25: Linear Regression and Gradient Ascent

Lisa Yan and Jerry Cain November 9, 2020

Quick slide reference

- 3 Linear Regression
- 7 Linear Regression: MSE
- 12 Linear Regression: MLE
- 19 Gradient Ascent
- Linear Regression with Gradient Ascent
- Extra: Derivations

25f_extra_derivations

25c_linreg_mle

25d_gradient_ascent

25b_linreg_mse

25a_linreg

LIVE

2

24a_linreg

Linear Regression

Today's goals

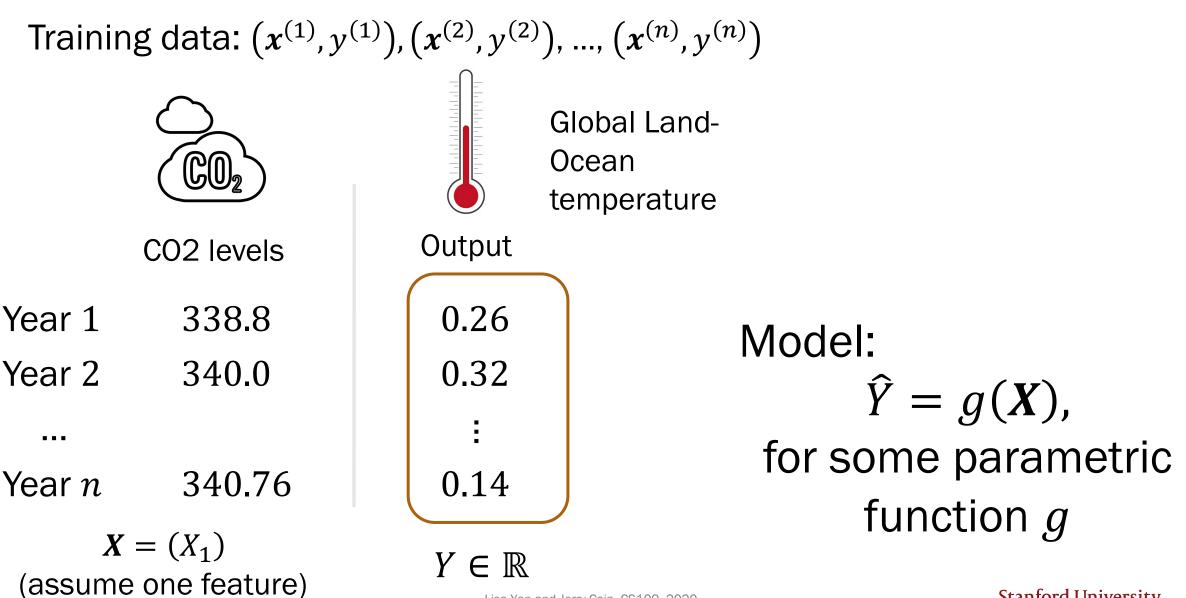
We are going to learn linear regression.

- Also known as "fit a straight line to data"
- However, linear models are too simple for more complex datasets.
- Furthermore, many tasks in CS deal with classification (categorical data), not regression.

The reason we cover this topic is to teach us <u>important skills</u> that will help us design and understand more complicated ML algorithms:

- 1. How to model likelihood of training data $(x^{(i)}, y^{(i)})$
- 2. What rules of argmax/calculus are important to remember
- 3. What gradient ascent is and why it is useful

Regression: Predicting real numbers



Review

Linear Regression

Assume linear model (and *X* is 1-D):

$$\widehat{Y} = g(X) = aX + b$$

Training

Training data:
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$$

Learn parameters $\theta = (a, b)$

Two approaches:

- <u>Analytical</u> solution via mean squared error
- <u>Iterative</u> solution via MLE and gradient ascent

24b_linreg_mse

Linear Regression: MSE

Mean Squared Error (MSE)

For regression tasks, we usually want a g(X) that minimizes MSE:

$$\theta_{MSE} = \underset{\theta}{\operatorname{arg\,min}} E\left[\left(Y - \widehat{Y}\right)^{2}\right] = \underset{\theta}{\operatorname{arg\,min}} E\left[\left(Y - g(X)\right)^{2}\right]$$

- Y and $\hat{Y} = g(X)$ are both random variables
- Intuitively: Choose parameter θ that minimizes the expected squared deviation ("error") of your prediction \hat{Y} from the true Y

For linear regression, where $\theta = (a, b)$ and $\hat{Y} = aX + b$: $E[(Y - aX - b)^2]$

Don't make me get non-linear!

$$\theta_{MSE} = \underset{\theta=(a,b)}{\arg\min} E[(Y - aX - b)^2]$$

$$a_{MSE} = \rho(X, Y) \frac{\sigma_Y}{\sigma_X}, \qquad b_{MSE} = \mu_Y - a_{MSE} \mu_X$$

(Derivation included at the end of this lecture)

Can we find these statistics on X and Y from our training data? Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

Not exactly, but we can estimate them!

Lisa Yan and Jerry Cain, CS109, 2020

Don't make me get non-linear!

$$\theta_{MSE} = \underset{\theta=(a,b)}{\arg\min} E[(Y - aX - b)^2]$$

$$a_{MSE} = \rho(X, Y) \frac{\sigma_Y}{\sigma_X}, \qquad b_{MSE} = \mu_Y - a_{MSE} \mu_X$$

(Derivation included at the end of this lecture)

Can we find these statistics on X and Y from our training data? Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

Estimate parameters based on observed training data:

$$\hat{a}_{MSE} = \hat{\rho}(X,Y) \frac{S_Y}{S_X}, \qquad \hat{b}_{MSE} = \bar{Y} - \hat{a}_{MSE} \bar{X}$$

$$\sum_{K=1}^{p(X,Y)} \sum_{K=1}^{p(X,Y)} \hat{S}_{MSE}$$

Lisa Yan and Jerry Cain, CS109, 2020

Stanford University 10

 $\hat{a}(X V)$

Linear Regression

Assume linear model (and *X* is 1-D):

$$\widehat{Y} = g(X) = aX + b$$

TrainingTraining data:
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$$
Learn parameters $\theta = (a, b)$

If we want to minimize the mean squared error of our prediction,

$$\hat{a}_{MSE} = \hat{\rho}(X, Y) \frac{S_Y}{S_X}, \qquad \hat{b}_{MSE} = \overline{Y} - \hat{a}_{MSE} \overline{X}$$

Review

24c_linreg_mle

Linear Regression: MLE

Linear Regression

Assume linear model (and *X* is 1-D):

$$\widehat{Y} = g(X) = aX + b$$

Training

Learn parameters $\theta = (a, b)$ Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

We've seen which parameters minimize mean squared error.

What if we want parameters that maximize the **likelihood of the training data**?

Note: Maximizing likelihood is typically an objective for classification models.

Review

Consider a sample of *n* i.i.d. random variables $X_1, X_2, ..., X_n$.

- X_i was drawn from a distribution with density function $f(X_i|\theta)$.
- Observed data: (X_1, X_2, \dots, X_n)

Likelihood question:

How likely is the observed data $(X_1, X_2, ..., X_n)$ given parameter θ ?

Likelihood function, $L(\theta)$:

$$L(\theta) = f(X_1, X_2, \dots, X_n | \theta) = \prod_{i=1}^n f(X_i | \theta)$$

This is just a product, since X_i are i.i.d.

Likelihood of the training data

Training data (*n* datapoints):

(shorthand)

- $(x^{(i)}, y^{(i)})$ drawn i.i.d. from a distribution $f(X = x^{(i)}, Y = y^{(i)}|\theta) = f(x^{(i)}, y^{(i)}|\theta)$
- $\hat{Y} = g(X)$, where $g(\cdot)$ is a function with parameter θ

We can show that θ_{MLE} maximizes the log conditional likelihood function:

$$\theta_{MLE} = \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$$

(This derivation is included at the end of this video)

Linear Regression, MLE

1. Assume linear model (and *X* is 1-D):

$$\widehat{Y} = g(X) = aX + b$$

2. Define maximum likelihood estimator:

$$\theta_{MLE} = \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$$

- **!** Issue: We have a model of the <u>prediction</u> \hat{Y} (and not Y)
- Remember MSE approach, where we minimize the squared error between \hat{Y} and Y?
- Now, we model this error directly!

$$Y = \hat{Y} + Z$$

= aX + b + Z

error/noise (also random)

$$\widehat{Y} = g(X) = aX + b$$

Minimum Mean Squared Error $\theta_{MSE} = \arg\min_{\theta} E\left[\left(Y - g(X)\right)^2\right]$

- Do not directly model *Y* (nor error)
- Parameters are estimates of statistics from training data:

$$\hat{a}_{MSE} = \hat{\rho}(X, Y) \frac{S_Y}{S_X}$$
$$\hat{b}_{MSE} = \bar{Y} - \hat{a}_{MSE} \bar{X}$$

Maximum Likelihood Estimation $\theta_{MLE} = \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$

• Directly model error between predicted \hat{Y} and Y $Y = \hat{Y} + Z = aX + b + Z$

If we assume error $Z \sim \mathcal{N}(0, \sigma^2)$, then these two estimators are **equivalent**.

 $\theta_{MSE} = \theta_{MLE}!$

Linear Regression, MLE (next steps)

1. Assume linear model (and *X* is 1-D):

$$\widehat{Y} = g(X) = aX + b$$

2. Define maximum likelihood estimator:

$$\theta_{MLE} = \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$$

3. Model error, *Z*:

Y = aX + b + Z, where $Z \sim \mathcal{N}(0, \sigma^2)$

4. Pick $\theta = (a, b)$ that maximizes likelihood of training data

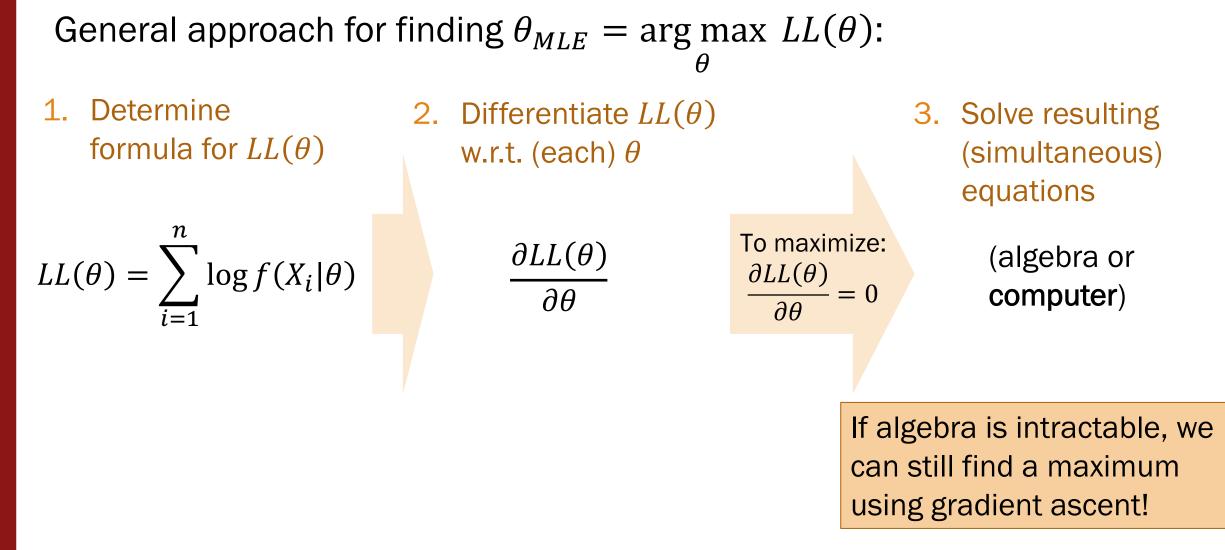
We will not analytically find a solution. Instead, we are going to use **gradient ascent**, an **iterative optimization algorithm**.

24c_gradient_ascent

Gradient Ascent

Computing the MLE

Review

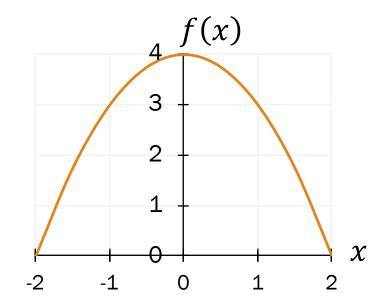


Multiple ways to calculate argmax

Let
$$f(x) = -x^2 + 4$$
,
where $-2 < x < 2$.

What is arg max
$$f(x)$$
?
objective function

A. Graph and guess



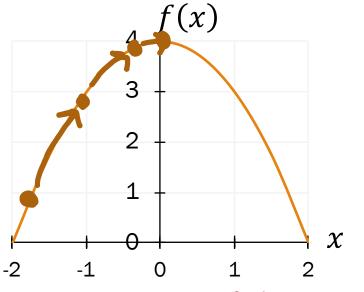
B. Differentiate,
 set to 0, and
 solve

$$\frac{df}{dx} = -2x = 0$$

x = 0

C. Gradient ascent:

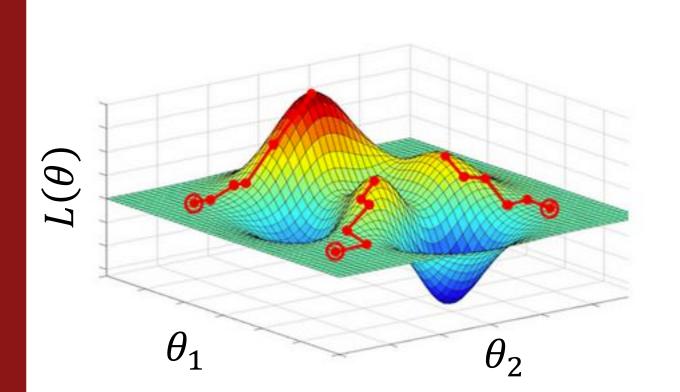
educated guess & check

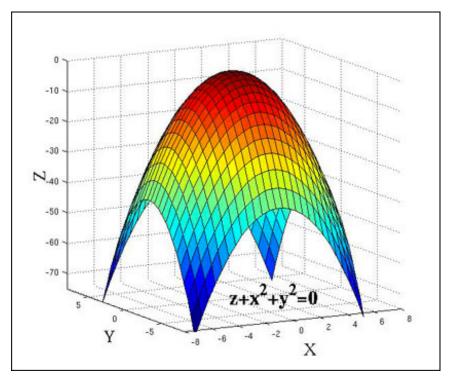


Stanford University 21

Gradient ascent

Walk uphill and you will find a local maxima (if your step is small enough).





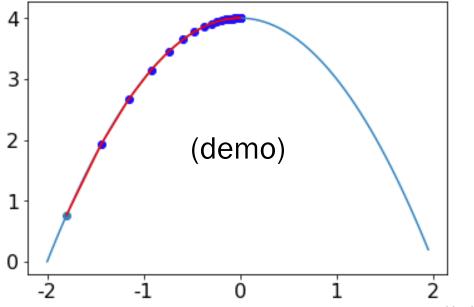
If your function is concave, Local maxima = global maxima

Gradient ascent algorithm

Walk uphill and you will find a local maxima (if your step is small enough).

1.

Let
$$f(x) = -x^2 + 4$$
,
where $-2 < x < 2$.



$$\frac{df}{dx} = -2x \qquad \text{Gradient at } x$$

2. Gradient ascent algorithm: initialize x repeat many times: compute gradient x += η * gradient

(live)25: Linear Regressionand Gradient Ascent

Lisa Yan and Jerry Cain November 9, 2020

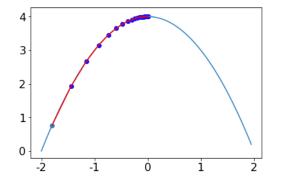
Three goals today

• How to model likelihood of training data $(x^{(i)}, y^{(i)})$

 $(\theta_{MLE}$ also maximizes log conditional likelihood)

 What gradient ascent is, why it is useful, and how to use it

(an iterative optimization algorithm)



Use properties of argmax/calculus

(to review)

Linear Regression, MLE (so far)

Assume linear model (and *X* is 1-D):

$$\widehat{Y} = g(X) = aX + b$$

Y = aX + b + Z, where $Z \sim \mathcal{N}(0, \sigma^2)$ Model error, Z:

Pick $\theta = (a, b)$ that maximizes likelihood of training data

 $(\theta_{MLE}$ also maximizes

 $\theta_{MLE} = \arg \max LL(\theta)$ $= \arg \max_{\theta} \sum_{i=1}^{n} \log f(x^{(i)}, y^{(i)}, |\theta)$ $= \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$ log conditional likelihood)

Stanford University 26

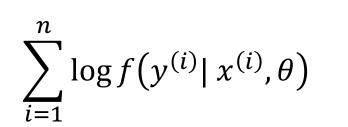
Review

Lisa Yan and Jerry Cain, CS109, 2020

Computing the MLE with gradient ascent

General approach for finding θ_{MLE} , the MLE of θ :

1. Determine formula for $LL(\theta)$ log conditional likelihood



2. Differentiate $LL(\theta)$ w.r.t. (each) θ

3. Solve resulting (simultaneous) equations

$$\frac{\partial}{\partial \theta_j} \sum_{i=1}^n \log f(y^{(i)} | x^{(i)}, \theta)$$

(computer) Gradient Ascent

Model: $\theta = (a, b)$ Y = aX + b + Z $Z \sim \mathcal{N}(0, \sigma^2)$ Optimization problem: $\arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$

Over the next few slides, we will show that our MLE linear regression θ_{MLE} reduces to

$$\arg \max_{\theta} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right]$$

objective function
Lisa Yan and Jerry Cain, CS109, 2020

Breakout Rooms

Check out the questions on the next slide (Slide 30). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/171555

Breakout rooms: 3 min

- Model: $\theta = (a, b)$ Y = aX + b + Z $Z \sim \mathcal{N}(0, \sigma^2)$ Optimization y = aX + b + Z $Z \sim \mathcal{N}(0, \sigma^2)$ Optimization y = aX + b + Z y = aX + b + Zy = aX + b +
- **1.** What is the conditional distribution, $Y|X, \theta$?
- 2. Substitute 1. into objective fn.
- 3. Use argmax properties to simplify objective fn.

- Model: $\theta = (a, b)$ Y = aX + b + Z $Z \sim \mathcal{N}(0, \sigma^2)$ Optimization problem: $\arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$
- **1.** What is the conditional distribution, $Y|X, \theta$? $f(y^{(i)}|x^{(i)}, \theta) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(y^{(i)} - (ax^{(i)} + b))^2/(2\sigma^2)}$
- 2. Substitute 1. into objective fn.

$$\arg\max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta) = \arg\max_{\theta} \sum_{i=1}^{n} \log \left[\frac{1}{\sqrt{2\pi\sigma}} e^{-(y^{(i)} - ax^{(i)} - b)^2 / (2\sigma^2)} \right]$$
$$\underset{\text{natural log}}{\text{using}} = \arg\max_{\theta} \left[\sum_{i=1}^{n} -\log\sqrt{2\pi\sigma} - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right]$$

Lisa Yan and Jerry Cain, CS109, 2020

Stanford University 31

- Model: $\theta = (a, b)$ Y = aX + b + Z $Z \sim \mathcal{N}(0, \sigma^2)$ Optimization problem: $\arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$
- 3. Use argmax properties to simplify objective fn.

$$\arg\max_{\theta} \left[\sum_{i=1}^{n} -\log\sqrt{2\pi}\sigma - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left(y^{(i)} - ax^{(i)} - b \right)^{2} \right]$$
 (from previous slide)

$$= \arg\max_{\theta} \left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (y^{(i)} - ax^{(i)} - b)^2 \right]$$

Argmax refresher #1: Invariant to additive constants

$$= \arg \max_{\theta} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right]$$

Argmax refresher #2:

Invariant to positive constant scalars

Model: $\theta = (a, b)$ Y = aX + b + Z $Z \sim \mathcal{N}(0, \sigma^2)$ Optimization problem: $\arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$

4. Celebrate!

$$\arg\max_{\theta} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right]$$

Computing the MLE with gradient ascent

General approach for finding θ_{MLE} , the MLE of θ :

1. Determine formula for $\frac{LL(\theta)}{\theta}$

log conditional likelihood

 $\sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$

 $h(\theta) = -\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2$

2. Differentiate $LL(\theta)$ w.r.t. (each) θ

 $\frac{\partial}{\partial \theta_i} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$

2-D gradient: $\left(\frac{\partial h(\theta)}{\partial a}, \frac{\partial h(\theta)}{\partial b}\right)$ 3. Solve resulting (simultaneous) equations

> (computer) Gradient Ascent

Think

Slide 36 has two questions to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/153773

Think by yourself: 2 min

2. Compute gradient

- Model: $\theta = (a, b)$ Optimization Y = aX + b + Z problem: $\arg \max_{\theta} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right]$ $Z \sim \mathcal{N}(0, \sigma^2)$
- 1. What is the derivative of the objective function w.r.t. *a*?

$$\frac{\partial}{\partial a} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right] =$$

2. What is the derivative of the objective function w.r.t. *b*?

Calculus refresher #1: Derivative(sum) = sum(derivative)

> Calculus refresher #2: Chain rule 🔆 🔆 🌾

2. Compute gradient

- Model: $\theta = (a, b)$ Optimization Y = aX + b + Z problem: $\arg \max_{\theta} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right]$ $Z \sim \mathcal{N}(0, \sigma^2)$
- 1. What is the derivative of the objective function w.r.t. *a*?

$$\frac{\partial}{\partial a} \left[-\sum_{i=1}^{n} \left(y^{(i)} - a x^{(i)} - b \right)^2 \right] =$$

Calculus refresher #1: Derivative(sum) = sum(derivative)

> Calculus refresher #2: Chain rule 🔆 🔆 🌾

2. Compute gradient

- Model: $\theta = (a, b)$ Optimization Y = aX + b + Z problem: $\arg \max_{\theta} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right]$ $Z \sim \mathcal{N}(0, \sigma^2)$
- 1. What is the derivative of the objective function w.r.t. *a*?
- 2. What is the derivative of the objective function w.r.t. *b*?

$$\sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$

$$\sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$$

analytical solution for a_{MLE} , b_{MLE} : Set to 0 and solve simultaneous equations

Next up: We will reach the same solution **computationally** with **gradient ascent**.

Interlude for jokes

Note: gradient <u>de</u>scent finds local <u>min</u>imum

Stanford University 40

Computing the MLE with gradient ascent

General approach for finding θ_{MLE} , the MLE of θ :

1. Determine formula for $LL(\theta)$

$$\sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$$

$$h(\theta) = -\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2}$$

$$\frac{\partial}{\partial \theta_j} \sum_{i=1}^n \log f(y^{(i)} | x^{(i)}, \theta)$$

$$\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^n 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$

$$\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^n 2(y^{(i)} - ax^{(i)} - b)$$

2. Differentiate $LL(\theta)$

w.r.t. (each) θ

3. Solve resulting (simultaneous) equations

(computer) Gradient Ascent

Lisa Yan and Jerry Cain, CS109, 2020

log conditional likelihood

3. Gradient ascent with multiple parameters

Optimization
problem:
$$\underset{\theta}{\operatorname{arg\,max}} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right]$$
Gradient:
$$\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$
$$= \underset{\theta}{\operatorname{arg\,max}} h(\theta)$$
$$\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$$

initialize θ
repeat many times:
 compute gradient
 θ += η * gradient

How does this work for multiple parameters?

3. Gradient ascent with multiple parameters

Optimization
problem:
$$\underset{\theta}{\operatorname{arg\,max}} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right]$$
Gradient:
$$\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$
$$= \underset{\theta}{\operatorname{arg\,max}} h(\theta)$$
$$\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$$

a, b = 0, 0# initialize θ repeat many times: gradient_a, gradient_b = 0, 0 # TODO: fill in $a += \eta * gradient_a$ # θ += η * gradient $b += \eta * gradient b$

How do we pseudocode the gradients we derived?

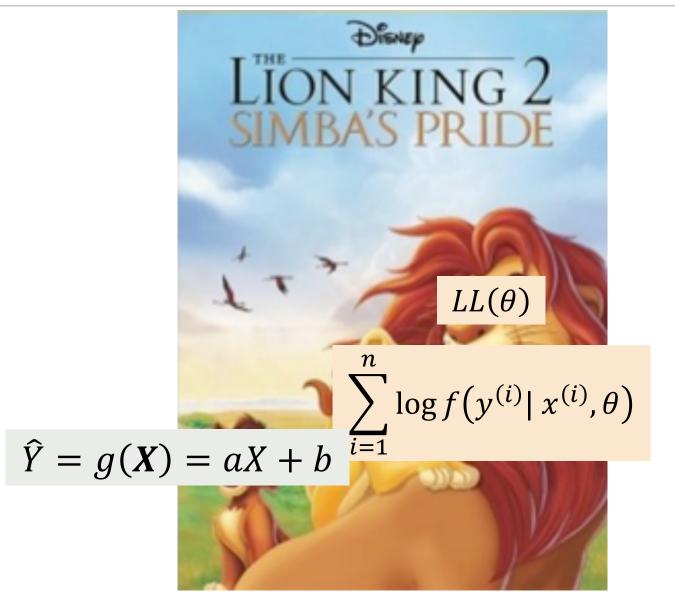
3. Gradient ascent with multiple parameters

Optimization
problem:
$$\underset{\theta}{\operatorname{arg\,max}} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right]$$
Gradient:
$$\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$
$$= \underset{\theta}{\operatorname{arg\,max}} h(\theta)$$
$$\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$$

gradient b += 2 * diff

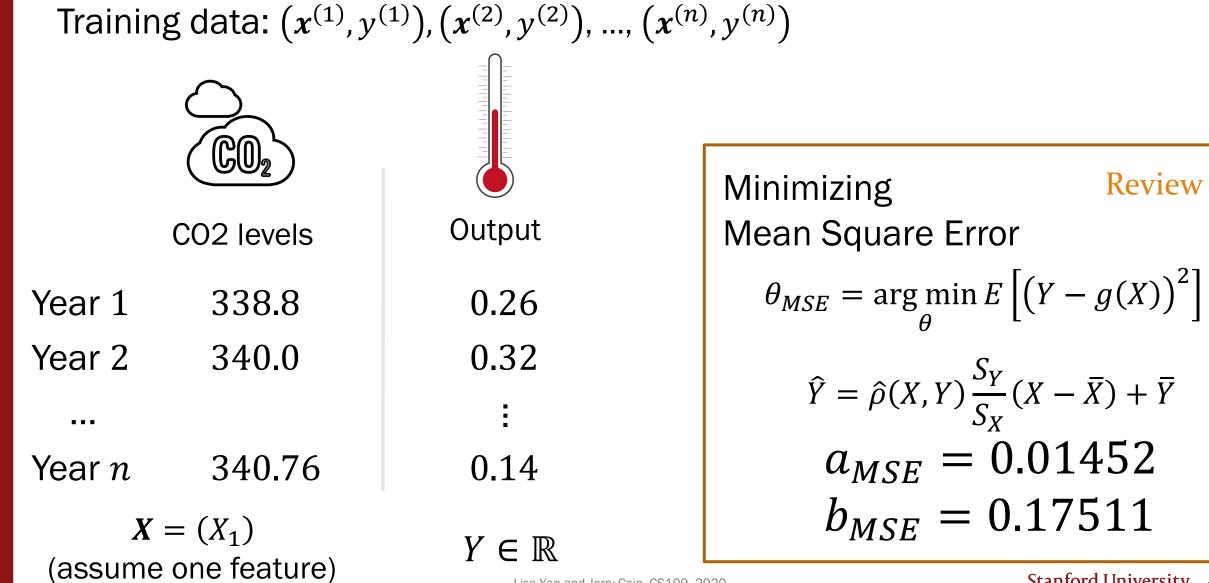
a += η * gradient_a # θ += η * gradient b += η * gradient_b Finish computing gradient before updating any part of θ .

Let's try it out



(Fall 2020 <u>demo</u>)

Global land-ocean temperature prediction



Lisa Yan and Jerry Cain, CS109, 2020

Stanford University 45

Optimization
problem:
$$\underset{\theta}{\operatorname{arg\,max}} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right]$$
Gradient:
$$\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$
$$= \underset{\theta}{\operatorname{arg\,max}} h(\theta)$$
$$\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$$

a, b = 0, 0# initialize θ repeat many times: gradient a, gradient b = 0, 0 for each training example (x, y): diff = y - (a * x + b)gradient_a += 2 * diff * x gradient b += 2 * diff a += η * gradient_a # θ += η * gradient $b += \eta * \text{gradient } b$

Updates to *a* and *b* should include information from all *n* training datapoints

Optimization
problem:
$$\underset{\theta}{\operatorname{arg\,max}} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right]$$
Gradient:
$$\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$
$$= \underset{\theta}{\operatorname{arg\,max}} h(\theta)$$
$$\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$$

a, b = 0, 0 # initialize
$$\theta$$

repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):
diff = y - (a * x + b)
gradient_a += 2 * diff * x
gradient_b += 2 * diff

a += η * gradient_a # θ += η * gradient
b += η * gradient_b

How do we interpret the contribution of the i-th training datapoint?

Optimization
problem:
$$\underset{\theta}{\operatorname{arg\,max}} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right]$$
Gradient:
$$\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$
$$= \underset{\theta}{\operatorname{arg\,max}} h(\theta)$$
$$\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$$

a, b = 0, 0# initialize θ repeat many times: gradient_a, gradient_b = 0, 0 for each training example (x, y): diff = y - (a * x + b)gradient_a += 2 * diff * x gradient b += 2 * diff a += $\eta * \text{gradient}_a$ # θ += $\eta * \text{gradient}$ $b += \eta * \text{gradient } b$

Prediction error! $y^{(i)} - \hat{y}^{(i)}$

3b. Interpret

Optimization
problem:
$$\underset{\theta}{\operatorname{arg\,max}} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right]$$
Gradient:
$$\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$
$$= \underset{\theta}{\operatorname{arg\,max}} h(\theta)$$
$$\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$$

a, b = 0, 0 # initialize θ repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):
 prediction_error = y - (a * x + b)
 gradient_a += 2 * prediction_error * x
 gradient_b += 2 * prediction_error

a += $\eta * \text{gradient}_a$ # θ += $\eta * \text{gradient}_b$ b += $\eta * \text{gradient}_b$

Optimization
problem:
$$\underset{\theta}{\operatorname{arg\,max}} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right]$$
Gradient:
$$\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$
$$= \underset{\theta}{\operatorname{arg\,max}} h(\theta)$$
$$\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$$

a, b = 0, 0 # initialize θ repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):
 prediction_error = y - (a * x + b)
 gradient_a += 2 * prediction_error * x
 gradient_b += 2 * prediction_error

a += $\eta * \text{gradient}_a$ # θ += $\eta * \text{gradient}_b$ b += $\eta * \text{gradient}_b$

 $\hat{Y} = aX + b$, so update to *a* should also scale by $x^{(i)}$

Optimization
problem:
$$\underset{\theta}{\operatorname{arg\,max}} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^{2} \right]$$
Gradient:
$$\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$$
$$= \underset{\theta}{\operatorname{arg\,max}} h(\theta)$$
$$\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$$

a, b = 0, 0 # initialize θ repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):
 prediction_error = y - (a * x + b)
 gradient_a += 2 * prediction_error * x
 gradient_b += 2 * prediction_error * 1

a += $\eta * \text{gradient}_a$ # θ += $\eta * \text{gradient}_b$ b += $\eta * \text{gradient}_b$

 $\hat{Y} = aX + b$, so update to *b* just scales by 1, not $x^{(i)}$

Reflecting on today

We did a lot today!

- Learned gradient ascent
- Modeled likelihood of training dataset
- Thanked argmax for its convenience
- Remembered calculus
- Implemented gradient ascent with multiple parameters to optimize for

Next up, we will use all these skills <u>and more</u> to tackle the final prediction model of CS109:

Logistic Regression

24f_extra_derivations

Extra: Derivations

Don't make me get non-linear!

$$\theta_{MSE} = \underset{\theta=(a,b)}{\arg\min} E[(Y - aX - b)^2]$$

1. Differentiate w.r.t. (each) θ , $\frac{\partial}{\partial a} E[(Y - aX - b)^2] = E\left[\frac{\partial}{\partial a}(Y - aX - b)^2\right]$ (E[·] is a linear function w.r.t. a) set to 0 = E[-2(Y - aX - b)X]

$$= -2E[XY] + 2aE[X^{2}] + 2bE[X]$$
$$= E[-2(Y - aX - b)]$$
$$= -2E[Y] + 2aE[X] + 2b$$

2. Solve resulting simultaneous equations

Stanford University 54

Log conditional likelihood, a derivation

Show that θ_{MLE} maximizes the **log conditional likelihood** function:

$$\theta_{MLE} = \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$$

 $\begin{array}{ll} \underline{\text{Proof:}} & \theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(x^{(i)}, y^{(i)} | \theta) & = \arg\max_{\theta} \sum_{i=1}^{n} \log f(x^{(i)}, y^{(i)} | \theta) & \begin{array}{l} (\theta_{MLE} \text{ also} \\ \max \text{ maximizes } LL(\theta)) \end{array}$ $= \arg\max_{\theta} \sum_{i=1}^{n} \log f(x^{(i)} | \theta) + \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta) & \begin{array}{l} (\text{chain rule,} \\ \log \text{ of product = sum of logs}) \end{array}$

$$= \arg \max_{\theta} \sum_{i=1}^{n} \log f(x^{(i)}) + \sum_{i=1}^{n} \log f(y^{(i)}|x^{(i)},\theta)$$

$$= \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)}|x^{(i)},\theta)$$

 $(x^{(i)} \text{ indep. of } \theta)$

 $(f(x^{(i)}) \text{ constant w.r.t. } \theta)$