# 24: Naïve Bayes

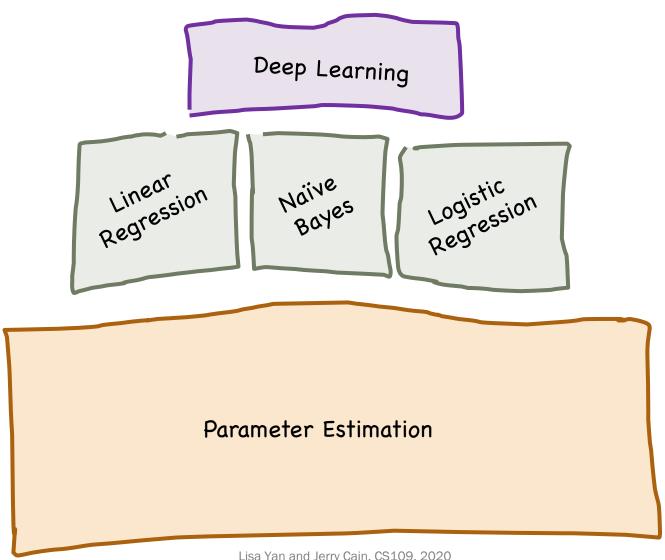
Lisa Yan November 6, 2020

### Quick slide reference

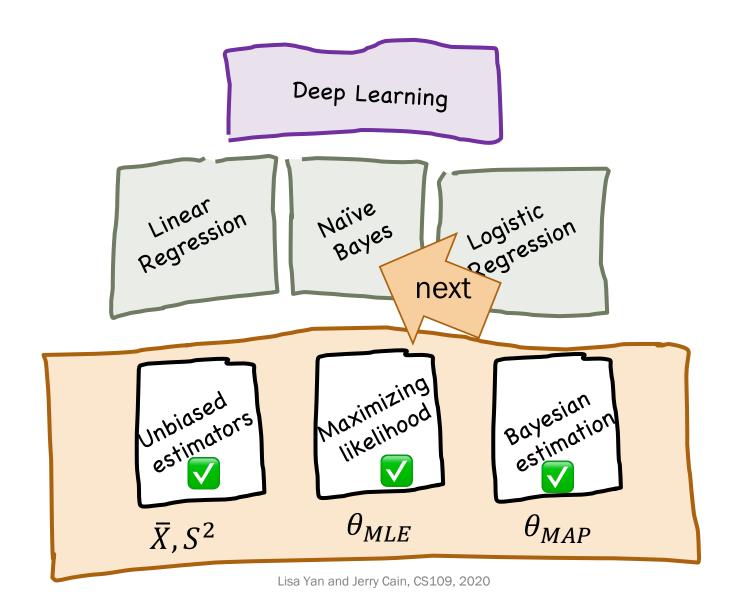
| 3  | Intro: Machine Learning                    | 23a_intro             |
|----|--------------------------------------------|-----------------------|
| 21 | "Brute Force Bayes"                        | 24b_brute_force_bayes |
| 32 | Naïve Bayes Classifier                     | 24c_naive_bayes       |
| 43 | Naïve Bayes: MLE/MAP with TV shows         | LIVE                  |
| 71 | Naïve Bayes: MAP with email classification | LIVE                  |

# Intro: Machine Learning

# Our path from here



#### Our path from here



#### Machine Learning (formally)

Many different forms of "Machine Learning"

We focus on the problem of prediction based on observations.

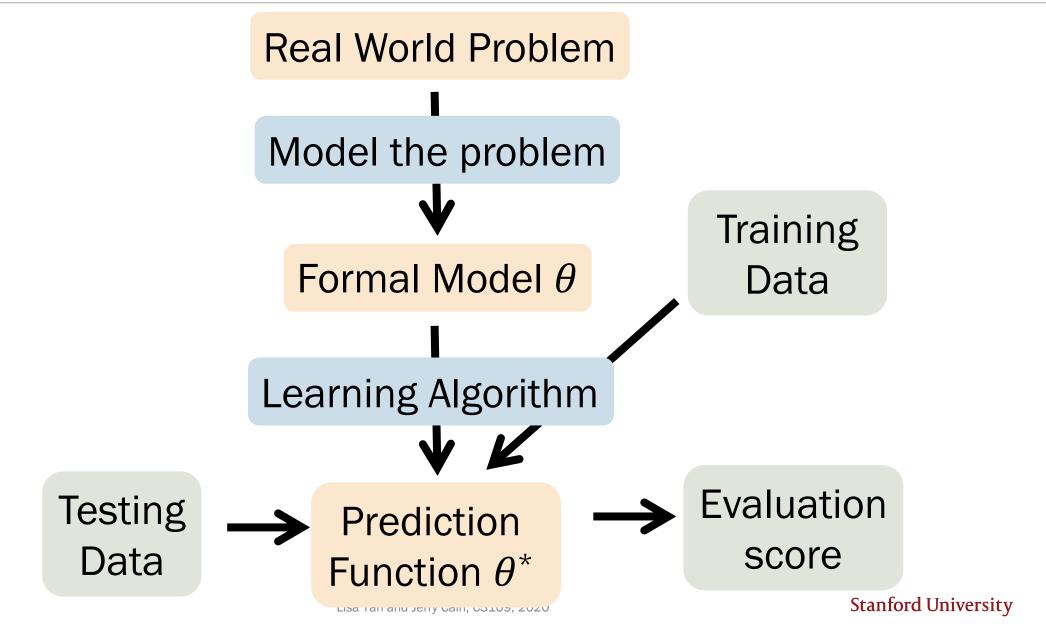
#### Machine Learning uses a lot of data.



Task: Identify what a chair is

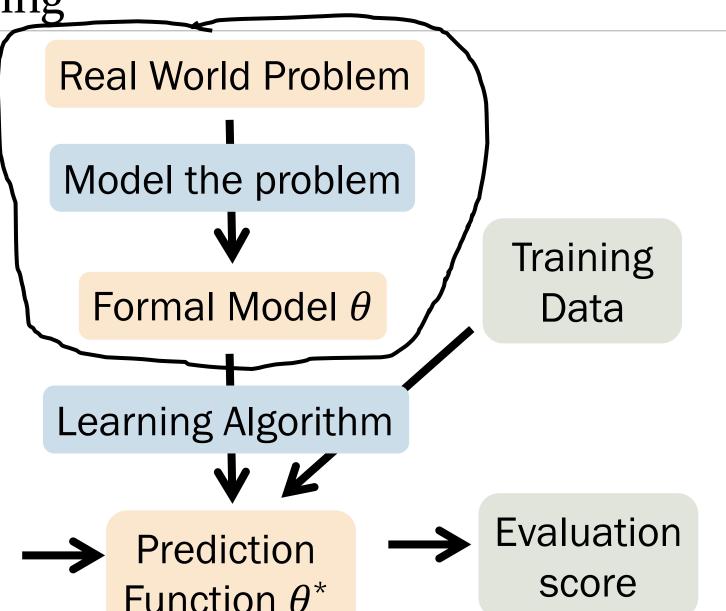
Data: All the chairs ever

Supervised learning: A category of machine learning where you have labeled data on the problem you are solving.



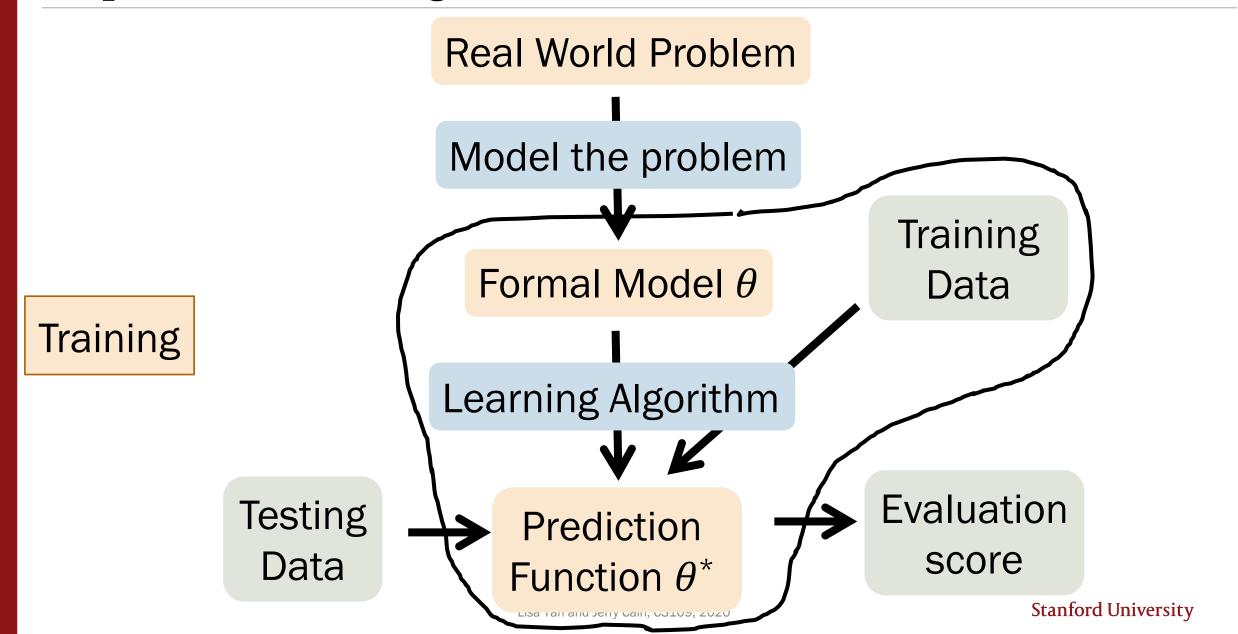
#### Modeling

(not the focus of this class)



**Testing** Data

Function  $\theta^*$ 



#### Model and dataset

Many different forms of "Machine Learning"

We focus on the problem of prediction based on observations.

#### Goal

Features

Output

Based on observed X, predict unseen Y Vector **X** of m observed variables

 $X = (X_1, X_2, ..., X_m)$ 

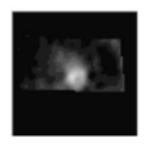
Variable *Y* (also called class label if discrete)

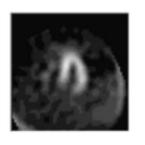
Model

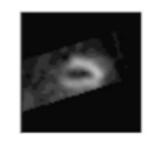
 $\hat{Y} = g(X)$ , a function of observations X

#### Training data

$$X = (X_1, X_2, X_3, ..., X_{300})$$









Feature 1 Feature 2 Feature 300

Output

Patient 1 1

Patient 2 1

Patient *n* 0

#### Training data notation

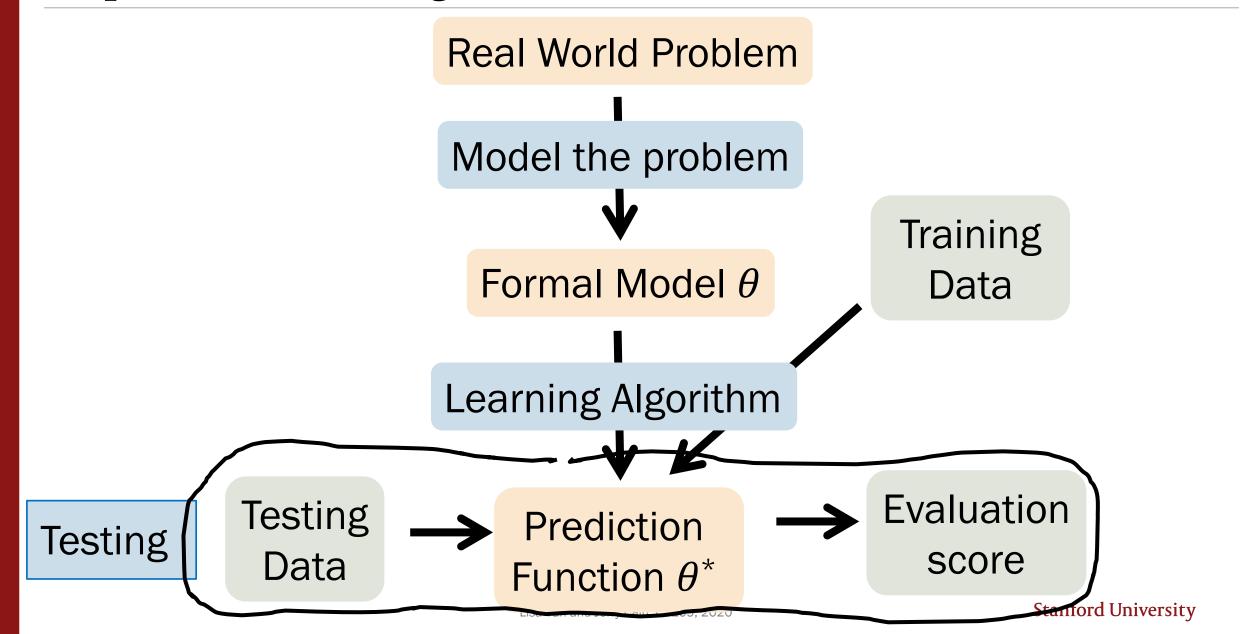
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$$
  
*n* datapoints, generated i.i.d.

*i*-th datapoint  $(x^{(i)}, y^{(i)})$ :

- m features:  $\mathbf{x}^{(i)} = (x_1^{(i)}, x_2^{(i)}, \dots, x_m^{(i)})$
- A single output  $y^{(i)}$
- Independent of all other datapoints

**Training Goal:** 

Use these n datapoints to learn a model  $\hat{Y} = g(X)$  that predicts Y



#### Testing data notation

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$$

 $n_{test}$  other datapoints, generated i.i.d.

*i*-th datapoint  $(x^{(i)}, y^{(i)})$ :

Has the same structure as your training data

Testing Goal:

Using the model  $\hat{Y} = g(X)$  that you trained, see how well you can predict Y on known data

#### Two tasks we will focus on

Many different forms of "Machine Learning"

We focus on the problem of prediction based on observations.

#### Goal

Features

Based on observed X, predict unseen Y

Vector **X** of m observed variables

$$\boldsymbol{X} = (X_1, X_2, \dots, X_m)$$

Output

Variable *Y* (also called class label if discrete)

#### Model

Regression

Classification

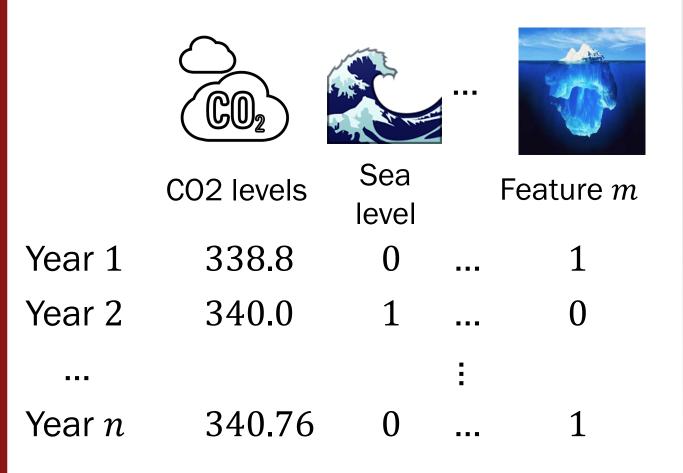
 $\hat{Y} = g(X)$ , a function of observations X

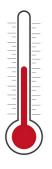
prediction when *Y* is continuous

prediction when *Y* is discrete

#### Regression: Predicting real numbers

Training data:  $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$ 





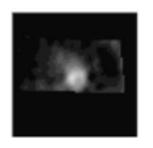
Global Land-Ocean temperature

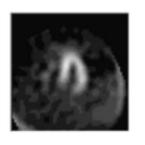
Output

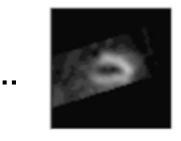
0.26 0.32 0.14

#### Classification: Predicting class labels

$$X = (X_1, X_2, X_3, ..., X_{300})$$









Feature 1 Feature 2

Feature 300

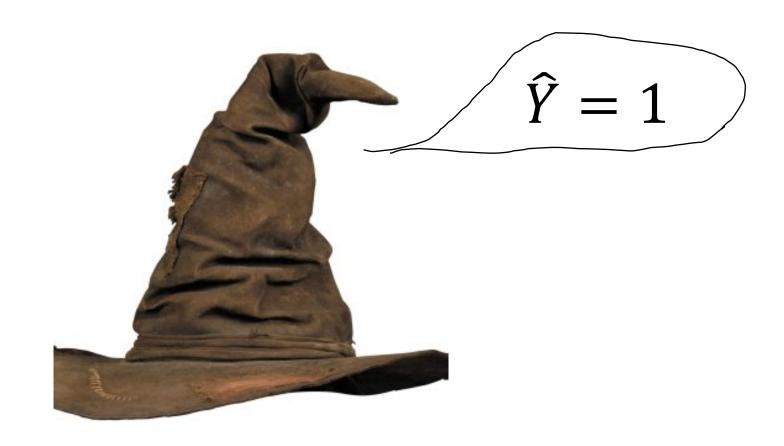
Patient 1 1

Patient 2 1

Patient *n* 0

Output

#### Classification: Harry Potter Sorting Hat

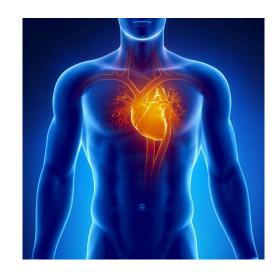


X = (1, 1, 1, 0, 0, ..., 1)

Our focus today!

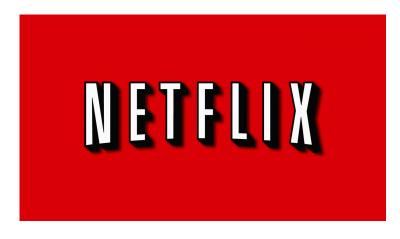
#### Classification: Example datasets

Heart



Ancestry



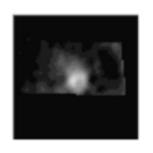


Netflix

# "Brute Force Bayes"

#### Classification: Having a healthy heart

$$X = (X_1)$$





Feature 1

Output

Patient 1 1

Patient 2 1

Patient n = 0

Single feature:

Region of Interest (ROI) is healthy (1) or unhealthy (0)

How can we predict the class label

heart is healthy (1) or unhealthy (0)?

The following strategy is **not used in practice** but helps us understand how we approach classification.

#### Classification: "Brute Force Bayes"

$$\hat{Y} = g(X)$$

$$= \arg \max_{y=\{0,1\}} P(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \frac{P(\boldsymbol{X}|Y)P(Y)}{P(\boldsymbol{X})}$$

(Bayes' Theorem)

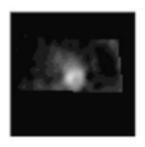
$$= \arg \max_{y=\{0,1\}} P(X|Y)P(Y)$$

(1/P(X)) is constant w.r.t. y

If we estimate P(X|Y) and P(Y), we can classify datapoints!

#### **Training:** Estimate parameters

$$X = (X_1)$$



Feature 1

Patient 1 1

Patient 2 1

Patient n = 0



Output

Conditional probability tables  $\hat{P}(X|Y)$ 

Marginal probability

table  $\hat{P}(Y)$ 

 $\hat{Y} = \arg \max \hat{P}(X|Y)\hat{P}(Y)$  $y = \{0,1\}$ 

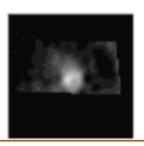
|           | $\widehat{P}(X Y=0)$ | $\widehat{P}(\boldsymbol{X} Y=1)$ |
|-----------|----------------------|-----------------------------------|
| $X_1 = 0$ | $	heta_1$            | $	heta_3$                         |
| $X_1 = 1$ | $	heta_2$            | $	heta_4$                         |

 $\widehat{P}(Y)$ Y = 0 $\theta_5$  $\theta_6$ 

Training Goal:

Use *n* datapoints to learn  $2 \cdot 2 + 2 = 6$  parameters.

## Training: Estimate parameters $\hat{P}(X|Y)$





| Count: | # datapoints        |
|--------|---------------------|
| Count. | <u># datapoints</u> |

$$X_1 = 0, Y = 0$$
:

$$X_1 = 1, Y = 0$$
: 6

Pa 
$$X_1 = 1$$
, Y = 0: 6  
 $X_1 = 0$ , Y = 1: 0

Pa 
$$X_1 = 1$$
, Y = 1: 100

110 Total:

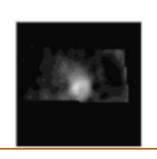
Patient n = 0

|           | $\widehat{P}(\boldsymbol{X} Y=0)$ | $\widehat{P}(\boldsymbol{X} Y=1)$ |
|-----------|-----------------------------------|-----------------------------------|
| $X_1 = 0$ | $	heta_1$                         | $\theta_3$                        |
| $X_1 = 1$ | $	heta_2$                         | $	heta_4$                         |

X|Y=0 and X|Y=1are each multinomials with 2 outcomes!

> Use MLE or Laplace (MAP) estimate for parameters  $\hat{P}(X|Y)$  and  $\hat{P}(Y)$

# Training: MLE estimates, $\hat{P}(X|Y)$





| Count: |  |
|--------|--|
|--------|--|

# datapoints

$$X_1 = 0, Y = 0$$
:

Pa 
$$X_1 = 1$$
, Y = 0:  
 $X_1 = 0$ , Y = 1:

$$X_1 = 0, Y = 1$$
:

Pa 
$$X_1 = 1$$
, Y = 1:

100

Total:

110

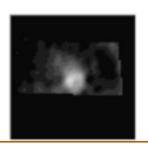
Patient *n* 0

|           | $\widehat{P}(\boldsymbol{X} Y=0)$ | $\widehat{P}(\boldsymbol{X} Y=1)$ |
|-----------|-----------------------------------|-----------------------------------|
| $X_1 = 0$ | 0.4                               | 0.0                               |
| $X_1 = 1$ | 0.6                               | 1.0                               |



MLE of 
$$\hat{P}(X_1 = x | Y = y) = \frac{\#(X_1 = x, Y = y)}{\#(Y = y)}$$
Just count!

# Training: Laplace (MAP) estimates, $\hat{P}(X|Y)$





| <u>int</u> |
|------------|
|            |

 $X_1 = 0, Y = 0$ :

Pa  $X_1 = 1, Y = 0$ :  $X_1 = 0, Y = 1$ :

Pa  $X_1 = 1$ , Y = 1:

100

Total:

110

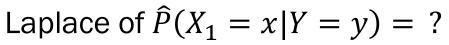
Patient n = 0

|           | $\widehat{P}(\boldsymbol{X} Y=0)$ | $\widehat{P}(\boldsymbol{X} Y=1)$ |
|-----------|-----------------------------------|-----------------------------------|
| $X_1 = 0$ | 0.4                               | 0.0                               |
| $X_1 = 1$ | 0.6                               | 1.0                               |



MLE of 
$$\hat{P}(X_1 = x | Y = y) = \frac{\#(X_1 = x, Y = y)}{\#(Y = y)}$$
Just count!

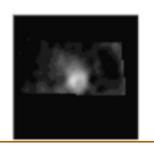




Just count + add imaginary trials!



# Training: Laplace (MAP) estimates, $\hat{P}(X|Y)$





| Count: | # datapoints |
|--------|--------------|
|        | <u> </u>     |

 $X_1 = 0, Y = 0$ :

Pa  $X_1 = 1, Y = 0$ :  $X_1 = 0, Y = 1$ :

Pa  $X_1 = 1$ , Y = 1: 100

> 110 Total:

Patient n = 0

|           | $\widehat{P}(\boldsymbol{X} Y=0)$ | $\widehat{P}(X Y=1)$ |
|-----------|-----------------------------------|----------------------|
| $X_1 = 0$ | 0.4                               | 0.0                  |
| $X_1 = 1$ | 0.6                               | 1.0                  |



MLE of 
$$\hat{P}(X_1 = x | Y = y) = \frac{\#(X_1 = x, Y = y)}{\#(Y = y)}$$
Just count!



|           | $\widehat{P}(\boldsymbol{X} Y=0)$ | $\widehat{P}(\boldsymbol{X} Y=1)$ |
|-----------|-----------------------------------|-----------------------------------|
| $X_1 = 0$ | 0.42                              | 0.01                              |
| $X_1 = 1$ | 0.58                              | 0.99                              |

Laplace of 
$$\widehat{P}(X_1 = x | Y = y) = \frac{\#(X_1 = x, Y = y) + 1}{\#(Y = y) + 2}$$
Just count + add imaginary trials!

#### Testing

$$\widehat{Y} = \arg \max_{y=\{0,1\}} \widehat{P}(X|Y)\widehat{P}(Y)$$

| (MAP)     | $\widehat{P}(\boldsymbol{X} Y=0)$ | $\widehat{P}(\boldsymbol{X} Y=1)$ |
|-----------|-----------------------------------|-----------------------------------|
| $X_1 = 0$ | 0.42                              | 0.01                              |
| $X_1 = 1$ | 0.58                              | 0.99                              |

(MLE)
 
$$\hat{P}(Y)$$
 $Y = 0$ 
 0.09

  $Y = 1$ 
 0.91

New patient has a healthy ROI ( $X_1 = 1$ ). What is your prediction,  $\widehat{Y}$ ?

$$\hat{P}(X_1 = 1|Y = 0)\hat{P}(Y = 0) = 0.58 \cdot 0.09 \approx 0.052$$
  
 $\hat{P}(X_1 = 1|Y = 1)\hat{P}(Y = 1) = 0.99 \cdot 0.91 \approx 0.901$ 

A. 
$$0.052 < 0.5 \Rightarrow \hat{Y} = 1$$

B. 
$$0.901 > 0.5 \implies \hat{Y} = 1$$

C. 
$$0.052 < 0.901 \Rightarrow \hat{Y} = 1$$



Sanity check: Why don't these sum to 1?

#### Testing

$$\widehat{Y} = \arg \max_{y=\{0,1\}} \widehat{P}(X|Y)\widehat{P}(Y)$$

| (MAP)     | $\widehat{P}(\boldsymbol{X} Y=0)$ | $\widehat{P}(\boldsymbol{X} Y=1)$ |
|-----------|-----------------------------------|-----------------------------------|
| $X_1 = 0$ | 0.42                              | 0.01                              |
| $X_1 = 1$ | 0.58                              | 0.99                              |

(MLE)
 
$$\hat{P}(Y)$$
 $Y = 0$ 
 0.09

  $Y = 1$ 
 0.91

New patient has a healthy ROI ( $X_1 = 1$ ). What is your prediction,  $\widehat{Y}$ ?

$$\hat{P}(X_1 = 1 | Y = 0)\hat{P}(Y = 0) = 0.58 \cdot 0.09 \approx 0.052$$
  
 $\hat{P}(X_1 = 1 | Y = 1)\hat{P}(Y = 1) = 0.99 \cdot 0.91 \approx 0.901$ 

$$A. \quad 0.052 < 0.5 \quad \Rightarrow \quad \widehat{Y} = 1$$

$$B. \quad 0.901 > 0.5 \quad \Rightarrow \quad \hat{\hat{Y}} = 1$$

C.) 
$$0.052 < 0.901 \Rightarrow \hat{Y} = 1$$

Sanity check: Why don't these sum to 1?

#### "Brute Force Bayes" classifier

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \widehat{P}(X|Y)\widehat{P}(Y)$$

 $(\widehat{P}(Y))$  is an estimate of P(Y),  $\widehat{P}(X|Y)$  is an estimate of P(X|Y)

**Training** 

Estimate these probabilities, i.e., "learn" these parameters using MLE or Laplace (MAP)

$$\hat{P}(X_1, X_2, ..., X_m | Y = 1)$$
  
 $\hat{P}(X_1, X_2, ..., X_m | Y = 0)$   
 $\hat{P}(Y = 1)$   $\hat{P}(Y = 0)$ 

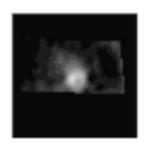
**Testing** 

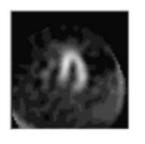
Given an observation 
$$X = (X_1, X_2, ..., X_m)$$
, predict  $\hat{Y} = \arg\max_{y=\{0,1\}} \left(\hat{P}(X_1, X_2, ..., X_m | Y)\hat{P}(Y)\right)$ 

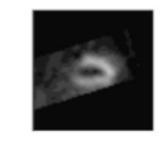
# Naive Bayes Classifier

#### Brute Force Bayes: m = 300 (# features)

$$X = (X_1, X_2, X_3, ..., X_{300})$$









Feature 1 Feature 2

Feature 300

Output

Patient 1 1

Patient 2 1

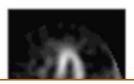
Patient *n* 0

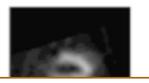
This won't be too bad, right?

#### Brute Force Bayes: m = 300 (# features)

$$X = (X_1, X_2, X_3, ..., X_{300})$$









#### Count: # datapoints

$$X_1 = 0, X_2 = 0, ..., X_{299} = 0, X_{300} = 0, Y = 0$$
:

$$X_1 = 0, X_2 = 0, ..., X_{299} = 0, X_{300} = 1, Y = 0$$
:

$$X_1 = 0, X_2 = 0, ..., X_{299} = 1, X_{300} = 0, Y = 0$$
:

Pat ...

$$X_1 = 0, X_2 = 0, ..., X_{299} = 0, X_{300} = 0, Y = 1$$
:

Pat 
$$X_1 = 0, X_2 = 0, ..., X_{299} = 0, X_{300} = 0, Y = 1:$$
  $X_1 = 0, X_2 = 0, ..., X_{299} = 0, X_{300} = 1, Y = 1:$  1

$$X_1 = 0, X_2 = 0, ..., X_{299} = 1, X_{300} = 0, Y = 1$$
:

Patient 
$$n = 0$$
 ... 1

This won't be too bad, right?

#### Brute Force Bayes

$$\widehat{Y} = \arg \max_{y = \{0,1\}} \widehat{P}(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \frac{\widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)}{\widehat{P}(\boldsymbol{X})}$$

$$= \arg \max_{y=\{0,1\}} \widehat{P}(X|Y)\widehat{P}(Y)$$

Learn parameters through MLE or MAP Choose the Y that is most likely given X

(Bayes' Theorem)

(1/P(X)) is constant w.r.t. y

#### Brute Force Bayes: m = 300 (# features)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \widehat{P}(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \frac{\widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)}{\widehat{P}(\boldsymbol{X})}$$

= arg max 
$$\hat{P}(X|Y)\hat{P}(Y)$$
  
 $y=\{0,1\}$ 

Learn parameters through MLE or MAP

- $\hat{P}(Y=1 \mid x)$ : estimated probability a heart is healthy given x
- $X = (X_1, X_2, ..., X_{300})$ : whether 300 regions of interest (ROI) are healthy (1) or unhealthy (0)

How many parameters do we have to learn?

$$\hat{P}(X|Y)$$
  $\hat{P}(Y)$ 

A. 
$$2 \cdot 2 + 2 = 6$$

B. 
$$2 \cdot 300 + 2 = 602$$

C. 
$$2 \cdot 2^{300} + 2 = a lot$$



## Brute Force Bayes: m = 300 (# features)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \widehat{P}(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \frac{\widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)}{\widehat{P}(\boldsymbol{X})}$$

= arg max 
$$\hat{P}(X|Y)\hat{P}(Y)$$
  
 $y=\{0,1\}$ 

Learn parameters through MLE or MAP

This approach requires you to learn  $O(2^m)$  parameters.

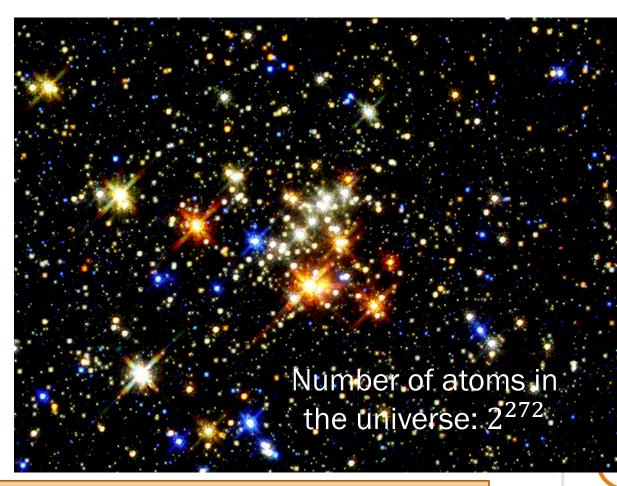
- $\hat{P}(Y=1 \mid x)$ : estimated probability a heart is healthy given x
- $X = (X_1, X_2, ..., X_{300})$ : whether 300 regions of interest (ROI) are healthy (1) or unhealthy (0)

How many parameters do we have to learn?

$$\hat{P}(X|Y)$$
  $\hat{P}(Y)$ 
A.  $2 \cdot 2 + 2 = 6$ 
B.  $2 \cdot 300 + 2 = 602$ 

(c.) 
$$2 \cdot 2^{300} + 2 = a lot$$

#### Brute Force Bayes: m = 300 (# features)



 $\widehat{P}(Y = 1 \mid x)$ : estimated probability a heart is healthy given x

 $X = (X_1, X_2, ..., X_{300})$ : whether 300 regions of interest (ROI) are healthy (1) or unhealthy (0)

How many parameters do we nave to learn?

$$\hat{P}(X|Y)$$
  $\hat{P}(Y)$ 

$$4. \quad 2 \cdot 2 \quad +2 = 6$$

$$2 \cdot 300 + 2 = 602$$

$$2 \cdot 2^{300} + 2 = a lot$$

This approach requires you to learn  $O(2^m)$  parameters.

#### The problem with our current classifier

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \, \widehat{P}(Y \mid X) \qquad \text{Choose the $Y$ that is most likely given $X$}$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \, \frac{\widehat{P}(X|Y)\widehat{P}(Y)}{\widehat{P}(X)} \qquad \text{(Bayes' Theorem)}$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \, \widehat{P}(X|Y)\widehat{P}(Y) \qquad \text{(1/$P(X)$ is constant w.r.t. $y$)}$$

$$\stackrel{P}{=} \{0,1\} \qquad \widehat{P}(X_1, X_2, \dots, X_m \mid Y) \qquad \text{Estimating this joint conditional distribution is often intractable.}$$

What if we could make a simplifying (but naïve) assumption to make estimation easier?

## The Naïve Bayes assumption

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \widehat{P}(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \frac{\widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)}{\widehat{P}(\boldsymbol{X})}$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \widehat{P}(\boldsymbol{X}|Y) \widehat{P}(Y)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left( \prod_{j=1}^{m} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$
 Naïve Bayes Assumption

#### Assumption:

 $X_1, \dots, X_m$  are conditionally independent given Y.

Naïve Bayes

## Naïve Bayes Classifier

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left( \prod_{j=1}^{m} \widehat{P}(X_{j}|Y) \right) \widehat{P}(Y)$$

**Training** 

What is the Big-O of # of parameters we need to learn?

- O(m)
  - $O(2^{m})$
  - C. other



#### Naïve Bayes Classifier

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left( \prod_{j=1}^{m} \widehat{P}(X_{j}|Y) \right) \widehat{P}(Y)$$

Training

for 
$$j = 1, ..., m$$
:

 $\widehat{P}(Y=1)$ 

for 
$$j = 1, ..., m$$
:  $\widehat{P}(X_j = 1 | Y = 0)$ ,  $\widehat{P}(X_j = 1 | Y = 1)$ 

Use MLE or Laplace (MAP)

**Testing** 

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left( \log \widehat{P}(Y) + \sum_{j=1}^{m} \log \widehat{P}(X_j | Y) \right) \text{ (for numeric stability)}$$

(live)

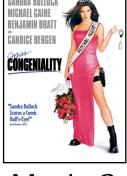
## 24: Naïve Bayes

Lisa Yan and Jerry Cain November 6, 2020

## Classification terminology check

Training data:  $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$ 







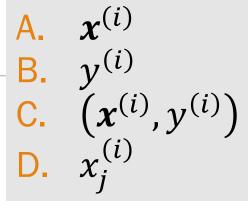


Movie 1 Movie 2

Movie m

Output

| User 1 1. | 1 | 0    | ••• | 1 | 2. 1 |
|-----------|---|------|-----|---|------|
| User 2 3. | 1 | 1    |     | 0 | 0    |
| •••       |   |      | :   |   | :    |
| User $n$  | 0 | 4. 0 |     | 1 | 1    |



1: like movie

0: dislike movie



## Classification terminology check

Training data:  $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$ 



Movie 1



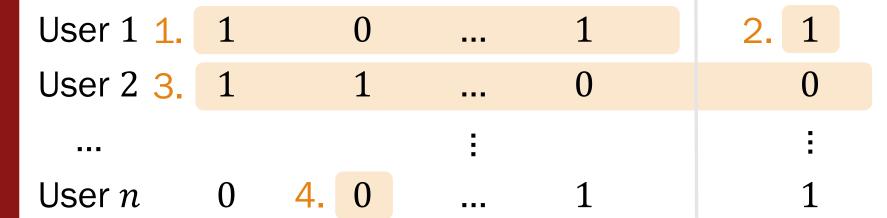
Movie 2



Movie *m* 



Output



 $\boldsymbol{x}^{(i)}$ 

1: like movie

0: dislike movie

i: i-th user j: movie j

and Learn

#### Predicting user TV preferences

#### Will a user like the Pokémon TV series?

#### Observe indicator variables $X = (X_1, X_2)$ :



 $X_1 = 1$ : "likes Star Wars"



 $X_2 = 1$ : "likes Harry Potter"

#### Output *Y* indicator:



Y = 1: "likes Pokémon"

Predict 
$$\hat{Y} = \arg \max_{y=\{0,1\}} \hat{P}(Y \mid X)$$

#### The model, and the Naïve Bayes assumption

$$\widehat{Y} = \arg \max_{y = \{0,1\}} \widehat{P}(Y \mid X)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \frac{\widehat{P}(\boldsymbol{X}|Y)\widehat{P}(Y)}{\widehat{P}(\boldsymbol{X})}$$

$$= \arg \max_{y=\{0,1\}} \widehat{P}(X|Y)\widehat{P}(Y)$$

$$= \underset{y=\{0,1\}}{\operatorname{arg max}} \left( \prod_{j=1}^{m} \widehat{P}(X_{j}|Y) \right) \widehat{P}(Y) \leftarrow$$

#### Naïve Bayes Assumption:

 $X_1, \dots, X_m$  are conditionally independent given Y.

## Breakout Rooms

Check out the questions on the next slide (Slide 50). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/169796

Breakout rooms: 3 min



#### Predicting user TV preferences

#### $\hat{Y} = \arg \max \hat{P}(X|Y)\hat{P}(Y)$ $y = \{0,1\}$

**Assumption** 

Naïve Bayes
Assumption
$$P(X|Y) = \prod_{j=1}^{m} P(X_j|Y)$$

Which probabilities do you need to estimate? How many are there?

- **Brute Force Bayes** (strawman, without NB assumption)
- Naïve Bayes

During training, how to estimate the prob  $\widehat{P}(X_1 = 1, X_2 = 1 | Y = 0)$  with MLE? with Laplace?

**Brute Force Bayes** 

Naïve Bayes



## Predicting user TV preferences

#### $\hat{Y} = \arg \max \hat{P}(X|Y)\hat{P}(Y)$ $y = \{0,1\}$ Naïve Bayes P(X|Y) =**Assumption**

Which probabilities do you need to estimate? How many are there?

- **Brute Force Bayes** (strawman, without NB assumption)
- Naïve Bayes

During training, how to estimate the prob  $\widehat{P}(X_1 = 1, X_2 = 1 | Y = 0)$  with MLE? with Laplace?

**Brute Force Bayes** 

Naïve Bayes

#### (strawman brute force) Multinomial MLE and MAP

Model: Multinomial, *m* outcomes:

 $p_i$  probability of outcome j

 $n_i = \#$  of trials with outcome jObserve:

Total of  $\sum_{i=1}^{m} n_i$  trials

MLE

$$\widehat{p_j} = \frac{n_j}{\sum_{j=1}^m n_j}$$

<u>Laplace</u> estimate (MAP w/Laplace smoothing)

$$\widehat{p}_j = \frac{n_j + 1}{\sum_{j=1}^m n_j + m}$$

$$\hat{P}(X_1 = 1 | X_2 = 1 | Y = 0)$$

training data

## (Naïve Bayes) Multinomial MLE and MAP

Model: Multinomial, *m* outcomes:

 $p_j$  probability of outcome j

 $n_i = \#$  of trials with outcome jObserve:

Total of  $\sum_{i=1}^{m} n_i$  trials

MLE

$$\widehat{p_j} = \frac{n_j}{\sum_{j=1}^m n_j}$$

<u>Laplace</u> estimate (MAP w/Laplace smoothing)

$$\widehat{p_j} = \frac{n_j + 1}{\sum_{j=1}^m n_j + m}$$

$$\hat{P}(X_1 = 1 | X_2 = 1 | Y = 0)$$

training data

and Learn naively

#### Ex 1. Naïve Bayes Classifier (MLE)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left( \prod_{j=1}^{m} \widehat{P}(X_{j}|Y) \right) \widehat{P}(Y)$$

**Training** 

$$\forall i$$
:  $\hat{P}(X_j = 1 | Y = 0)$ ,  $\hat{P}(X_j = 0 | Y = 0)$ , Use MLE or  $\hat{P}(X_j = 1 | Y = 1)$ ,  $\hat{P}(X_j = 0 | Y = 0)$ , Laplace (MAP)  $\hat{P}(Y = 1)$ ,  $\hat{P}(Y = 0)$ 

Testing

$$\widehat{Y} = \arg \max_{y = \{0,1\}} \left( \frac{m}{\prod_{j=1}^{m} \widehat{P}(X_j | Y)} \widehat{P}(Y) \right)$$

## Think

Slide 59 has two questions to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/153773

Think by yourself: 1 min



Observe indicator vars.  $X = (X_1, X_2)$ :

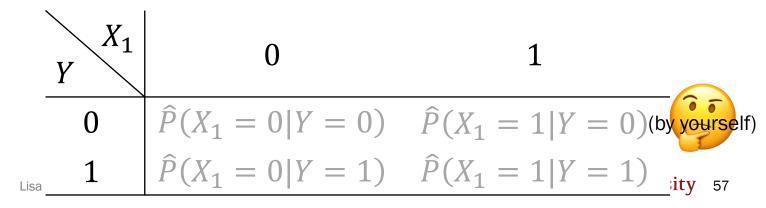
- X<sub>1</sub>: "likes Star Wars"
- X<sub>2</sub>: "likes Harry Potter"

Predict Y: "likes Pokémon"

| $X_1$ | 0 | 1  | $X_2$ | 0 | 1  |
|-------|---|----|-------|---|----|
| 0     | 3 | 10 | 0     | 5 | 8  |
| 1     | 4 | 13 | 1     | 7 | 10 |

Training data counts

- 1. How many datapoints (n) are in our train data?
- 2. Compute MLE estimates for  $\hat{P}(X_1|Y)$ :



Observe indicator vars.  $X = (X_1, X_2)$ :

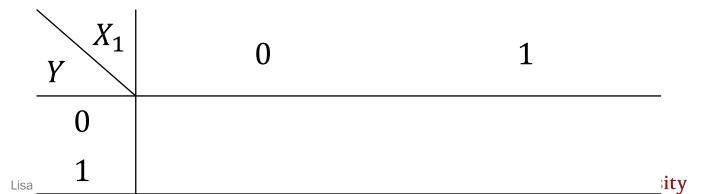
- X<sub>1</sub>: "likes Star Wars"
- X<sub>2</sub>: "likes Harry Potter"

Predict Y: "likes Pokémon"

| $X_1$ | 0 | 1  | $X_2$ | 0 | 1  |
|-------|---|----|-------|---|----|
| 0     | 3 | 10 | 0     | 5 | 8  |
| 1     | 4 | 13 | 1     | 7 | 10 |

Training data counts

- 1. How many datapoints (n) are in our train data?
- 2. Compute MLE estimates for  $\hat{P}(X_1|Y)$ :



Observe indicator vars.  $X = (X_1, X_2)$ :

- *X*<sub>1</sub>: "likes Star Wars"
- X<sub>2</sub>: "likes Harry Potter"

Predict Y: "likes Pokémon"

| $X_1$ | 0 | 1        | $X_2$ | 0 | 1  | Y |    |
|-------|---|----------|-------|---|----|---|----|
| 0     | 3 | 10<br>13 | 0     | 5 | 8  | 0 | 13 |
| 1     | 4 | 13       | 1     | 7 | 10 | 1 | 17 |

Training data counts

| $X_1$ | 0    | 1    | $X_2$ | 0                   | 1                    | Y |                      |
|-------|------|------|-------|---------------------|----------------------|---|----------------------|
| 0     | 0.23 | 0.77 | 0     | 5/13 ≈ 0.38         | $8/13 \approx 0.62$  | 0 | $13/30 \approx 0.43$ |
| _ 1   | 0.24 | 0.76 | 1     | $7/17 \approx 0.41$ | $10/17 \approx 0.59$ | 1 | $17/30 \approx 0.57$ |

(from last slide)

Observe indicator vars.  $X = (X_1, X_2)$ :

- X<sub>1</sub>: "likes Star Wars"
- $X_2$ : "likes Harry Potter"

Predict Y: "likes Pokémon"

| $X_1$ | 0    | 1    |
|-------|------|------|
| 0     | 0.23 |      |
| 1     | 0.24 | 0.76 |

| $X_2$ | 0    | 1    |
|-------|------|------|
| 0     | 0.38 | 0.62 |
| 1     | 0.41 |      |

|     | 1    |
|-----|------|
| Y   |      |
| 0   | 0.43 |
| _ 1 | 0.57 |

Now that we've trained and found parameters, It's time to classify new users!

#### Ex 1. Naïve Bayes Classifier (MLE)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left( \frac{m}{\prod_{j=1}} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$

Training

$$\forall i: \ \hat{P}(X_j = 1 | Y = 0), \ \hat{P}(X_j = 0 | Y = 0), \ \text{Use MLE or}$$
 $\hat{P}(X_j = 1 | Y = 1), \ \hat{P}(X_j = 0 | Y = 0), \ \text{Laplace (MAP)}$ 
 $\hat{P}(Y = 1), \ \hat{P}(Y = 0)$ 

**Testing** 

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left( \prod_{j=1}^{m} \widehat{P}(X_{j}|Y) \right) \widehat{P}(Y)$$

Observe indicator vars.  $X = (X_1, X_2)$ :

- X<sub>1</sub>: "likes Star Wars"
- X<sub>2</sub>: "likes Harry Potter"

Predict Y: "likes Pokémon"

| $X_1$ | 0    | 1    | ` | $X_2$ | 0    | 1    | Y     |      |
|-------|------|------|---|-------|------|------|-------|------|
| 0     | 0.23 | 0.77 | _ | 0     | 0.38 | 0.62 | 0     | 0.43 |
| 1     | 0.24 | 0.76 | _ | 1     | 0.41 | 0.59 | <br>1 | 0.57 |
|       | -    | _    | _ | -     |      | _    |       | _    |

Suppose a new person "likes Star Wars" ( $X_1 = 1$ ) but "dislikes Harry Potter" ( $X_2 = 0$ ). Will they like Pokemon? Need to predict Y:

$$\hat{Y} = \arg \max_{y = \{0,1\}} \hat{P}(X|Y)\hat{P}(Y) = \arg \max_{y = \{0,1\}} \hat{P}(X_1|Y)\hat{P}(X_2|Y)\hat{P}(Y)$$

If 
$$Y = 0$$
:  $\hat{P}(X_1 = 1|Y = 0)\hat{P}(X_2 = 0|Y = 0)\hat{P}(Y = 0) = 0.77 \cdot 0.38 \cdot 0.43 = 0.126$ 

If 
$$Y = 1$$
:  $\hat{P}(X_1 = 1|Y = 1)\hat{P}(X_2 = 0|Y = 1)\hat{P}(Y = 1) = 0.76 \cdot 0.41 \cdot 0.57 = 0.178$ 

Since term is greatest when Y = 1, predict  $\hat{Y} = 1$ 

# Interlude for jokes/announcements

#### Announcements

#### Problem Set 5

Super on-time due (+8%): earlier today

On-time due (+5%): Monday 11/9 1:00pm

Grace period ends (+0%): Tuesday 11/10 1:00pm

#### Problem Set 6

later today Out:

Monday 11/16 Due:

Wednesday 11/18 Grace period:

through Lecture 26 Covers:

#### Ex 2. Naïve Bayes Classifier (MAP)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left( \prod_{j=1}^{m} \widehat{P}(X_{j}|Y) \right) \widehat{P}(Y)$$

**Training** 

$$\forall i$$
:  $\hat{P}(X_j = 1 | Y = 0)$ ,  $\hat{P}(X_j = 0 | Y = 0)$ , Use MLE or  $\hat{P}(X_j = 1 | Y = 1)$ ,  $\hat{P}(X_j = 0 | Y = 0)$ , Laplace (MAP)  $\hat{P}(Y = 1)$ ,  $\hat{P}(Y = 0)$ 

Testing

$$\widehat{Y} = \underset{y = \{0,1\}}{\operatorname{arg max}} \left( \prod_{j=1}^{m} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$
 (note to

(note the same as before)

Observe indicator vars.  $X = (X_1, X_2)$ :

- X<sub>1</sub>: "likes Star Wars"
- X<sub>2</sub>: "likes Harry Potter"

Predict Y: "likes Pokémon"

What are our MAP estimates using Laplace smoothing for  $\widehat{P}(X_i|Y)$ ?

| $X_1$ | 0 | 1  | $X_2$ | 0 | 1  |
|-------|---|----|-------|---|----|
| 0     | 3 | 10 | 0     | 5 | 8  |
| 1     | 4 | 13 | 1     | 7 | 10 |

Training data counts

$$\widehat{P}(X_j = x | Y = y):$$

$$A. \frac{\#(X_j=x,Y=y)}{\#(Y=y)}$$

B. 
$$\frac{\#(X_j=x,Y=y)+1}{\#(Y=y)+2}$$

C. 
$$\frac{\#(X_j=x,Y=y)+1}{\#(Y=y)+4}$$

er



Observe indicator vars.  $X = (X_1, X_2)$ :

- X<sub>1</sub>: "likes Star Wars"
- X<sub>2</sub>: "likes Harry Potter"

Predict Y: "likes Pokémon"

What are our MAP estimates using Laplace smoothing for  $\widehat{P}(X_j|Y)$  and  $\widehat{P}(Y)$ ?

| $X_1$ | 0 | 1  | $X_2$ | 0 | 1  |
|-------|---|----|-------|---|----|
| 0     | 3 | 10 | 0     | 5 | 8  |
| 1     | 4 | 13 | 1     | 7 | 10 |

Training data counts

$$\widehat{P}(X_j = x | Y = y):$$

$$A. \frac{\#(X_j=x,Y=y)}{\#(Y=y)}$$

B. 
$$\frac{\#(X_j=x,Y=y)+1}{\#(Y=y)+2}$$

C. 
$$\frac{\#(X_j=x,Y=y)+1}{\#(Y=y)+4}$$

D. other

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left( \prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)$$

Observe indicator vars.  $X = (X_1, X_2)$ :

- X<sub>1</sub>: "likes Star Wars"
- $X_2$ : "likes Harry Potter"

Predict Y: "likes Pokémon"

| $X_1$ | 0 | 1  | $X_2$ | 0 | 1  | Y |    |
|-------|---|----|-------|---|----|---|----|
| 0     | 3 | 10 | 0     | 5 | 8  | 0 | 13 |
| 1     | 4 | 13 | 1     | 7 | 10 | 1 | 17 |

Training data counts

| $X_1$ | 0    | 1    | ( |
|-------|------|------|---|
| 0     | 0.27 | 0.73 |   |
| 1     | 0.26 | 0.74 |   |

| $X_2$ | U    | 1    |
|-------|------|------|
| 0     | 0.40 | 0.60 |
| 1     | 0.42 | 0.58 |

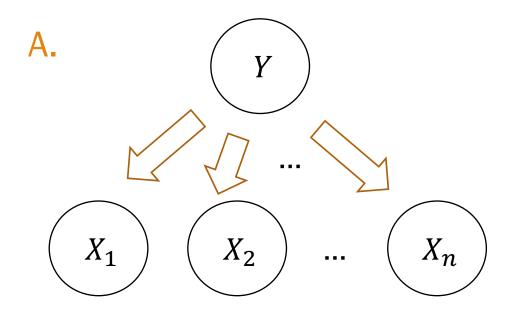
#### In practice:

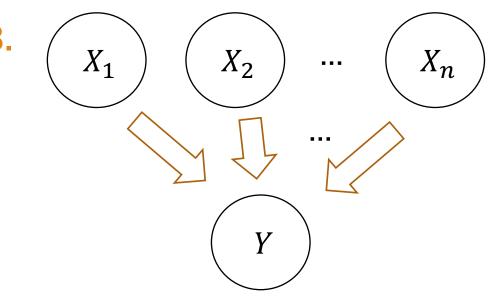
- We use Laplace for  $\widehat{P}(X_i|Y)$  in case some events  $X_i = x_i$  don't appear
- We don't use Laplace for  $\hat{P}(Y)$ , because all class labels should appear reasonably often

#### Naïve Bayes Model is a Bayesian Network

$$P(X|Y) = \prod_{j=1}^{m} P(X_j|Y)$$

Which Bayesian Network encodes this conditional independence?





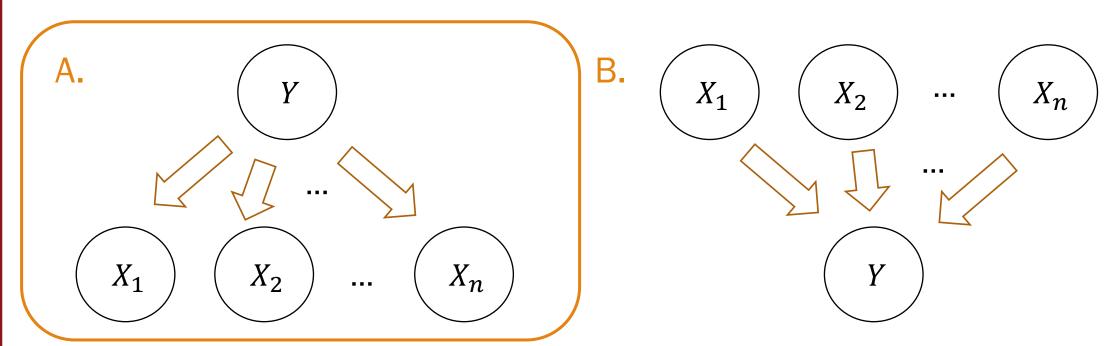


 $X_i$  are conditionally independent given Y

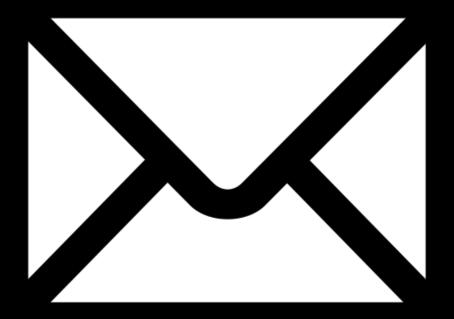
#### Naïve Bayes Model is a Bayesian Network

Naïve Bayes
Assumption 
$$P(X|Y) = \prod_{i=1}^{m} P(X_i|Y) \implies P(X,Y) = P(Y) \prod_{j=1}^{m} P(X_j|Y)$$

Which Bayesian Network encodes this conditional independence?



 $X_i$  are conditionally independent given parent Y



and Learn naively

## What is Bayes doing in my mail server?



#### Let's get Bayesian on your spam:

Content analysis details: 0.9 RCVD\_IN\_PBL

1.5 URIBL\_WS\_SURBL

5.0 URIBL JP SURBL

5.0 URIBL OB SURBL

5.0 URIBL\_SC\_SURBL

2.0 URIBL BLACK

8.0 BAYES 99

(49.5 hits, 7.0 required)

RBL: Received via a relay in Spamhaus PBL [93.40.189.29 listed in zen.spamhaus.org]

Contains an URL listed in the WS SURBL blocklist

[URIs: recragas.cn]

Contains an URL listed in the JP SURBL blocklist

[URIs: recragas.cn]

Contains an URL listed in the OB SURBL blocklist

[URIs: recragas.cn]

Contains an URL listed in the SC SURBL blocklist

[URIs: recragas.cn]

Contains an URL listed in the URIBL blacklist

[URIs: recragas.cn]

BODY: Bayesian spam probability is 99 to 100%

[score: 1.0000]

| A Bayesian Approach to Filtering Junk E-Mail                                                                                  |                                                                             |                                                            |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|
| Mehran Sahami* Susan Dun                                                                                                      | ais† David Heckerman†                                                       | $\mathbf{Eric}\ \mathbf{Horvitz}^{\dagger}$                |  |  |  |  |
| *Gates Building 1A<br>Computer Science Department<br>Stanford University<br>Stanford, CA 94305-9010<br>sahami@cs.stanford.edu | †Microsoft Research<br>Redmond, WA 98052-6<br>{sdumais, heckerma, horvitz}@ | 399                                                        |  |  |  |  |
| Abstract In addressing the growing problem of junk E-mail the Internet, we examine methods for the automate                   |                                                                             | r cost to users of actually<br>ly the time to sort out the |  |  |  |  |

## Ex 3. Naïve Bayes Classifier (m, n large)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left( \prod_{i=1}^{m} \widehat{P}(X_i|Y) \right) \widehat{P}(Y)$$

Training

Testing

#### Email classification

Goal

Based on email content X, predict if email is spam or not.

**Features** 

Consider a lexicon m words (for English:  $m \approx 100,000$ ).

 $X = (X_1, X_2, ..., X_m), m$  indicator variables

 $X_i = 1$  if word j appeared in document

Output

Y = 1 if email is spam

Note: m is huge. Make Naïve Bayes assumption:  $P(X|\text{spam}) = \prod P(X_j|\text{spam})$ 

Appearances of words in email are conditionally independent given the email is spam or not

## Training: Naïve Bayes Email classification

Train set

$$n$$
 previous emails  $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$ 

$$\mathbf{x}^{(i)} = \left(x_1^{(i)}, x_2^{(i)}, \dots, x_m^{(i)}\right)$$
 for each word, whether it appears in email  $i$   $y^{(i)} = 1$  if spam,  $0$  if not spam

Note: *m* is huge.

Which estimator should we use for  $\widehat{P}(X_i|Y)$ ?

- A. MLE
- B. Laplace estimate (MAP)
- C. Other MAP estimate
- Both A and B



## Training: Naïve Bayes Email classification

Train set

*n* previous emails 
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$$

$$\mathbf{x}^{(i)} = \left(x_1^{(i)}, x_2^{(i)}, \dots, x_m^{(i)}\right)$$
 for each word, whether it appears in email  $i$ 

 $v^{(i)} = 1$  if spam, 0 if not spam

Note: *m* is huge.

Which estimator should we use for  $\widehat{P}(X_i|Y)$ ?

MLE

Laplace estimate (MAP)

Other MAP estimate

Both A and B

Many words are likely to not appear at all in the training set!

## Ex 3. Naïve Bayes Classifier (m, n large)

$$\widehat{Y} = \arg \max_{y = \{0,1\}} \left( \frac{m}{\prod_{j=1}^{m}} \widehat{P}(X_j | Y) \right) \widehat{P}(Y)$$

**Training** 

$$\forall i$$
:  $\hat{P}(X_j = 1 | Y = 0)$ ,  $\hat{P}(X_j = 0 | Y = 0)$ , Use MLE or  $\hat{P}(X_j = 1 | Y = 1)$ ,  $\hat{P}(X_j = 0 | Y = 0)$ , Laplace (MAP)  $\hat{P}(Y = 1)$ ,  $\hat{P}(Y = 0)$ 

Testing

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg\,max}} \left( \prod_{j=1}^{m} \text{Laplace (MAP) estimates avoid estimating 0 probabilities for events that don't occur in your training data.} \right)$$

#### Testing: Naïve Bayes Email classification

#### For a new email:

- Generate  $X = (X_1, X_2, ..., X_m)$
- Classify as spam or not using Naïve Bayes assumption

Note: *m* is huge.

Suppose train set size n also huge (many labeled emails).

Can we still use the below prediction?

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left( \prod_{j=1}^{m} \widehat{P}(X_{j}|Y) \right) \widehat{P}(Y)$$

#### Testing: Naïve Bayes Email classification

#### For a new email:

- Generate  $X = (X_1, X_2, ..., X_m)$
- Classify as spam or not using Naïve Bayes assumption

Note: *m* is huge.

Suppose train set size n also huge (many labeled emails).

Can we still use the below prediction?

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left( \prod_{j=1}^{m} \widehat{P}(X_{j}|Y) \right) \widehat{P}(Y)$$

Will probably lead to underflow!

#### Ex 3. Naïve Bayes Classifier (m, n large)

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left( \prod_{j=1}^{m} \widehat{P}(X_{j}|Y) \right) \widehat{P}(Y)$$

Training

$$\forall i: \ \hat{P}(X_j=1|Y=0), \ \hat{P}(X_j=0|Y=0)$$
 Use sums of log-probabilities for  $\hat{P}(Y=1), \ \hat{P}(Y=0)$ 

numerical stability.

**Testing** 

$$\widehat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} \left( \log \widehat{P}(Y) + \sum_{j=1}^{m} \log \widehat{P}(X_j | Y) \right)$$

#### How well does Naïve Bayes perform?

After training, you can test with another set of data, called the test set.

Test set also has known values for Y so we can see how often we were right/wrong in our predictions  $\widehat{Y}$ .

#### Typical workflow:

- Have a dataset of 1789 emails (1578 spam, 211 ham)
- Train set: First 1538 emails (by time)
- Test set: Next 251 messages

| Evaluation criteria on test set:                                                                               |                | Spam  |        | Non-spam |       |
|----------------------------------------------------------------------------------------------------------------|----------------|-------|--------|----------|-------|
| $\mathbf{precision} = \frac{(\text{# correctly predicted class } Y)}{(\text{# correctly predicted class } Y)}$ |                | Prec. | Recall | Prec.    | •     |
| (# predicted class Y)                                                                                          | Words only     | 97.1% | 94.3%  | 87.7%    | 93.4% |
| $recall = \frac{(\# correctly predicted class Y)}{(\# correctly predicted class Y)}$                           | Words +        |       |        |          |       |
| $\frac{1}{\text{(# real class } Y \text{ messages)}}$                                                          | addtl features | 100%  | 98.3%  | 96.2%    | 100%  |

#### What are precision and recall?

Accuracy (# correct)/(# total) sometimes just doesn't cut it.

Precision: Of the emails you predicted as spam,

how many are actually spam?

Measure of false positives

Recall: Of the emails that are actually spam,

how many did you predict?

Measure of false negatives

More on Wikipedia (<a href="https://en.wikipedia.org/wiki/Precision\_and\_recall">https://en.wikipedia.org/wiki/Precision\_and\_recall</a>) and Problem Set 6!