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Today’s goals

We are going to learn linear regression.
Also known as “fit a straight line to data”

However, linear models are too simple for more complex datasets.

Furthermore, many tasks in CS deal with classification (categorical
data), not regression.

The reason we cover this topic is to teach us important skills that will help
us design and understand more complicated ML algorithms:

How to model likelihood of training data (x©,y®)
What rules of argmax/calculus are important to remember
What gradient ascent is and why it is useful
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Regression: Predicting real numbers

Training data: (x@,y®M), (x@,y@), _, (x™,y™)

O
G0,

CO2 levels

Year 1 338.8
Year 2 340.0

Year n 340.76

X = (X1)
(assume one feature)

(=)

Ql)

Global Land-
Ocean
temperature

Output

(

\_

0.26
0.32

0.14

\

J

Y eER
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Model:

Y =g(X),
for some parametric
function g
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Linear Regression

Assume linear model

(and X is 1-D): Y = g(X) =aX+Db

Training data: (x@,y D), (x@,y®@), .., (x™, y™)

T
"aiNNE | carn parameters 6 = (a, b)

Two approaches:
e Analytical solution via mean squared error
* Iterative solution via MLE and gradient ascent
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Mean Squared Error (MSE)

For regression tasks, we usually want a g(X) that minimizes MSE:

Omse = argemin E [(Y — 17)2] = argemin E [(Y — Q(X))zl

Y and Y = g(X) are both random variables

Intuitively: Choose parameter 6 that rpinimizes the expected squared
deviation (“error”) of your prediction Y from the true Y

For linear regression, where 8 = (a,b) and Y = aX + b:
E[(Y —aX — b)?]
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Don't make me get non-linear!

Ovse = argmin E[(Y — aX — b)?]

6=(a,b)
Oy (Derivation
aysg = pX,Y) 7 bysg = Uy — Qysg Uy included at the
X end of this lecture)

Can we find these statistics on X and Y from our training data®
Training data: ~ (x@,yM), (x@,y@), ., (x™,y™)

Not exactly, but we can estimate them! K‘?J

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 9




Don't make me get non-linear!

Ovse = argmin E[(Y — aX — b)?]
6=(a,b)

Oy (Derivation
aysg = pX,Y) 7 buseg = Uy — Qyse Ux included at the
X end of this lecture)

Can we find these statistics on X and Y from our training data®
Training data: ~ (x@,yM), (x@,y@), ., (x™,y™)

. 0(X,Y):

Estimate parameters S, A ) y ok

based on observed  dmse = PX,Y) =, busg =Y — AuseX  corelatior
X (Wikipedia)

training data:
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https://en.wikipedia.org/wiki/Correlation_and_dependence

Linear Regression

Assume linear model

(and X is 1-D): Y = g(X) =aX+Db

Training data: (x@,y D), (x@,y®@), .., (x™, y™)

T
"aiNNE | carn parameters 6 = (a, b)

If we want to minimize the mean squared error of our prediction,

R . Sy
ayse = PX,Y) =—

g BMSE — 7 — aMSEX
X
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Linear Regression

Assume linear model -
(and X is 1-D): Y =g9gX)=aX+b
. Learn parameters 8 = (a, b)
Training

Training data: (x@,y®), (x@,y®@), ., (x™,y™)

We've seen which parameters minimize mean squared error.

What if we want parameters that maximize Note: Maximizing likelihood is

the likelihood of the training data? typically an objective for
classification models.
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Likelihood, it’'s been a minute

Consider a sample of n i.i.d. random variables X, X5, ..., X,,.
X; was drawn from a distribution with density function f(X;|8).

Observed data: (X, X5, ..., X,,) Or mass

Likelihood question:
How likely is the observed data (X4, X5, ..., X,,) given parameter 67

Likelihood function, L(6):
n
L(O) = F(Xy, Xyy e, X |6) = 1_[ £(X,16)
=1

This is just a product, since X; are i.i.d.
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Likelihood of the training data

Training data (n datapoints): (shorthand)
(x®,yD) drawn i.i.d. from a distribution (X = xW,y = yV|9) = f(x®,yD|9)
Y = g(X), where g(-) is a function with parameter 6

We can show that 8,,; r maximizes the
log conditional likelihood function:

n
Oy = arg maxz logf(y(i)| x®) 9)
6 .
i=1

(This derivation is included at the (dii?ﬁg It)
end of this video) |
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Linear Regression, MLE

1. Assume linear model

(and X is 1-D): Y=g(X)=aX+Db
n
2. Define maximum likelihood . .
estimator: OmLE = argemaxz log f(y®V] x,6)
i=1

L. Issue: We have a model of the prediction Y (and not Y)

« Remember MSE approach, where R
we minimize the squared error between Y and Y?

* Now, we model this error directly! Y=V +7 error/noise

=aX+b+ 7

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVCI‘Sity 16
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Comparison: MSE vs MLE

V¥ =gX)=aX+b
Minimum Mean Squared Error Maximum Likellthood Estimation

Oysg = argaminE [(Y — g(X))2] Omig = argemaxz logf(y(i)| x®), 0)
i=1

Do not directly model Y (nor error) Directly mgdel error between
Parameters are estimates of predicted ¥ and ¥
statistics from training data: Y=Y+7Z=aX+b+7Z
S
Ayse = pX,Y) S—Y If we assume error Z~N(0,52), then
X

_ _ these two estimators are equivalent.

9MSE — 9MLE!
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Linear Regression, MLE (next steps)

1. Assume linear model

(and X is 1-D): Y=9gX)=aX+b
n
2. Define maximum likelihood : ;
. _ Oy g = arg maxz log f(y®P]xW, 0
estimator: 9 - ( )
3. Model error, Z: Y =aX + b+ Z, where Z~N(0,0%)

4. Pick 68 = (a, b) that maximizes

L o We will not analytically find a solution.
likelihood of training data

Instead, we are going to use gradient
ascent, an iterative optimization algorithm.
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Computing the MLE

Review

General approach for finding 8,,; = arg max LL(60):

1. Determine 2.

formula for LL(6)

LL(O) = ) logf(X;|6)
=1

0

Differentiate LL(0)
w.r.t. (each) 6

dLL(6)
00

Lisa Yan and Jerry Cain, CS109, 2020

To maximize:
ILL(O) _

3. Solve resulting
(simultaneous)
equations

(algebra or
computer)

If algebra is intractable, we
can still find a maximum
using gradient ascent!
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Multiple ways to calculate argmax

2
Let f(x) = —x* + 4, What is arg max\f(x)?’

where -2 < x < 2. x '
objective function
A. Graph and guess 5. Differentiate, C. Gradient ascent:
set to O, and educated guess & check
f(x) solve (x)
df
—=-2x=0
dx *
x =0
o : X

-2 -1 0 1 2
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Gradient ascent

Walk uphill and you will find a local maxima
(if your step is small enough).

If your function is concave,
Local maxima = global maxima
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Gradient ascent algorithm

Walk uphill and you will find a local maxima
(if your step is small enough).

Let f(x) = —x? + 4, df

where =2 < x < 2. v —2X Gradient at x
X

N
Gradient ascent algorithm:

initialize Xx

3 (demo) repeat many times:
1] compute gradient
N X += n *x gradient

2 1 0 1 2

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 23
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Three goals today

How to model likelihood of training (O a@lso maximizes log
data (x(l),y@) conditional likelihood)
What gradient ascent is, (an iterative

why it is useful, optimization

and how to use it algorithm) 1

Use properties of argmax/calculus (to review)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 25




Review

Linear Regression, MLE (so far)

Assume linear model -
(and X is 1-D) Y =g9gX)=aX+b
Model error, Z: Y=aX + b+ Z,where Z~N(0,0%)

HMLE = arg max LL(G)

= arg maxz: logf(x(‘),y(l) |9)

Pick 8 = (a, b) that maximizes
likelihood of training data

(Op g also maximizgs = arg maXz log f(y(‘)| x(l) 9)

log conditional likelihood)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 26



Computing the MLE with gradient ascent

General approach for finding 68,,; . , the MLE of 6:

/1. Determine \ 2. Differentiate LL(6) 3. Solve resulting
formula for LL(60) w.r.t. (each) @ (simultaneous)
log conditional likelihood equations

n a n
lo D] x®, g —210 D) x®, g (computer)
; gf(y | ) 00, - gf(y | ) Gradient Ascent

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 27



Determine formula for log conditional likelihood

Model: 6 = (a,b) Optimization . OIMO)
1 l l , 0
Y=aX+b+Z problem: arg;naX; o8 (01 x.6)
Z~N(0,0%)

Over the next few slides, we will show that
our MLE linear regression 6,,; y reduces to

- _
arg max | — z(y(i) —ax®) — b)2
0 .

_ =1 i

objective function

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 28




Check out the questions on the next slide
(Slide 30). Post any clarifications here!

Bl'eakOUt https://us.edstem.org/courses/2678/discussion/171555
Rooms

Breakout rooms: 3 min

29



https://us.edstem.org/courses/2678/discussion/171555

Determine formula for log conditional likelihood

Model: 0 = (a,b) Optimization OIO
] l Y.0
Y=aX+b+ 7 problem: e maxz: og fyP1x,9)
Z~N(0,0°) goal  4rg maX[ Z(y(l) —axt - b)zl

What is the conditional
distribution, Y|X, 687

Substitute 1. into objective fn.

Use argmax properties
to simplify objective fn.

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 30




Determine formula for log conditional likelihood

Model: 6 = (a,b) Optimization C D1 (1)
] i i ’9
Y=aX+b+7Z problem: arg;naX; o8 (01 x.6)
Z~N(0,0%)
What is the conditional Y|X,0~ N (aX + b,0%)
. . . ) . 2
distribution, Y|X, 67 F(y @) x®, 9) = o~ (Y9~(ax®+b))"/(20?)
V21o

Substitute 1. into objective fn.

n n
. . 1 i D _p)>
arg maxz log f(yW]x®,0) =arg maxz: log [ e—(yW-axV-b) /(202)]
6 6 & Viro

n n
: 1 . :
USINg = arg max[ E —logV2mo — o— E (y® — ax® — b)zl
o |4 :
i=1 =1

natural log
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Determine formula for log conditional likelihood

Model: 6 = (a,b) Optimization En D1 ()
1 l l , 9
Y =aX+b+ 7 problem: B, o8 /(01 ,6)
Z~N(O, 02)

n
Use argmax properties 15 oy [2 —log2mo — _22(3,(1) ax® — b) ]
to simplify objective fn. o & 20

(from previous slide)

— a1 max z (y® — ax® — b) Argmax refresher #1.:
g 202 Y Invariant to additive constants

0 0 2 Argmax refresher #2:

— l l T

- arg max (= Z(y — ax'¥) = b) Invariant to positive constant scalars
i=1

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 32




1. Determine formula for log conditional likelihood

Model: 6 = (a,b) Optimization . OIMO)
1 l l , 0
Y=aX+b+Z problem: argemaX; o8 (01 x.6)
Z~N(0,0%)

4. Celebrate!

o, _
arg max | — Z(y(i) —ax®) — b)2
6 .

L =1 i

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 33




Computing the MLE with gradient ascent

General approach for finding 8, , the MLE of 8:

/2. Differentiate LL(6) \ 3. Solve resulting
w.r.t. (each) 6 (simultaneous)
equations
a n
— )] D] D g (computer)
09]-; og f(y®1x1,6) Gradient Ascent
n , 2-D gradient:
h©) == ) (Y —ax® — b) oh(6) Oh(6)
= _ da ' 9b y

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul’liVeI‘Sity 34




Slide 36 has two questions to go over by

Think yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/153773

Think by yourself: 2 min

(b If)

35
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Compute gradient

Model: 6 = (a,b) Optimization i l_ i ,
Y=aX+b+Z problem: &g [_;(y() —ax® — b) ]
Z~N(0,0%)

What is the derivative of the Calculus refresher #1.

Derivative(sum) = sum(derivative)

objective function w.r.t. a?

ol «—. | , Calculus refresher #2:
da _E(ym —ax® —b)" | = Chain rule
=1

What is the derivative of the

objective function w.r.t. b? G D)
(b yourself)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 36




>. Compute gradient

Model: 8 = (a,b) Optimization = | )
Y=aX+b+Z problem: 85" [‘;(Y ¥ —ax® —b) ]
Z~N(0,0%)

1. What is the derivative of the Calculus refresher #1.

Derivative(sum) = sum(derivative)

objective function w.r.t. a?

Calculus refresher #2:

n

0 . . 2

P [_ E (y(l) —ax® — b) ] = Chain rule
i=1

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 37




Compute gradient

Model: 8 = (a,b) Optimization = | )
Y=aX+b+Z problem: '8 [_;(3’@ —ax® = b) ]
Z~N(0,0%)

What is the derivative of the S : : .
objective function w.r.t. a? ; (v ) ()

What is the derivative of the 2 2(y® — ax® — p)
objective function w.r.t. b? —

analytical solution for a; g, by g: Set Next up: We will reach the same solution
to O and solve simultaneous equations computationally with gradient ascent.

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 38




B minima

local Machine
A5 globaly minima ZESeTaSe l(_’-a rming

ri e ,
b

Gradient
descent

= f\:‘;\_ >

Life is gradient descent

Interlude for jokes

Note: gradient descent
finds local minimum




Computing the MLE with gradient ascent

General approach for finding 68,,; . , the MLE of 6:

)
3. Solve resulting
(simultaneous)
equations
(computer)
Gradient Ascent
oh(0) ~ | | |
o | 2 = _Z (y® — ax® — p)(x®)
h(0) = —Z(y(‘) —ax®W —b) =l .
i=1 ah(e) Z . .
(y(l) —ax® — b) \ /

and Jerry Cain, CS109, 2020 Stanford University 40




5. Gradient ascent with multiple parameters

Optimization argmax[ (y(l)_ax(z)_b)zl Gradient: ah(é’) @ @ @
i) _ D _p i
problem: ° Z z O ~ax &)

= arg max h(6
8] (6) ah(e) 2 (y® — ax® — p)

initialize 6
repeat many times:

compute gradient How does this
0 += n *x gradient work for
multiple

parameters?

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 41




Gradient ascent with multiple parameters

Optimization arg max[ Z(y(i) —ax® — b)zl Gradient: 0h(9) 2 (y(l) — ax® — b)(x(l))

problem:
= arg max h(6
8] (6) ah(e) 2 (y® — ax® — p)
a, b=0, 0 # initialize 6
repeat many times:
gradient_a, gradient_b = 0, 0 How do we
# TODO: fill 1in bseudocode the
gradients we
derived?
a += n *x gradient_a # 0 += n x gradient

b += r] > g 'a d 1€n t_b Stanford University 42




Gradient ascent with multiple parameters

Optimization argmax[ Z(y(i)_ax(i)_b)zl Gradient: ah(e) 2 (y® — ax® — p)(x®)

problem:
= argemax h(6) ah(e)

a, b=0, 0 # initialize 6
repeat many times:

gradient_a, gradient_b = 0, 0

for each training example (x, y):
diff =y — (a *x x + b)
gradient_a += 2 % diff x X
gradient_b += 2 % diff

a += n *x gradient_a # 0 += n x gradient
b += n * gradient_b

z (y(l) — ax® — b)

Finish computing
gradient before
updating any part
of 6.

Stanford University 43




Let’s try it out

THE %
LION KING 2

.‘@.‘MBA'S PRIDE
"

’ -
WA r@ (Fall 2020 demo)

n
— ) Elog F(y®] x®, )

Y =gX) = aX +b = -

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 44



https://colab.research.google.com/drive/1c8ZR3SNdBIhEDmd0WbFnbbF0hMpRE1Nf?authuser=1

Global land-ocean temperature prediction

Training data: (x@,y®M), (x@,y@), _, (x™,y™)

o
6o |
: ® Minimizing
CO2 levels Output Mean Square Error
Year1  338.8 0.26 Ouse = argmin (¥ — g (x)’]
Year 2 34.0.0 0.32
P =5(X, Y)—(X ) +7
Yearn  340.76 0.14 Aysg = 0.01452
_ b = 0.17511
X =(X1) VeR MSE

(assume one feature)
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Interpret

_ n
Optimization ,o max[ Z(y(i) —ax® — b)zl Gradient: 9h(6) _ 2 2(y® — ax® — p)(x®)

problem: da & =

= arg max h(6
8] (6) ah(e) 2 (y® — ax® — p)
a, b=0, 0 # initialize 6
repeat many times:
gradient a, aqradient b = 0, 0 Updates to

for each training example (X, : a and b should
diff =y — (a * x + b) include information
gradient_a += 2 % diff % Xx from all 7 trainin
gradient_b += 2 % diff . g
datapoints

a += n *x gradient_a # 0 += n x gradient
b += n * gradient_b
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Interpret

n
Optimization argmax[ 2:(},(1)_%(1)_,9)2] Gradient: dh(9) . . _
— 2 (i) _ i) _ b )

problem: da Z (v —ax )(x)

= arg max h(6
8] (6) ah(e) 2 (y® — ax® — p)

a, b=0, 0 # initialize 6
repeat many times:

gradient_a, gradient_b = 0, 0 How do we interpret
ne contribution of

the I-th training
gradient_b += 2 % diff datapoint?

0
a += n *x gradient_a # 60 += n * gradient (byyeurse!f)
9 = N * gra JiEr t_b Stanford University 47

for each training example (x, y): ¢
diff =y — (a * x + b)
gradient_a += 2 % diff % Xx




Interpret

_ n
Optimization ,o max[ Z(y(i) —ax® — b)zl Gradient: 9h(6) _ 2 2(y® — ax® — p)(x®)

problem: da & =

= arg max h(6
8] (6) ah(e) 2 (y® — ax® — p)

a, b=0, 0 # initialize 6
repeat many times:

gradient_a, gradient_b = 0, 0

for each training example (x, y):
diff = Prediction error!
gradient_a += 2 % diff * Xx :yﬁ)_ﬂyﬁ)
gradient_b += 2 % diff

a += n *x gradient_a # 0 += n x gradient

b += n * gradient_b
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Interpret

_ n
Optimization ..o max[ Z(y(o —ax® — b)zl Gradient: 9h(6) _ 2 2(y® — ax® — p)(x®)

problem: ° da £ =

= arg max h(6
8] (6) ah(e) 2 (y® — ax® — p)

a, b=0, 0 # initialize 6
repeat many times:

gradient_a, gradient_b = 0, 0

for each training example (x, y):
prediction_error = y — (a *x x + b)
gradient_a += 2 *x prediction_error * X
gradient_b += 2 *x prediction_error

a += n *x gradient_a # 0 += n x gradient
b += n * gradient_b

Stanford University 49




Interpret

_ n
Optimization ,o max[ Z(ym —ax® — b)zl Gradient: 9h(6) _ 2 2(y® — ax® — p)(x®)

problem: ° da £ =

= arg max h(6
8] (6) ah(e) 2 (y® — ax® — p)

a, b=0, 0 # initialize 6
repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y): R
prediction_error =y — (a * X + b) Y =aX+b,so

gradient_a += 2 * prediction_error update to a should
gradient_b += 2 % prediction_error also scale by x @

a += n *x gradient_a # 0 += n x gradient
b += n * gradient_b

Stanford University 50



Interpret

_ n
Optimization ,o max[ Z(ym —ax® — b)zl Gradient: 9h(6) _ 2 2(y® — ax® — p)(x®)

problem: ° da £ =

= arg max h(6
8] (6) ah(e) 2 (y® — ax® — p)

a, b=0, 0 # initialize 6
repeat many times:

gradient_a, gradient_b = 0, 0

for each training example (x, y): R
prediction_error =y — (a * x + b) Y =aX + b, so
gradient_a += 2 * prediction_error *x X update to b just

gradient b += 2 x prediction_error scales by 1, not x@

a += n *x gradient_a # 0 += n x gradient
b += n * gradient_b

Stanford University 51



Reflecting on today

We did a lot today!
Learned gradient ascent

Modeled likelihood of training dataset

Thanked argmax for its convenience

Remembered calculus

Implemented gradient ascent with multiple parameters to optimize for

Next up, we will use all these skills and more to tackle the final prediction
model of CS109:

Logistic Regression

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 52
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Don’'t make me get non-linear!

Oysg = argmin E[(Y — aX — b)?]
6=(a,b)

(E[-] is a linear
function w.r.t. a)

1. Differentiate 0
—FE((Y —aX — =FE|— (Y —aX — 2
w.r.t. (each) 8, OJda LC ¢ b)’] [ ( ¢ b)

setto O [—2(Y —aX — b)X
= —2E[XY] + 2aE[X?] + 2bE[X]

0
%E[(Y —aX — b)?] = E[-2(Y — aX — b)]
= —2E[Y] + 2aE[X] + 2b
2. Solve resulting _ EIXY] - EIX]E[Y] _Cov(X,Y) . . oy
simultancous  “MSE = EXZ = GBIXD2 ~ var) - PE NG,
I 0}

X

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 54




Y = g(X), where g(-) is a

Log conditional likelihood, a derivation function with parameter 6
Srow 1t G MG g =arg 3 n 50130,
Pt =argp] [10200) =Y hare0y00) LR )
= argemaxz log f(x®) + Z log f(yW]x®, 9) (x® indep. of 6)
= argemaxzn: log f(yW]x®, 9) (f (x@) constant w.r.t. 8)
i=1
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