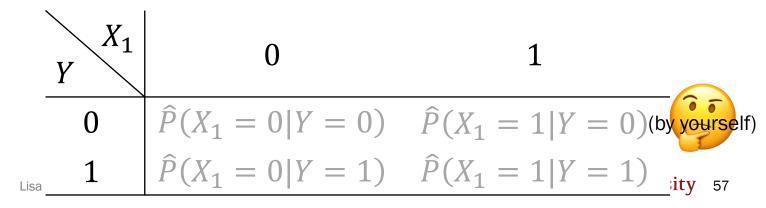
- X₁: "likes Star Wars"
- X₂: "likes Harry Potter"

Predict Y: "likes Pokémon"

X_1	0	1	X_2	0	1
0	3	10	0	5	8
1	4	13	1	7	10

Training data counts

- 1. How many datapoints (n) are in our train data?
- 2. Compute MLE estimates for $\hat{P}(X_1|Y)$:



Observe indicator vars. $X = (X_1, X_2)$:

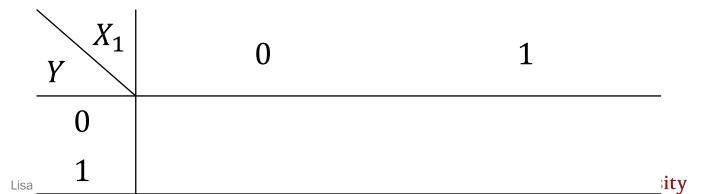
- X₁: "likes Star Wars"
- X₂: "likes Harry Potter"

Predict Y: "likes Pokémon"

X_1	0	1	X_2	0	1
0	3	10	0	5	8
1	4	13	1	7	10

Training data counts

- 1. How many datapoints (n) are in our train data?
- 2. Compute MLE estimates for $\hat{P}(X_1|Y)$:



Observe indicator vars. $X = (X_1, X_2)$:

- *X*₁: "likes Star Wars"
- X₂: "likes Harry Potter"

Predict Y: "likes Pokémon"

X_1	0	1	X_2	0	1	Y	
0	3	10 13	0	5	8	0	13
1	4	13	1	7	10	1	17

Training data counts

X_1	0	1	X_2	0	1	Y	
0	0.23	0.77	0	5/13 ≈ 0.38	$8/13 \approx 0.62$	0	$13/30 \approx 0.43$
_ 1	0.24	0.76	1	$7/17 \approx 0.41$	$10/17 \approx 0.59$	1	$17/30 \approx 0.57$

(from last slide)

Observe indicator vars. $X = (X_1, X_2)$:

- X₁: "likes Star Wars"
- X_2 : "likes Harry Potter"

Predict Y: "likes Pokémon"

X_1	0	1
0	0.23	
1	0.24	0.76

X_2	0	1
0	0.38	0.62
1	0.41	

	1
Y	
0	0.43
_ 1	0.57

Now that we've trained and found parameters, It's time to classify new users!

Ex 1. Naïve Bayes Classifier (MLE)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left(\frac{m}{\prod_{j=1}} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$

Training

$$\forall i: \ \hat{P}(X_j = 1 | Y = 0), \ \hat{P}(X_j = 0 | Y = 0), \ \text{Use MLE or}$$
 $\hat{P}(X_j = 1 | Y = 1), \ \hat{P}(X_j = 0 | Y = 0), \ \text{Laplace (MAP)}$
 $\hat{P}(Y = 1), \ \hat{P}(Y = 0)$

Testing

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{j=1}^{m} \widehat{P}(X_{j}|Y) \right) \widehat{P}(Y)$$

Observe indicator vars. $X = (X_1, X_2)$:

- X₁: "likes Star Wars"
- X₂: "likes Harry Potter"

Predict Y: "likes Pokémon"

X_1	0	1	`	X_2	0	1	Y	
0	0.23	0.77	_	0	0.38	0.62	0	0.43
1	0.24	0.76	_	1	0.41	0.59	 1	0.57
	-	_	_	-		_		_

Suppose a new person "likes Star Wars" ($X_1 = 1$) but "dislikes Harry Potter" ($X_2 = 0$). Will they like Pokemon? Need to predict Y:

$$\hat{Y} = \arg \max_{y = \{0,1\}} \hat{P}(X|Y)\hat{P}(Y) = \arg \max_{y = \{0,1\}} \hat{P}(X_1|Y)\hat{P}(X_2|Y)\hat{P}(Y)$$

If
$$Y = 0$$
: $\hat{P}(X_1 = 1|Y = 0)\hat{P}(X_2 = 0|Y = 0)\hat{P}(Y = 0) = 0.77 \cdot 0.38 \cdot 0.43 = 0.126$

If
$$Y = 1$$
: $\hat{P}(X_1 = 1|Y = 1)\hat{P}(X_2 = 0|Y = 1)\hat{P}(Y = 1) = 0.76 \cdot 0.41 \cdot 0.57 = 0.178$

Since term is greatest when Y = 1, predict $\hat{Y} = 1$

Interlude for jokes/announcements

Announcements

Problem Set 5

Super on-time due (+8%): earlier today

On-time due (+5%): Monday 11/9 1:00pm

Grace period ends (+0%): Tuesday 11/10 1:00pm

Problem Set 6

later today Out:

Monday 11/16 Due:

Wednesday 11/18 Grace period:

through Lecture 26 Covers:

Ex 2. Naïve Bayes Classifier (MAP)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left(\prod_{j=1}^{m} \widehat{P}(X_{j}|Y) \right) \widehat{P}(Y)$$

Training

$$\forall i$$
: $\hat{P}(X_j = 1 | Y = 0)$, $\hat{P}(X_j = 0 | Y = 0)$, Use MLE or $\hat{P}(X_j = 1 | Y = 1)$, $\hat{P}(X_j = 0 | Y = 0)$, Laplace (MAP) $\hat{P}(Y = 1)$, $\hat{P}(Y = 0)$

Testing

$$\widehat{Y} = \underset{y = \{0,1\}}{\operatorname{arg max}} \left(\prod_{j=1}^{m} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$
 (note to

(note the same as before)

Observe indicator vars. $X = (X_1, X_2)$:

- X₁: "likes Star Wars"
- X₂: "likes Harry Potter"

Predict Y: "likes Pokémon"

What are our MAP estimates using Laplace smoothing for $\widehat{P}(X_i|Y)$?

X_1	0	1	X_2	0	1
0	3	10	0	5	8
1	4	13	1	7	10

Training data counts

$$\widehat{P}(X_j = x | Y = y):$$

$$A. \frac{\#(X_j=x,Y=y)}{\#(Y=y)}$$

B.
$$\frac{\#(X_j=x,Y=y)+1}{\#(Y=y)+2}$$

C.
$$\frac{\#(X_j=x,Y=y)+1}{\#(Y=y)+4}$$

er

Observe indicator vars. $X = (X_1, X_2)$:

- X₁: "likes Star Wars"
- X₂: "likes Harry Potter"

Predict Y: "likes Pokémon"

What are our MAP estimates using Laplace smoothing for $\widehat{P}(X_j|Y)$ and $\widehat{P}(Y)$?

X_1	0	1	X_2	0	1
0	3	10	0	5	8
1	4	13	1	7	10

Training data counts

$$\widehat{P}(X_j = x | Y = y):$$

$$A. \frac{\#(X_j=x,Y=y)}{\#(Y=y)}$$

B.
$$\frac{\#(X_j=x,Y=y)+1}{\#(Y=y)+2}$$

C.
$$\frac{\#(X_j=x,Y=y)+1}{\#(Y=y)+4}$$

D. other

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)$$

Observe indicator vars. $X = (X_1, X_2)$:

- X₁: "likes Star Wars"
- X_2 : "likes Harry Potter"

Predict Y: "likes Pokémon"

X_1	0	1	X_2	0	1	Y	
0	3	10	0	5	8	0	13
1	4	13	1	7	10	1	17

Training data counts

X_1	0	1	(
0	0.27	0.73	
1	0.26	0.74	

X_2	U	1
0	0.40	0.60
1	0.42	0.58

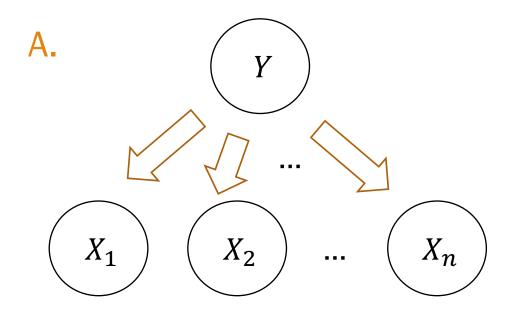
In practice:

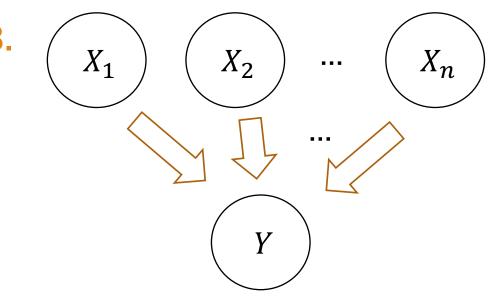
- We use Laplace for $\widehat{P}(X_i|Y)$ in case some events $X_i = x_i$ don't appear
- We don't use Laplace for $\hat{P}(Y)$, because all class labels should appear reasonably often

Naïve Bayes Model is a Bayesian Network

$$P(X|Y) = \prod_{j=1}^{m} P(X_j|Y)$$

Which Bayesian Network encodes this conditional independence?



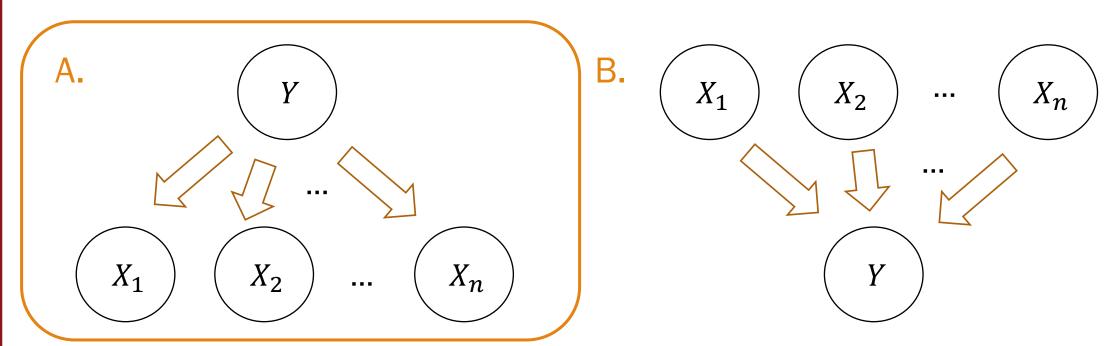


 X_i are conditionally independent given Y

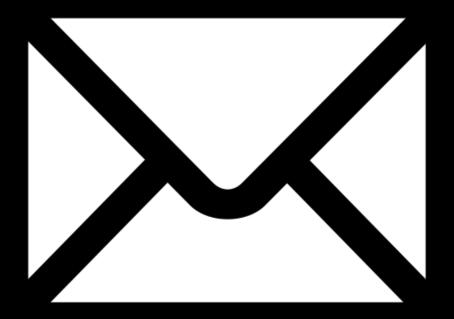
Naïve Bayes Model is a Bayesian Network

Naïve Bayes
Assumption
$$P(X|Y) = \prod_{i=1}^{m} P(X_i|Y) \implies P(X,Y) = P(Y) \prod_{j=1}^{m} P(X_j|Y)$$

Which Bayesian Network encodes this conditional independence?



 X_i are conditionally independent given parent Y



and Learn naively

What is Bayes doing in my mail server?

Let's get Bayesian on your spam:

Content analysis details: 0.9 RCVD_IN_PBL

1.5 URIBL_WS_SURBL

5.0 URIBL JP SURBL

5.0 URIBL OB SURBL

5.0 URIBL_SC_SURBL

2.0 URIBL BLACK

8.0 BAYES 99

(49.5 hits, 7.0 required)

RBL: Received via a relay in Spamhaus PBL [93.40.189.29 listed in zen.spamhaus.org]

Contains an URL listed in the WS SURBL blocklist

[URIs: recragas.cn]

Contains an URL listed in the JP SURBL blocklist

[URIs: recragas.cn]

Contains an URL listed in the OB SURBL blocklist

[URIs: recragas.cn]

Contains an URL listed in the SC SURBL blocklist

[URIs: recragas.cn]

Contains an URL listed in the URIBL blacklist

[URIs: recragas.cn]

BODY: Bayesian spam probability is 99 to 100%

[score: 1.0000]

A Bayesian Approach to Filtering Junk E-Mail						
Mehran Sahami* Susan Dun	ais† David Heckerman†	$\mathbf{Eric}\ \mathbf{Horvitz}^{\dagger}$				
*Gates Building 1A Computer Science Department Stanford University Stanford, CA 94305-9010 sahami@cs.stanford.edu	†Microsoft Research Redmond, WA 98052-6 {sdumais, heckerma, horvitz}@	399				
Abstract In addressing the growing problem of junk E-mail the Internet, we examine methods for the automate		r cost to users of actually ly the time to sort out the				

Ex 3. Naïve Bayes Classifier (m, n large)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left(\prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)$$

Training

Testing

Email classification

Goal

Based on email content X, predict if email is spam or not.

Features

Consider a lexicon m words (for English: $m \approx 100,000$).

 $X = (X_1, X_2, ..., X_m), m$ indicator variables

 $X_i = 1$ if word j appeared in document

Output

Y = 1 if email is spam

Note: m is huge. Make Naïve Bayes assumption: $P(X|\text{spam}) = \prod P(X_j|\text{spam})$

Appearances of words in email are conditionally independent given the email is spam or not

Training: Naïve Bayes Email classification

Train set

$$n$$
 previous emails $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

$$\mathbf{x}^{(i)} = \left(x_1^{(i)}, x_2^{(i)}, \dots, x_m^{(i)}\right)$$
 for each word, whether it appears in email i $y^{(i)} = 1$ if spam, 0 if not spam

Note: *m* is huge.

Which estimator should we use for $\widehat{P}(X_i|Y)$?

- A. MLE
- B. Laplace estimate (MAP)
- C. Other MAP estimate
- Both A and B

Training: Naïve Bayes Email classification

Train set

n previous emails
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$$

$$\mathbf{x}^{(i)} = \left(x_1^{(i)}, x_2^{(i)}, \dots, x_m^{(i)}\right)$$
 for each word, whether it appears in email i

 $v^{(i)} = 1$ if spam, 0 if not spam

Note: *m* is huge.

Which estimator should we use for $\widehat{P}(X_i|Y)$?

MLE

Laplace estimate (MAP)

Other MAP estimate

Both A and B

Many words are likely to not appear at all in the training set!

Ex 3. Naïve Bayes Classifier (m, n large)

$$\widehat{Y} = \arg \max_{y = \{0,1\}} \left(\frac{m}{\prod_{j=1}^{m}} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$

Training

$$\forall i$$
: $\hat{P}(X_j = 1 | Y = 0)$, $\hat{P}(X_j = 0 | Y = 0)$, Use MLE or $\hat{P}(X_j = 1 | Y = 1)$, $\hat{P}(X_j = 0 | Y = 0)$, Laplace (MAP) $\hat{P}(Y = 1)$, $\hat{P}(Y = 0)$

Testing

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left(\prod_{j=1}^{m} \text{Laplace (MAP) estimates avoid estimating 0 probabilities for events that don't occur in your training data.} \right)$$

Testing: Naïve Bayes Email classification

For a new email:

- Generate $X = (X_1, X_2, ..., X_m)$
- Classify as spam or not using Naïve Bayes assumption

Note: *m* is huge.

Suppose train set size n also huge (many labeled emails).

Can we still use the below prediction?

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left(\prod_{j=1}^{m} \widehat{P}(X_{j}|Y) \right) \widehat{P}(Y)$$

Testing: Naïve Bayes Email classification

For a new email:

- Generate $X = (X_1, X_2, ..., X_m)$
- Classify as spam or not using Naïve Bayes assumption

Note: *m* is huge.

Suppose train set size n also huge (many labeled emails).

Can we still use the below prediction?

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left(\prod_{j=1}^{m} \widehat{P}(X_{j}|Y) \right) \widehat{P}(Y)$$

Will probably lead to underflow!

Ex 3. Naïve Bayes Classifier (m, n large)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left(\prod_{j=1}^{m} \widehat{P}(X_{j}|Y) \right) \widehat{P}(Y)$$

Training

$$\forall i: \ \hat{P}(X_j=1|Y=0), \ \hat{P}(X_j=0|Y=0)$$
 Use sums of log-probabilities for $\hat{P}(Y=1), \ \hat{P}(Y=0)$

numerical stability.

Testing

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left(\log \widehat{P}(Y) + \sum_{j=1}^{m} \log \widehat{P}(X_j | Y) \right)$$

How well does Naïve Bayes perform?

After training, you can test with another set of data, called the test set.

Test set also has known values for Y so we can see how often we were right/wrong in our predictions \widehat{Y} .

Typical workflow:

- Have a dataset of 1789 emails (1578 spam, 211 ham)
- Train set: First 1538 emails (by time)
- Test set: Next 251 messages

Evaluation criteria on test set:		Spam		Non-spam	
$\mathbf{precision} = \frac{(\text{# correctly predicted class } Y)}{(\text{# correctly predicted class } Y)}$		Prec.	Recall	Prec.	•
(# predicted class Y)	Words only	97.1%	94.3%	87.7%	93.4%
$recall = \frac{(\# correctly predicted class Y)}{(\# correctly predicted class Y)}$	Words +				
$\frac{1}{\text{(# real class } Y \text{ messages)}}$	addtl features	100%	98.3%	96.2%	100%

What are precision and recall?

Accuracy (# correct)/(# total) sometimes just doesn't cut it.

Precision: Of the emails you predicted as spam,

how many are actually spam?

Measure of false positives

Recall: Of the emails that are actually spam,

how many did you predict?

Measure of false negatives

More on Wikipedia (https://en.wikipedia.org/wiki/Precision_and_recall) and Problem Set 6!