26: Logistic Regression

Lisa Yan and Jerry Cain November 11, 2020

Quick slide reference

- з Background
- 9 Logistic Regression
- 27 Training: The big picture
- 56 Training: The details, Testing
- 59 Philosophy
- 63 Gradient Derivation

26a_background

26b_logistic_regression

26c_lr_training

LIVE

LIVE

26e_derivation

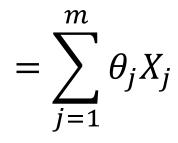
25a_background

Background

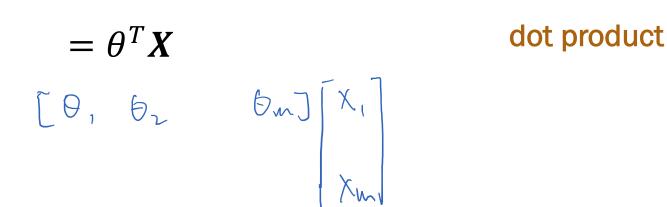
1. Weighted sum

If $X = (X_1, X_2, ..., X_m)$:

$$Z = \theta_1 X_1 + \theta_2 X_2 + \dots + \theta_m X_m$$



weighted sum



1. Weighted sum

Dot product/ weighted sum $\theta^T X = \sum_{j=1}^m \theta_j X_j$

Recall the linear regression model, where $X = (X_1, X_2, ..., X_m)$ and $Y \in \mathbb{R}$:

$$\widehat{\Upsilon} = g(\mathbf{X}) = \theta_0 + \sum_{j=1}^m \theta_j X_j$$

How would you rewrite this expression as a single dot product?

1. Weighted sum

Dot product/ weighted sum $\theta^T X = \sum_{j=1}^m \theta_j X_j$

Recall the linear regression model, where $X = (X_1, X_2, ..., X_m)$ and $Y \in \mathbb{R}$:

$$g(\mathbf{X}) = \theta_0 + \sum_{j=1}^m \theta_j X_j$$

How would you rewrite this expression as a single dot product?

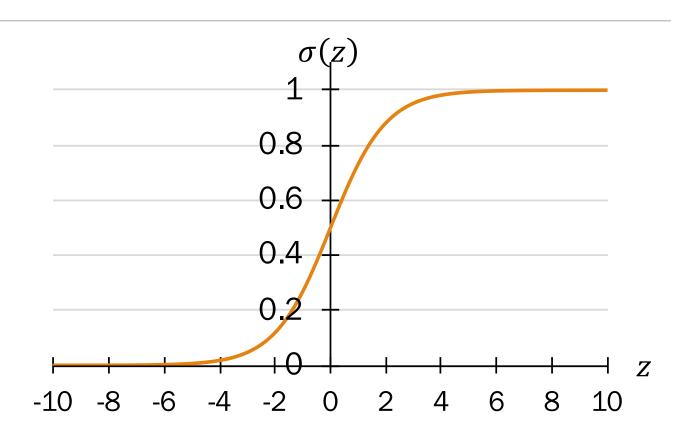
$$g(\mathbf{X}) = \theta_0 X_0 + \theta_1 X_1 + \theta_2 X_2 + \dots + \theta_m X_m \qquad \text{Define } X_0 = 1$$
$$= \theta^T \mathbf{X} \qquad \text{New } \mathbf{X} = (1, X_1, X_2, \dots, X_m) \quad \mathbf{O} = \left[\mathbf{O}_{\mathbf{O}_1}, \mathbf{O}_{\mathbf{O}_2}, \dots, \mathbf{O}_m\right]$$

Prepending $X_0 = 1$ to each feature vector \boldsymbol{X} makes matrix operators more accessible.

- **2.** Sigmoid function $\sigma(z)$
 - The sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

 Sigmoid squashes z to a number between 0 and 1.



 Recall definition of probability: A number between 0 and 1

 $\sigma(z)$ can represent a probability.

3. Conditional likelihood function

Training data (*n* datapoints):

 θ

• $(\mathbf{x}^{(i)}, y^{(i)})$ drawn i.i.d. from a distribution $f(\mathbf{X} = \mathbf{x}^{(i)}, Y = y^{(i)}|\theta) = f(\mathbf{x}^{(i)}, y^{(i)}|\theta)$

$$MLE = \arg \max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta)$$

$$= \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | \mathbf{x}^{(i)}, \theta)$$

$$\log \text{ conditional likelihood}$$

 $= \arg \max_{\theta} LL(\theta)$

- MLE in this lecture is estimator that maximizes <u>conditional likelihood</u>
- Confusingly, log conditional likelihood is also written as $LL(\theta)$

Review

25b_logistic_regression

Logistic Regression

Linear Regression (Regression)

$$\theta_0 + \sum_{j=1}^m \theta_j X_j$$
$$\widehat{Y} = \theta_0 + \sum_{j=1}^m \theta_j X_j$$

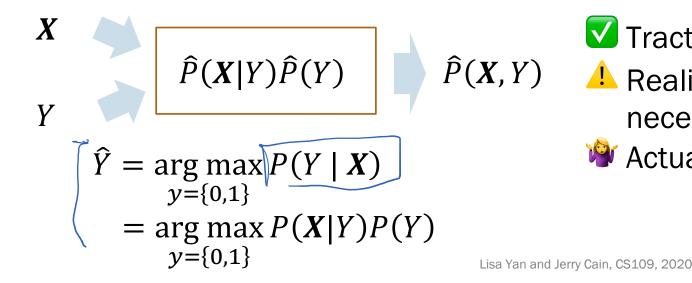
X

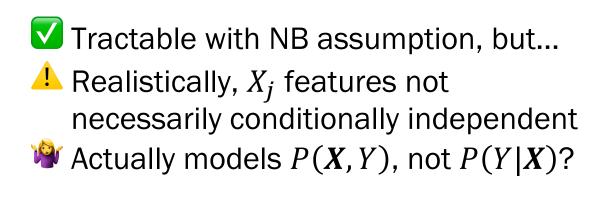
 \widehat{Y}

 \mathbf{V} x can be dependent

 \mathfrak{P} Regression model ($\hat{Y} \in \mathbb{R}$, not discrete)

Naïve Bayes (Classification)





Introducing Logistic Regression!

Linear Regression ideas

Classification models

+ compute power

Lisa Yan and Jerry Cain, CS109, 2020

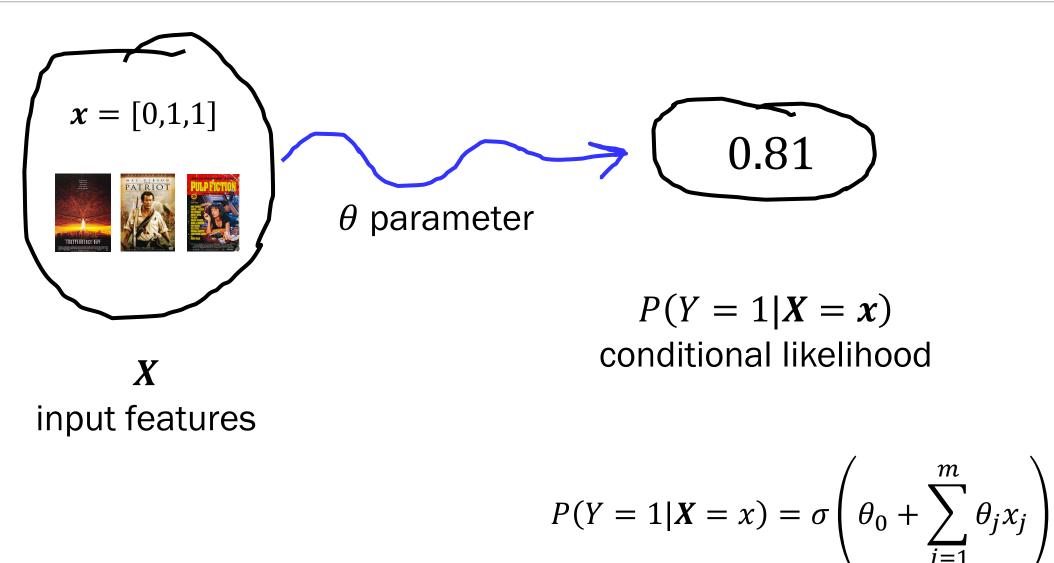
Logistic Regression Model:

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma \left(\theta_0 + \sum_{j=1}^m \theta_j x_j \right)$$

Predict \hat{Y} as the most likely Ygiven our observation X = x: $\hat{Y} = \arg \max P(Y | X)$ $y = \{0,1\}$

- Since $Y \in \{0,1\}$, $P(Y = 0 | X = x) = 1 \sigma \left(\theta_0 + \sum_{j=1}^m \theta_j x_j\right)$
- Sigmoid function also known as "logit" function

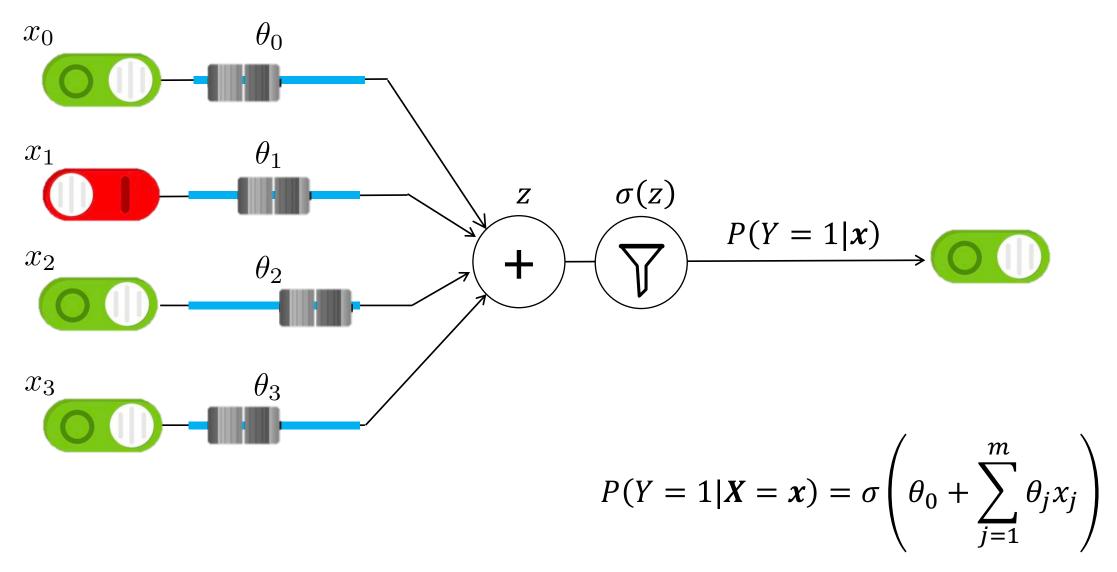
Logistic Regression



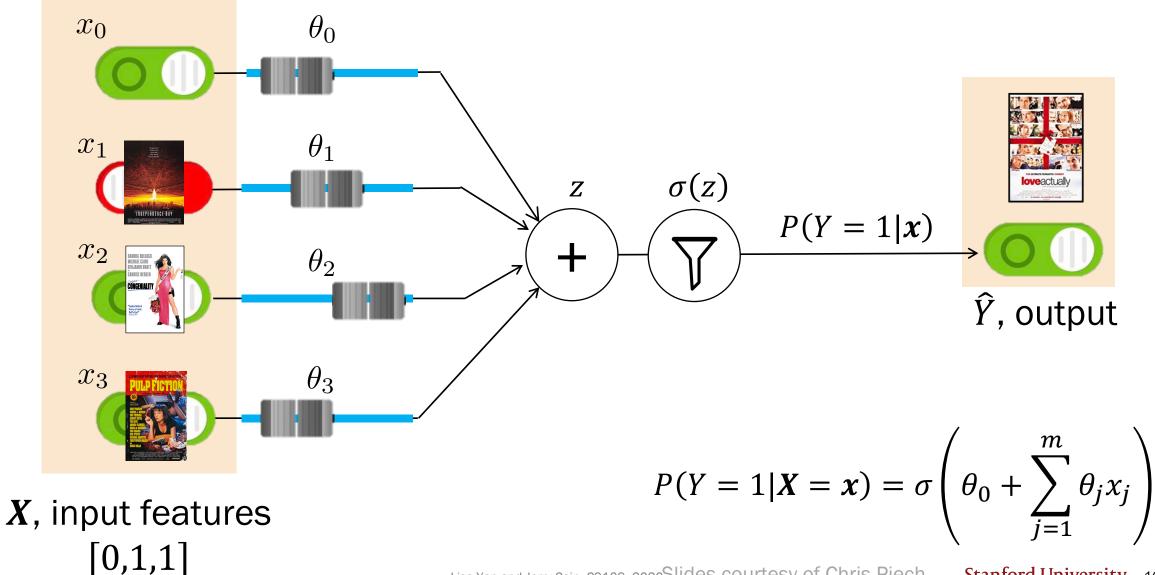
Logistic Regression cartoon

θ parameter

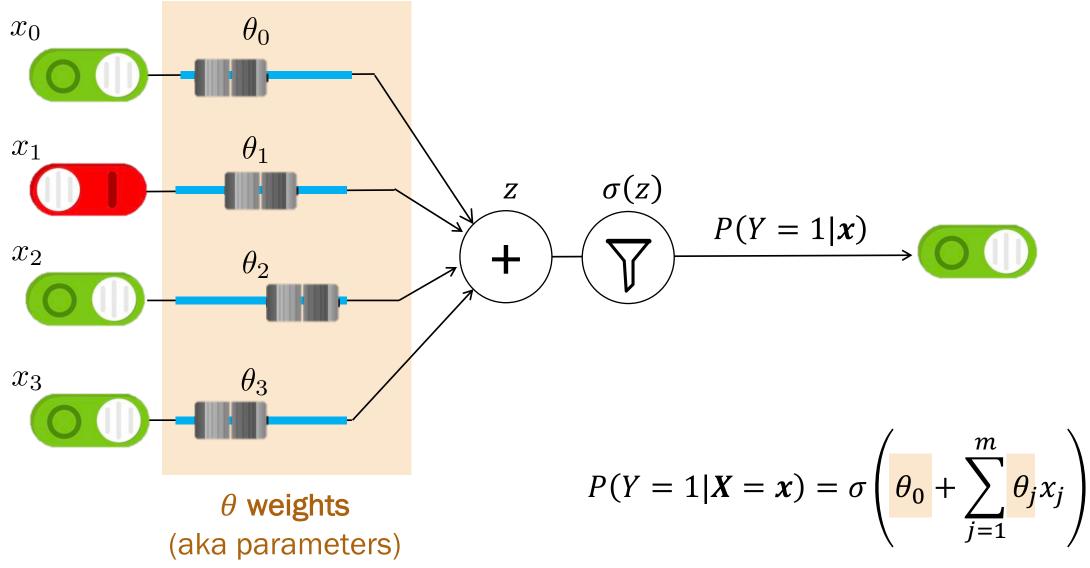
Logistic Regression cartoon



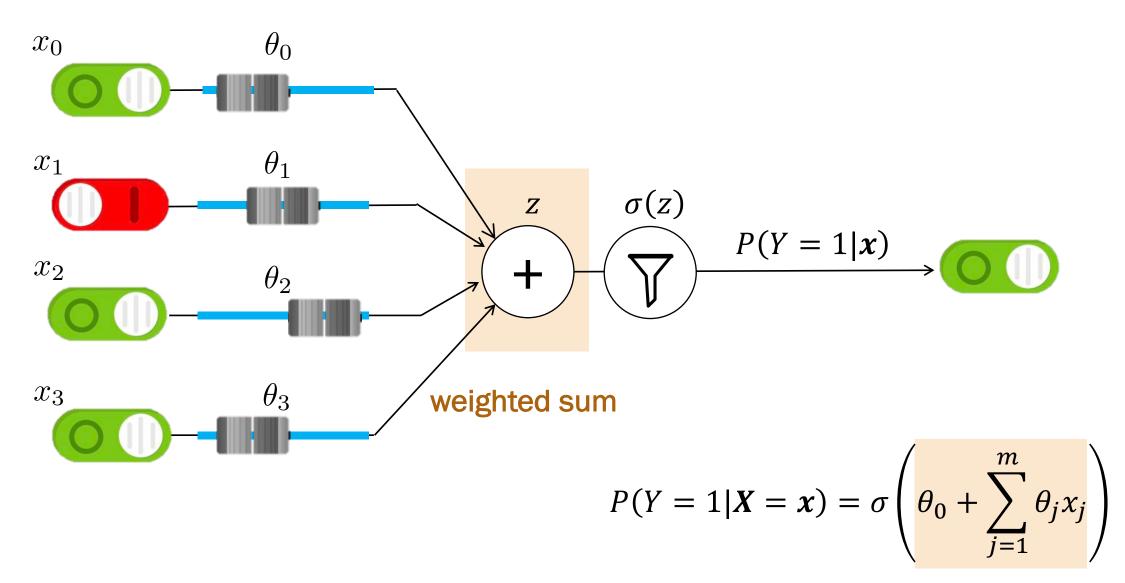
Logistic Regression cartoon

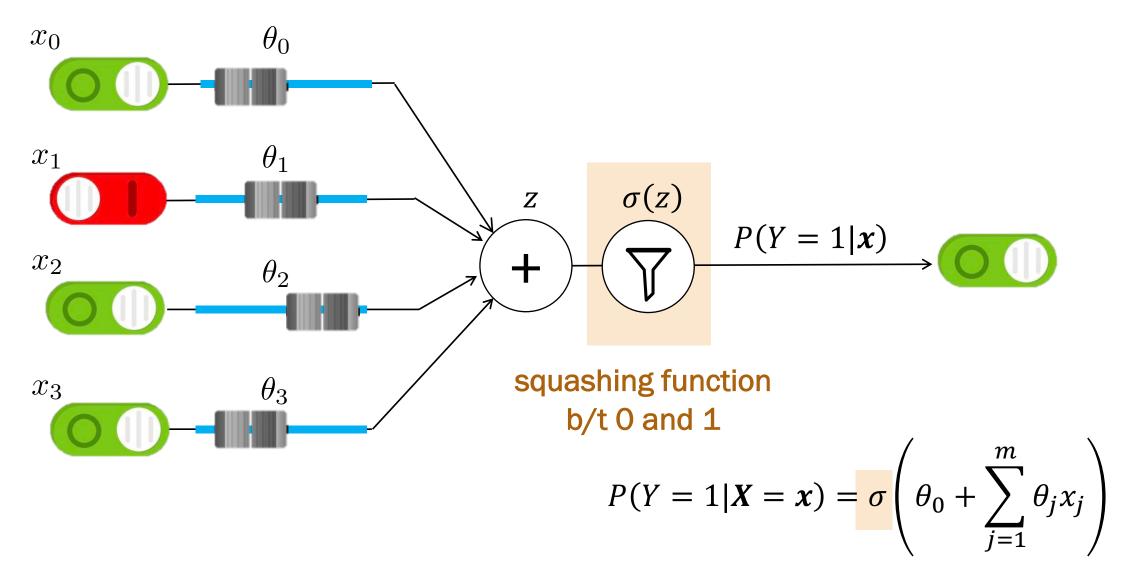


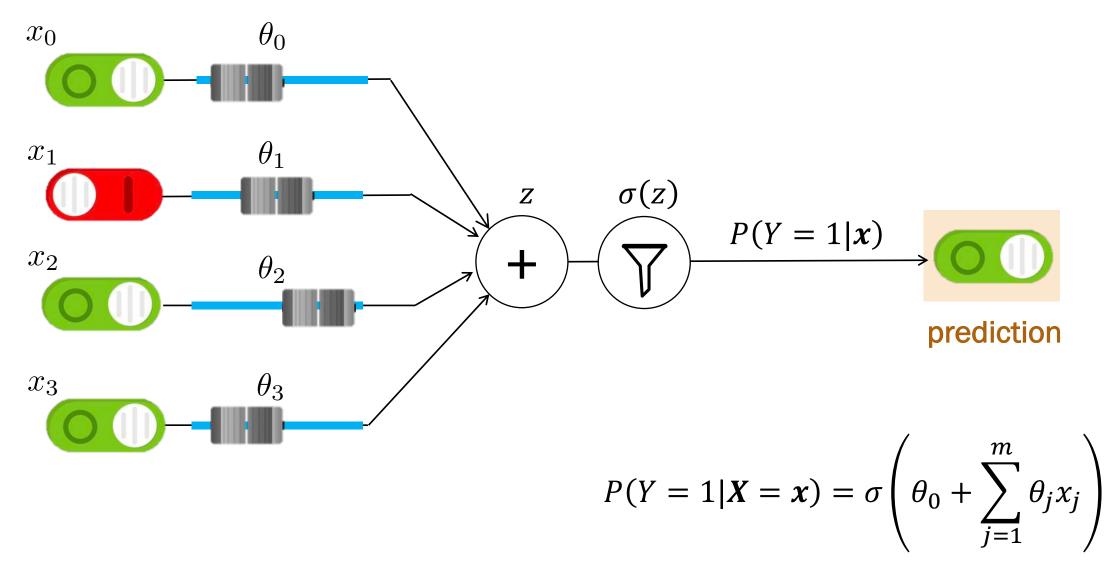
Lisa Yan and Jerry Cain, CS109, 2020 Slides courtesy of Chris Piech Stanford University 16



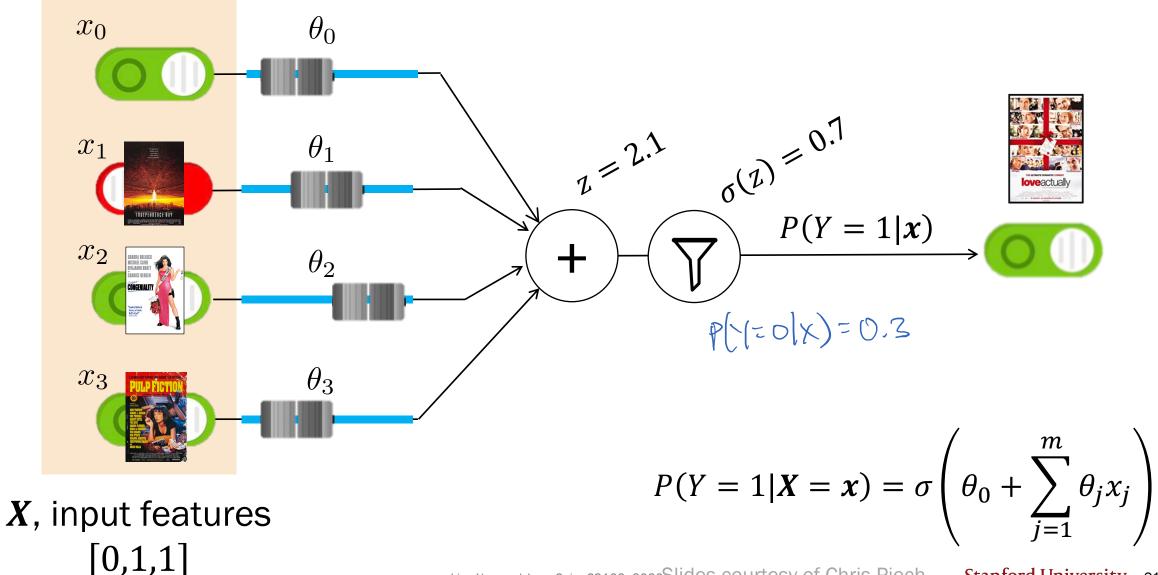
Lisa Yan and Jerry Cain, CS109, 2020 Slides courtesy of Chris Piech Stanford University 17





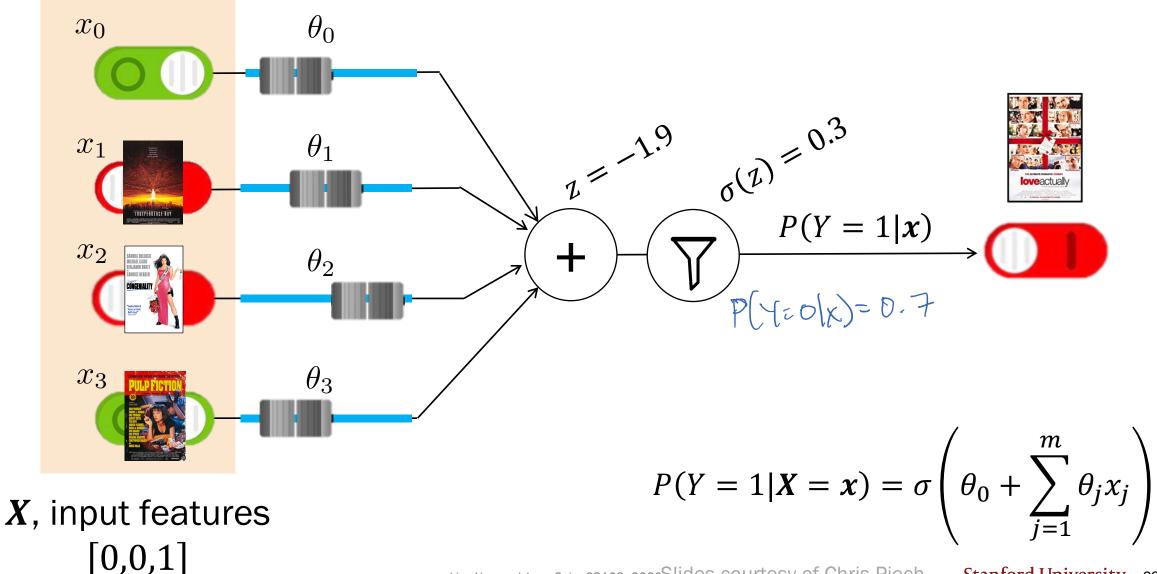


Different predictions for different inputs



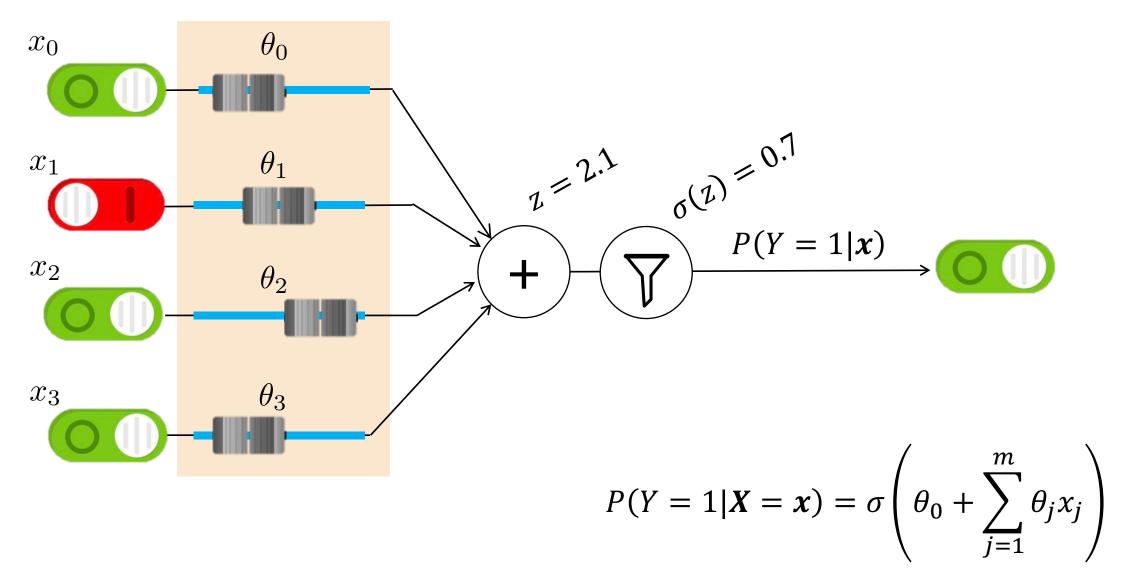
Lisa Yan and Jerry Cain, CS109, 2020 Slides courtesy of Chris Piech Stanford University 21

Different predictions for different inputs

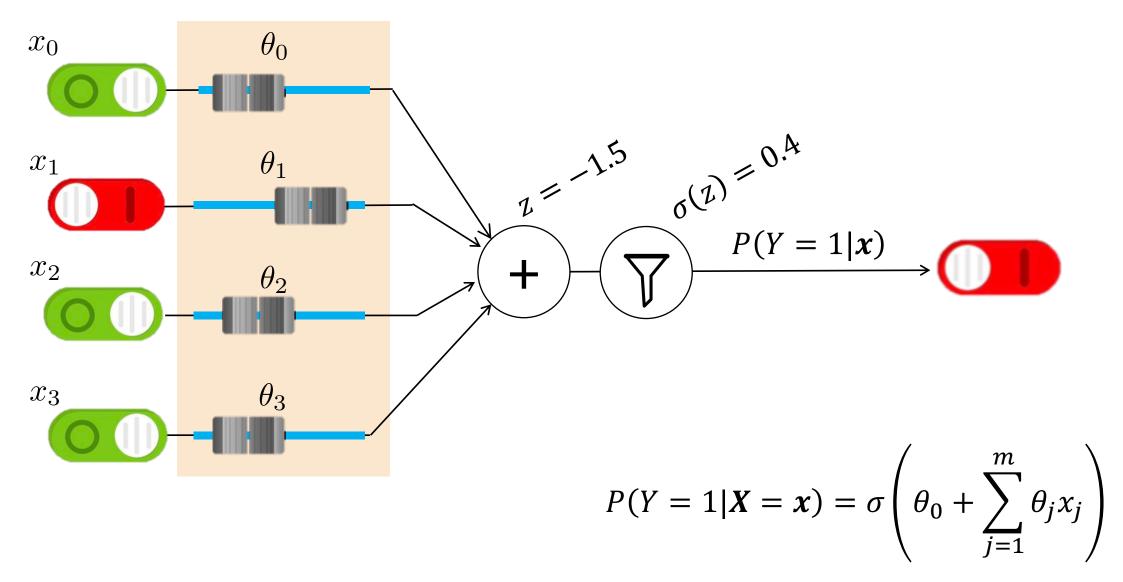


Lisa Yan and Jerry Cain, CS109, 2020 Slides courtesy of Chris Piech Stanford University 22

Parameters affect prediction



Parameters affect prediction



For simplicity

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma \left(\theta_0 + \sum_{j=1}^m \theta_j x_j \right)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma\left(\sum_{j=0}^{m} \theta_j x_j\right) = \overline{\sigma(\theta^T \mathbf{x})} \text{ where } x_0 = 1$$

$$\Theta_{\overline{y}}\left(\Theta_{\overline{y}}, \Theta_{\overline{y}}, \dots, \Theta_{\overline{y}}\right)$$

$$X = \left(\sum_{j=0}^{m} \theta_j, X_j\right) = \left(\sum_{j=0}^{m} \theta_j, X_j\right)$$

Logistic regression classifier

$$\hat{Y} = \arg \max_{y \in \{0,1\}} P(Y|X)$$
$$P(Y = 1|X = x) = \sigma(\sum_{j=0}^{m} \theta_j x_j) = \sigma(\theta^T x)$$

Training

Estimate parameters from training data

$$\boldsymbol{\theta} = (\theta_0, \theta_1, \theta_2, \dots, \theta_m)$$

Given an observation $X = (X_1, X_2, ..., X_m)$, predict $\hat{Y} = \underset{y=\{0,1\}}{\operatorname{arg max}} P(Y|X)$

25c_lr_training

Training: The big picture

$$\hat{Y} = \arg \max_{y \in \{0,1\}} P(Y|X)$$
$$P(Y = 1|X = x) = \sigma(\sum_{j=0}^{m} \theta_j x_j) = \sigma(\theta^T x)$$

Training

Estimate parameters from training data

$$\begin{pmatrix} x^{(i)}, y^{(i)} \end{pmatrix} \quad i = 1, \dots, n$$

$$\theta = (\theta_0, \theta_1, \theta_2, \dots, \theta_m)$$

Choose θ that optimizes some objective:

- 1. Determine objective function
- 2. Find gradient with respect to θ
- **3**. Solve analytically by setting to 0, or computationally with gradient ascent

We are modeling P(Y|X)directly, so we maximize the **conditional likelihood** of training data.

Estimating θ

1. Determine objective function

$$\theta_{MLE} = \arg \max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta)$$

2. Gradient w.r.t.
$$\theta_j$$
, for $j = 0, 1, ..., m$

- No analytical derivation of θ_{MLE} ...
- ...but can still compute θ_{MLE} with gradient ascent!

```
initialize x
repeat many times:
   compute gradient
    x += η * gradient
```

1. Determine objective function

$$\theta_{MLE} = \arg \max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg \max_{\theta} LL(\theta) \qquad P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_j x_j) \\ = \sigma(\theta^T \mathbf{x})$$

First: Interpret conditional likelihood with Logistic Regression Second: Write a differentiable expression for log conditional likelihood

1. Determine objective function (interpret)

$$\theta_{MLE} = \arg \max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg \max_{\theta} LL(\theta) \qquad P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_j x_j) \\ = \sigma(\theta^T \mathbf{x}) \qquad = \sigma(\theta^T \mathbf{x})$$
Suppose you have $n = 2$ training datapoints: $(\mathbf{x}^{(1)}, 1), (\mathbf{x}^{(2)}, 0)$

Consider the following expressions for a given θ :

B.
$$\left(1 - \sigma(\theta^T \boldsymbol{x}^{(1)})\right) \sigma(\theta^T \boldsymbol{x}^{(2)})$$
 D. $\left(1 - \sigma(\theta^T \boldsymbol{x}^{(1)})\right) \left(1 - \sigma(\theta^T \boldsymbol{x}^{(2)})\right)$

1. Interpret the above expressions as probabilities.

2. If we let $\theta = \theta_{MLE}$, which probability should be highest?

Lisa Yan and Jerry Cain, CS109, 2020

1. Determine objective function (interpret)

$$\theta_{MLE} = \arg \max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg \max_{\theta} LL(\theta) \qquad P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_j x_j) = \sigma(\theta^T \mathbf{x})$$

Suppose you have n = 2 training datapoints: Consider the following expressions for a given θ :

A.
$$\sigma(\theta^T \boldsymbol{x}^{(1)}) \sigma(\theta^T \boldsymbol{x}^{(2)})$$

 $P(\boldsymbol{\gamma} = 1 | \boldsymbol{\chi} = \boldsymbol{\chi}^{(r)}) P(\boldsymbol{\gamma} = 1 | \boldsymbol{\chi} = \boldsymbol{\chi}^{(r)})$
B. $(1 - \sigma(\theta^T \boldsymbol{x}^{(1)})) \sigma(\theta^T \boldsymbol{x}^{(2)})$
 $P(\boldsymbol{\gamma} = 0 | \boldsymbol{\chi} = \boldsymbol{\chi}^{(r)}) P(\boldsymbol{\gamma} = 1 | \boldsymbol{\chi} = \boldsymbol{\chi}^{(r)})$

 $\begin{pmatrix} x^{(1)}, 1 \end{pmatrix}, \begin{pmatrix} x^{(2)}, 0 \end{pmatrix} \\ \vdots \\ r(z^{(1)}, 1), (z^{(2)}, 0) \\ r(z^{(1)}, z^{(1)}) \\ r(z^{(1)}, z^{(1)}) \\ r(z^{(1)}) \\ r(z^{(1)$

- 1. Interpret the above expressions as probabilities.
- 2. If we let $\theta = \theta_{MLE}$, which probability should be highest?

1. Determine objective function (write)

$$\theta_{MLE} = \arg \max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg \max_{\theta} LL(\theta) \qquad P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_j x_j) \\ = \sigma(\theta^T \mathbf{x})$$

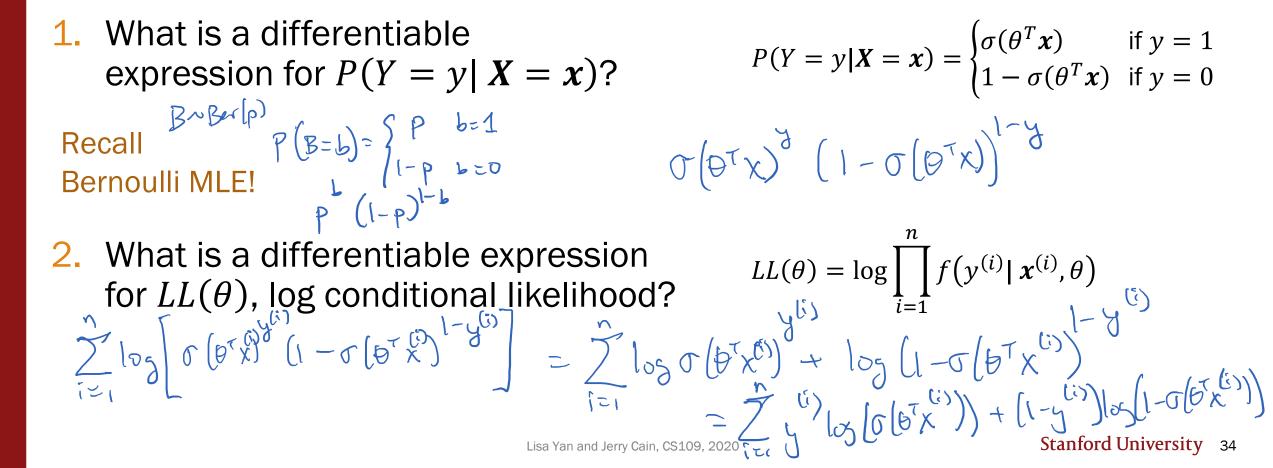
1. What is a differentiable expression for P(Y = y | X = x)? $P(Y = y | X = x) = \begin{cases} \sigma(\theta^T x) & \text{if } y = 1 \\ 1 - \sigma(\theta^T x) & \text{if } y = 0 \end{cases}$

2. What is a differentiable expression for $LL(\theta)$, log conditional likelihood?

$$LL(\theta) = \log \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta)$$

1. Determine objective function (write)

$$\theta_{MLE} = \arg \max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg \max_{\theta} LL(\theta) \qquad P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_j x_j) = \sigma(\theta^T \mathbf{x})$$



1. Determine objective function (write)

$$\theta_{MLE} = \arg \max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg \max_{\theta} LL(\theta) \qquad P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_j x_j) = \sigma(\theta^T \mathbf{x})$$

1. What is a differentiable expression for P(Y = y | X = x)?

$$P(Y = y | \mathbf{X} = \mathbf{x}) = (\sigma(\theta^T \mathbf{x}))^{\mathcal{Y}} (1 - \sigma(\theta^T \mathbf{x}))^{1 - \mathcal{Y}}$$

2. What is a differentiable expression for $LL(\theta)$, log conditional likelihood?

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^T \boldsymbol{x}^{(i)}) + (1 - y^{(i)}) \log \left(1 - \sigma(\theta^T \boldsymbol{x}^{(i)})\right)$$

2. Find gradient with respect to θ

Optimization problem:

$$\theta_{MLE} = \arg \max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg \max_{\theta} LL(\theta)$$
$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log (1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

Gradient w.r.t.
$$\theta_j$$
, for $j = 0, 1, ..., m$:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^T \boldsymbol{x}^{(i)} \right) \right] x_j^{(i)}$$

How do we interpret the gradient contribution of the i-th training datapoint?

2. Find gradient with respect to θ

Optimization problem:

$$\theta_{MLE} = \arg \max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg \max_{\theta} LL(\theta)$$
$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log (1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

Gradient w.r.t.
$$\theta_j$$
, for $j = 0, 1, ..., m$:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n [y^{(i)} - \sigma(\theta^T \mathbf{x}^{(i)})] x_j^{(i)} \qquad \text{(derived later)}$$
scale by j-th feature

2. Find gradient with respect to θ

Optimization problem:

$$\theta_{MLE} = \arg \max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg \max_{\theta} LL(\theta)$$
$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log (1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

Gradient w.r.t. θ_j , for j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \begin{bmatrix} y^{(i)} - \sigma(\theta^T x^{(i)}) \end{bmatrix} x_j^{(i)} \quad \text{(derived later)}$$

$$1 \text{ or } 0 \quad P(Y = 1 | X = x^{(i)})$$

2. Find gradient with respect to θ

Optimization problem:

$$\theta_{MLE} = \arg \max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg \max_{\theta} LL(\theta)$$
$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log (1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

Gradient w.r.t. θ_j , for j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T x^{(i)}) \right] x_j^{(i)} \qquad \text{(derived later)}$$

Suppose $y^{(i)} = 1$ (the true class label for *i*-th datapoint):

- If $\sigma(\theta^T \mathbf{x}^{(i)}) \ge 0.5$, correct
- If $\sigma(\theta^T x^{(i)}) < 0.5$, incorrect \rightarrow change θ_j more

Lisa Yan and Jerry Cain, CS109, 2020

3. Solve

- 1. Optimization problem: $\theta_{MLE} = \arg \max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg \max_{\theta} LL(\theta)$ $LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log (1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$
- 2. Gradient w.r.t. θ_j , for j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T \boldsymbol{x}^{(i)}) \right] x_j^{(i)}$$

3. Solve

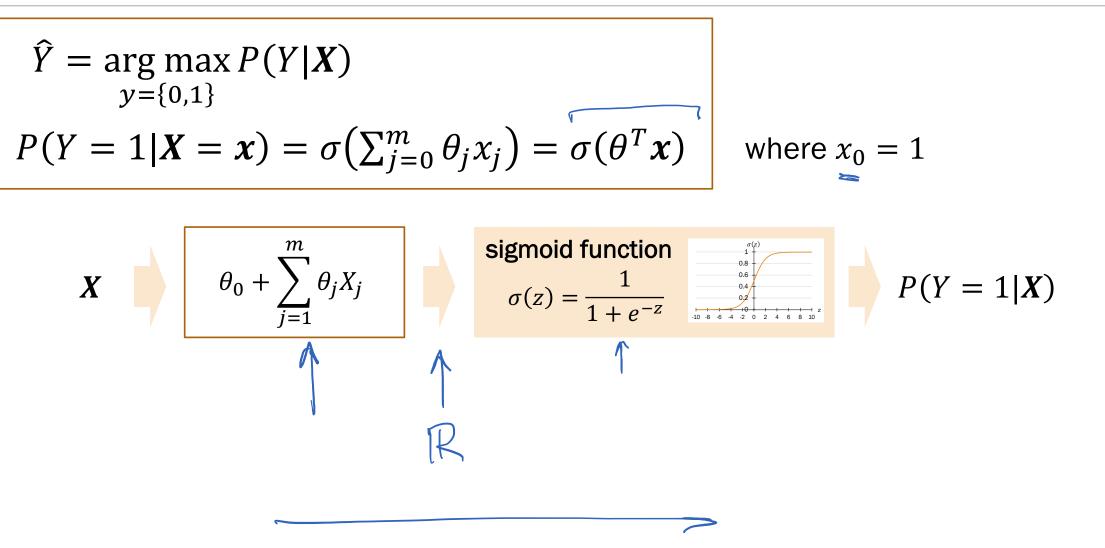
Stay tuned!

(live) 26: Logistic Regression

Lisa Yan and Jerry Cain November 11, 2020

Logistic Regression Model

Review

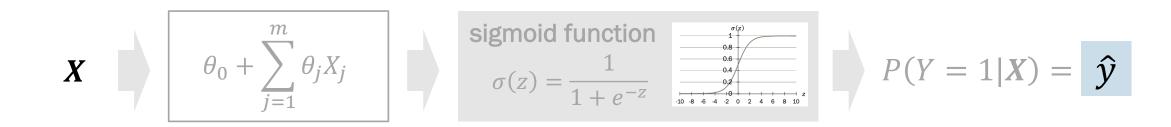


Introducing notation \hat{y}

$$\widehat{Y} = \arg \max_{y=\{0,1\}} P(Y|X)$$
$$P(Y = 1|X = x) = \sigma(\sum_{i=0}^{m} \theta_i x_i) = \sigma(\theta^T x)$$

 \hat{Y} is prediction of Y. $\hat{Y} \in \{0,1\}$

where $x_0 = 1$

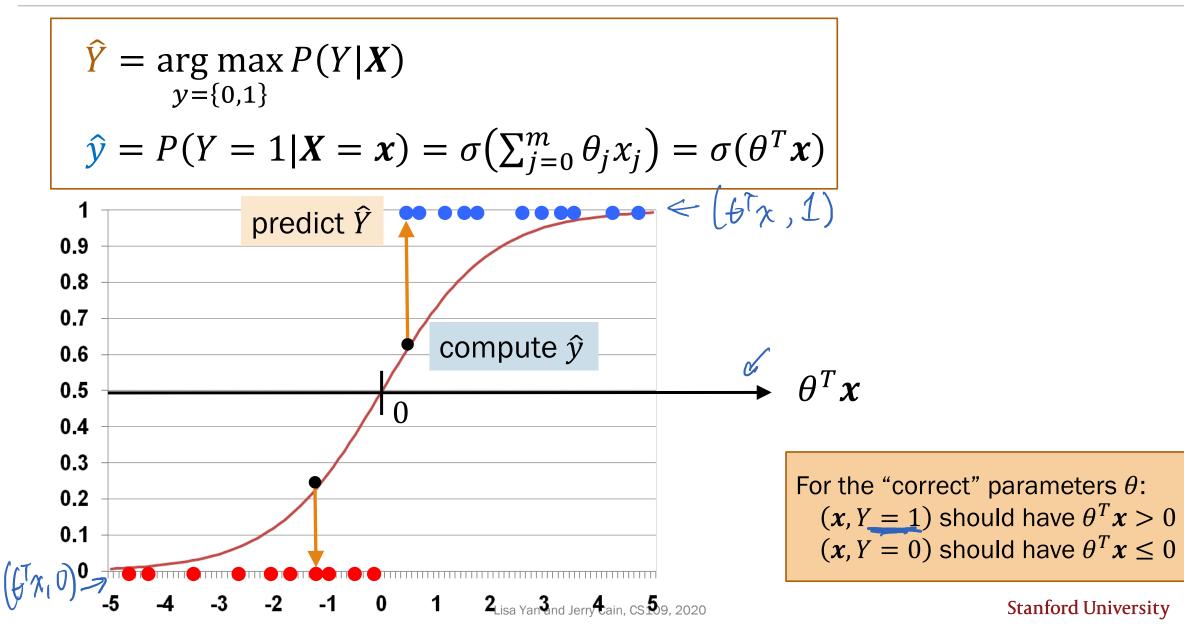


$$\hat{y} = P(Y = 1 | X = x) = \sigma(\theta^T x)$$

$$P(Y = y | \mathbf{X} = \mathbf{x}) = \begin{cases} \hat{y} & \text{if } y = 1\\ 1 - \hat{y} & \text{if } y = 0 \end{cases}$$

Small \hat{y} is conditional probability of Y = 1 given X = x. $\hat{y} \in [0,1]$

Another view of Logistic Regression



Today's goals: Logistic Regresison

- At a high level
 - Understand the model
 - Training: Use gradient ascent

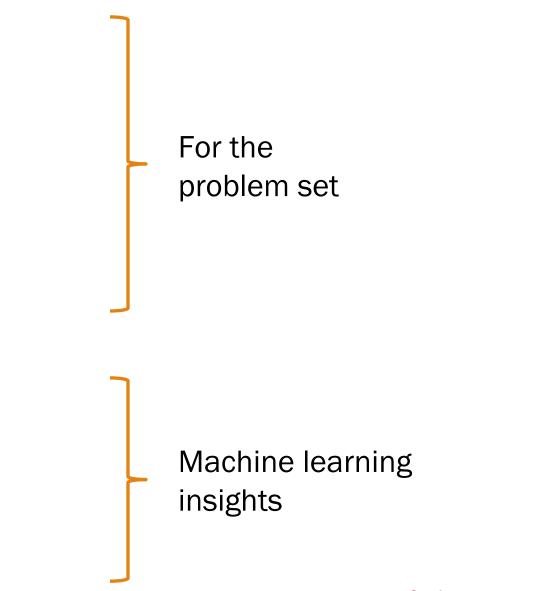
Details

- Gradient ascent pseudocode
- Testing

Philosophy

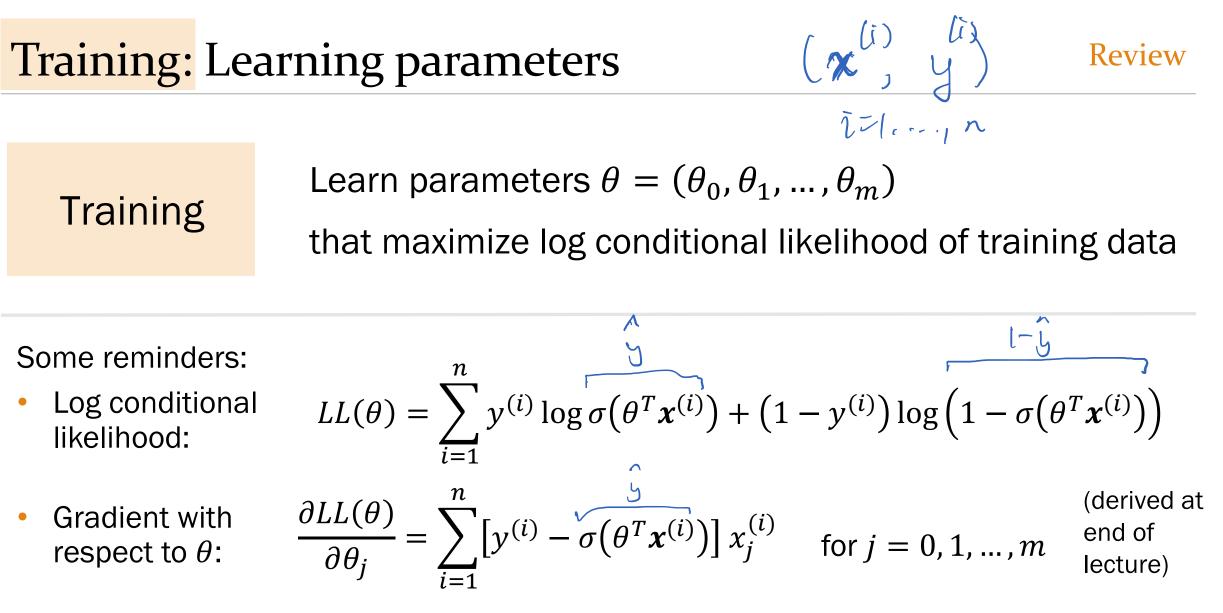
- Logistic Regression vs Naïve Bayes
- Linearly separable functions

Derivation of gradient (Calculus)



LIVE

Training: The details



• No analytical solution; optimize with gradient ascent

Training: Gradient ascent step

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T \boldsymbol{x}^{(i)}) \right] x_j^{(i)} \qquad \text{for } j = 0, 1, \dots, m$$

repeat many times:
for all thetas:
$$\int_{j=0}^{j=0} (1, \dots)^{m}$$

$$\theta_{j}^{new} = \theta_{j}^{old} + \eta \cdot \frac{\partial LL(\theta^{old})}{\partial \theta_{j}^{old}}$$

$$= \theta_{j}^{old} + \eta \cdot \sum_{i=1}^{n} \left[y^{(i)} - \sigma \left(\theta^{old^{T}} \mathbf{x}^{(i)} \right) \right] \mathbf{x}_{j}^{(i)}$$
What does this look like in code?

$$\int_{i=1}^{n} \left[y^{(i)} - \sigma \left(\theta^{old^{T}} \mathbf{x}^{(i)} \right) \right] \mathbf{x}_{j}^{(i)}$$
Use Yan and Jerry Cain, CS109, 2020
Stanford University 48

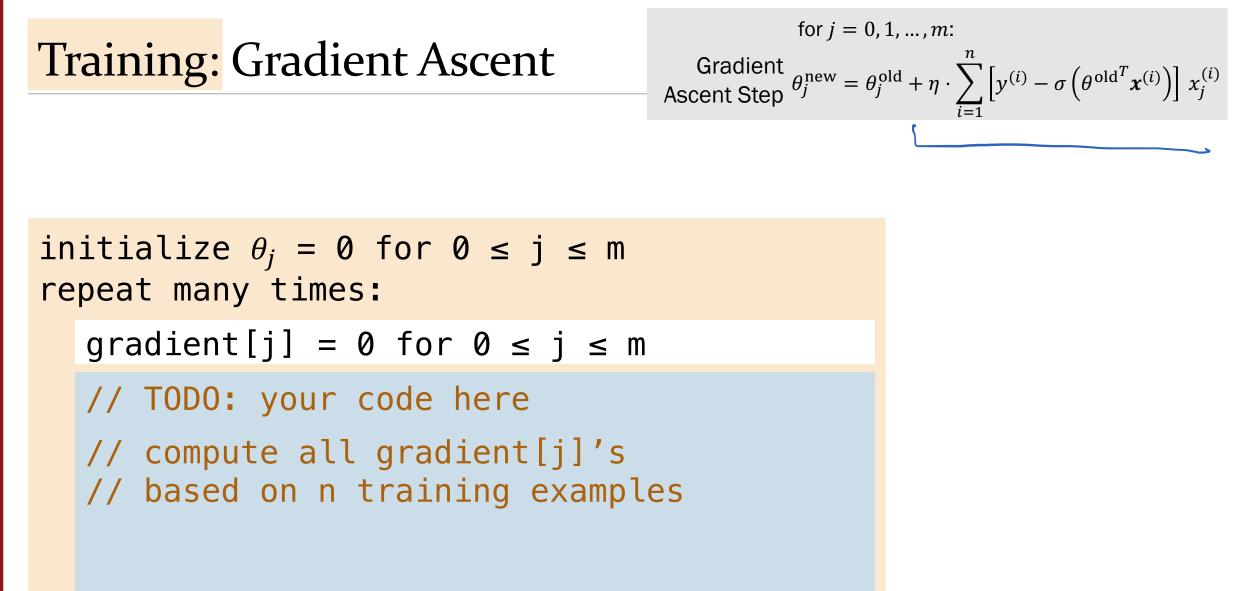
Think

Slide 50 has code to think over by yourself.

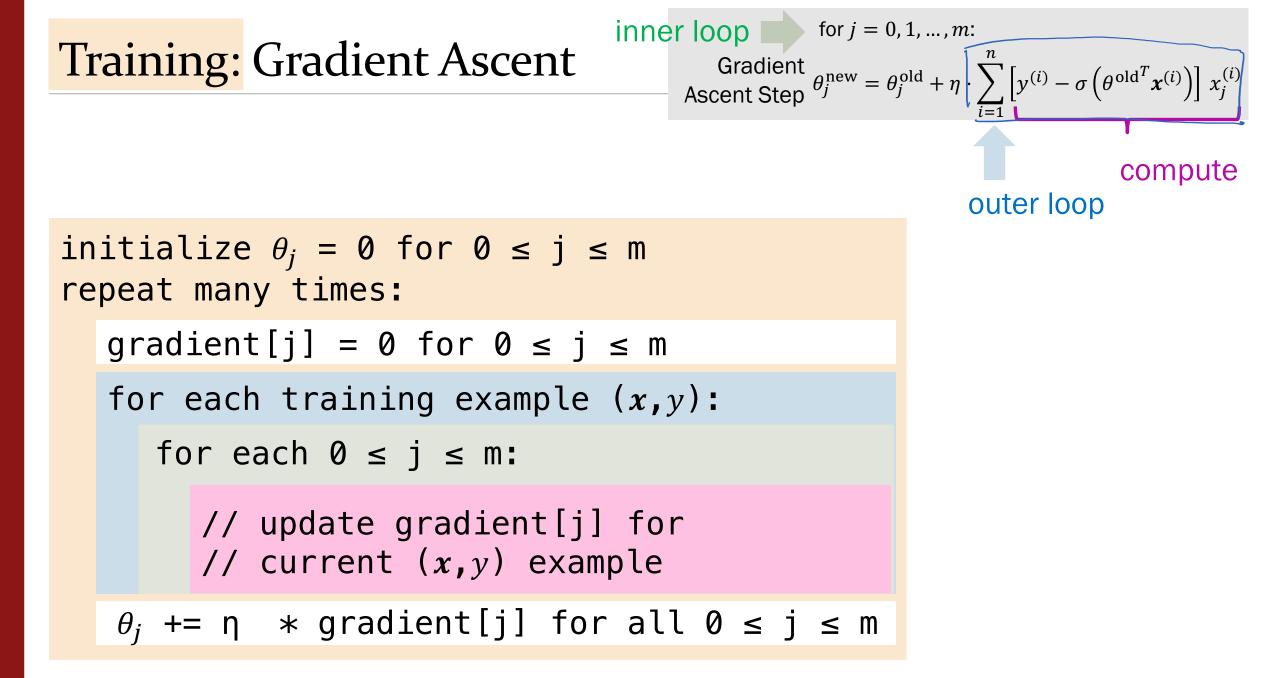
Post any clarifications here or in chat!

https://us.edstem.org/courses/2678/discussion/171556

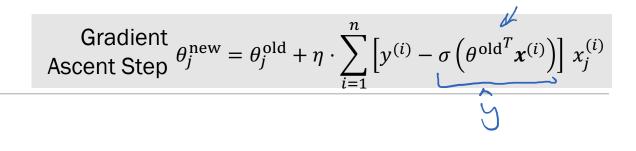
Think by yourself: 2 min



 $\theta_j += \eta * \text{gradient}[j] \text{ for all } 0 \leq j \leq m$



Training: Gradient Ascentinner loopfor
$$j = 0, 1, ..., m$$
:
Gradient
Ascent Stepfor $j = 0, 1, ..., m$:
Gradient
 $\theta_j^{pew} = \theta_j^{old} + \eta \cdot \sum_{i=1}^{n} \left[y^{(i)} - \sigma \left(\theta^{old^T} x^{(i)} \right) \right] x_j^{(i)}$
compute
outer loopinitialize $\theta_j = 0$ for $0 \le j \le m$
repeat many times:
gradient[j] = 0 for $0 \le j \le m$
for each training example (x, y) :
 $\zeta = 0$ $\zeta = 0$
 $\zeta = 0$ for each training example (x, y) :
 $\zeta = 0$ $\zeta = 0$
 $\zeta = 0$ gradient[j] += $\left[y - \frac{1}{1 + e^{-\theta^T x}} \right] x_j$ θ_j += η * gradient[j] for all $0 \le j \le m$



initialize
$$\theta_j = 0$$
 for $0 \le j \le m$
repeat many times:
gradient[j] = 0 for $0 \le j \le m$
for each training example (x, y) :
for each $0 \le j \le m$: $\sigma(\theta^T \chi) = 5$
gradient[j] += $\left[y - \frac{1}{1 + e^{-\theta^T x}} \right] x_j$
 θ_j += η * gradient[j] for all $0 \le j \le m$

 θ^{old}

Gradient Ascent Step $\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x}^{(i)} \right) \right] x_j^{(i)}$

initialize
$$\theta_j = 0$$
 for $0 \le j \le m$
repeat many times:

gradient[j] = 0 for $0 \le j \le m$
for each training example (x,y) :
for each $0 \le j \le m$:

gradient[j] += $\left[y - \frac{1}{1 + e^{-\theta^T x}}\right] x_j$
 θ_j += $n \Rightarrow$ gradient[j] for all $0 \le j \le m$

- Finish computing gradient with θ^{old} prior to any θ update
- Learning rate η is a constant you set before training

Gradient Ascent Step $\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x}^{(i)} \right) \right] x_j^{(i)}$

initialize
$$\theta_j = 0$$
 for $0 \le j \le m$
repeat many times:
gradient[j] = 0 for $0 \le j \le m$
for each training example (x,y) :
 for each $0 \le j \le m$:
 gradient[j] += $\left[y - \frac{1}{1 + e^{-\theta^T x}}\right]_{x_j}$
 θ_j += η * gradient[j] for all $0 \le j \le m$

- Finish computing gradient with θ^{old} prior to any θ update
- Learning rate η is a constant you set before training
- x_j is *j*-th feature of input $\mathbf{x} = (x_1, \dots, x_m)$

Training: Gradient Ascent

Gradient
Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x}^{(i)} \right) \right] x_j^{(i)}$$

$$(X_{1}, X_{2}, \dots, X_{n}) \rightarrow (I_{1}, X_{1}, X_{2}, \dots, X_{n}) G^{T} \chi = \Theta_{0} + \sum_{j=1}^{n} \Theta_{j} \chi_{j}$$

insert $\chi_{0} = 1$ into all traing data χ

initialize $\theta_j = 0$ for $0 \le j \le m$ repeat many times:

gradient[j] = 0 for $0 \le j \le m$

for each training example (x, y):

for each
$$0 \le j \le m$$
:

gradient[j] +=
$$\left[y - \frac{1}{1 + e^{-\theta^T x}}\right]_{x_j}$$

 $\theta_j += \eta * \text{gradient}[j] \text{ for all } 0 \leq j \leq m$

• Finish computing gradient with θ^{old} prior to any θ update

- Learning rate η is a constant you set before training
- x_j is *j*-th feature of input $\mathbf{x} = (x_1, \dots, x_m)$
- Insert $x_0 = 1$ before training

Training: Gradient AscentGradient
Ascent Step $\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} x^{(i)} \right) \right] x_j^{(i)}$ $\left(\chi_{1, \mathcal{G}}^{(i)} \right)_{1}^{(i)} \left(\chi_{1$

repeat many times:

gradient[j] = 0 for $0 \le j \le m$

for each training example (x, y):

for each
$$0 \leq j \leq m$$
:

gradient[j] +=
$$\left[y - \frac{1}{1 + e^{-\theta^T x}}\right] x_j$$

 $\theta_j += \eta * \text{gradient}[j] \text{ for all } 0 \leq j \leq m$

- Finish computing gradient with θ^{old} prior to any θ update
- Learning rate η is a constant you set before training
- x_j is *j*-th feature of input $\mathbf{x} = (x_1, \dots, x_m)$
- Insert $x_0 = 1$ before training

LIVE

Testing

Testing: Classification with Logistic Regression

Training

Learn parameters
$$\theta = (\theta_0, \theta_1, ..., \theta_m)$$

via gradient
ascent: $\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x}^{(i)} \right) \right] x_j^{(i)}$

Testing

• Compute $\hat{y} = P(Y = 1 | X = x) = \sigma(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$ • Classify instance as: $1 \quad f \quad P(Y = 1 | X = x) > P(Y = 0 | X = x)$ $\begin{array}{ll}
& \widehat{y} > 0.5, \text{ equivalently } \theta^T x > 0 \\
& 0 & \text{otherwise}
\end{array}$ DS Parameters θ_i are <u>not</u> updated during testing phase

plane bagel schmear Schmar Interlude for O jokes/announcements

https://www.bagelbakerygainesville.com/top-8-bagel-jokes-of-all-time/

<u>Quiz #3</u>

Time frame: Covers: Info and practice:

Wednesday 11/18 2:00pm – Friday 11/20 12:59pm PT Up to and including logistic regression Quizzes page

Next week: Last section

Review session for Quiz #3

Probability Reference (Overleaf)

Updated to include all of Quiz 3-relevant material (sampling defs, MLE/MAP, classifiers)

Interesting probability news

The Time Everyone "Corrected" the World's Smartest Woman

https://priceonomics.com/the-time-everyonecorrected-the-worlds-smartest/

Lisa Yan and Jerry Cain, CS109, 2020

Today's goals: Logistic Regression

- At a high level
 - Understand the model
 - Training: Use gradient ascent

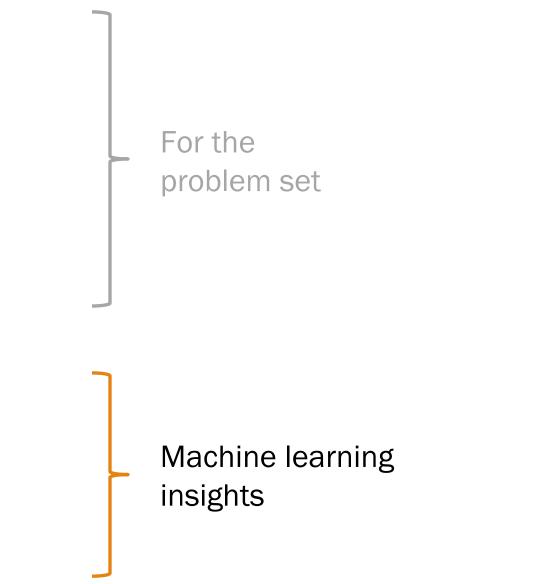
Details

- Gradient ascent pseudocode
- Testing

Philosophy

- Logistic Regression vs Naïve Bayes
- Linearly separable functions

Derivation of gradient (Calculus)



LIVE

Philosophy

Think

Slide 64 asks you to think over by yourself.

Post any clarifications here or in chat!

https://us.edstem.org/courses/2678/discussion/171556

Think by yourself: 2 min

Naïve BayesvsLogistic Regression
$$X$$
 $\hat{P}(X|Y)\hat{P}(Y)$ $\hat{P}(X,Y)$ X $\hat{\theta}^T X$ $\hat{\theta}^T X$ $P(Y = 1|X)$ $\hat{Y} = \arg \max_{y=\{0,1\}} P(Y|X) = \arg \max_{y=\{0,1\}} P(X|Y)P(Y)$ $\hat{Y} = \arg \max_{y=\{0,1\}} P(Y|X)$ $\hat{Y} = \arg \max_{y=\{0,1\}} P(Y|X)$

Compare/contrast:

- 1. What **distributions** are we modeling?
- 2. After learning our parameters, could we randomly generate a new datapoint (x, y)?
- 3. Could we model a continuous X_i feature (e.g., $X_i \sim \text{Normal}$, or $X_i \sim \text{Unknown}$)?
- 4. Could we model a non-binary **discrete** X_j (e.g., $X_j \in \{1, 2, ..., 6\}$)?

Tradeoffs:

Logistic Regression

1. Modeling goal

 $P(\boldsymbol{X}, \boldsymbol{Y})$

2. Generative or discriminative?

3. Continuous ∧ input features

Generative: could use joint distribution to generate new points (but you might not need this extra effort)
 Meeds parametric form (e.g., Gaussian) or
 discretized buckets (for multinomial features)

4. Discrete
Input features

Yes, multi-value discrete data = multinomial $P(X_i|Y)$ P(Y|X)

Discriminative: just tries to discriminate y = 0 vs y = 1(\checkmark cannot generate new points b/c no P(X, Y))

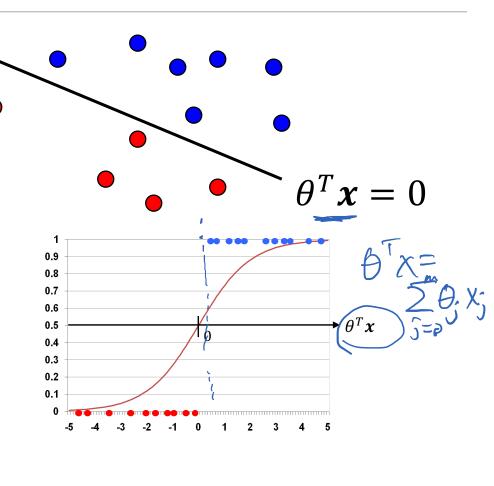
🗹 Yes, easily

Linearly separable data

Logistic Regression is trying to fit a <u>line</u> that separates data instances where y = 1 from those where y = 0:

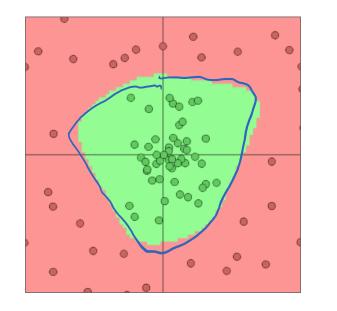
 We call such data (or functions generating the data) <u>linearly separable</u>.

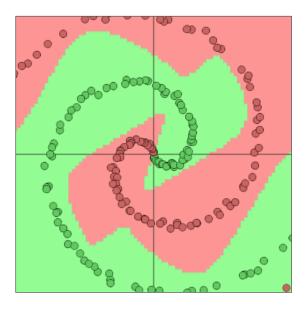
 Naïve Bayes is linear too, because there is one parameter for each feature (and no parameters that involve multiple features).



$$\widehat{P}(\boldsymbol{X}|\boldsymbol{Y}) = \prod_{\substack{j=1\\\text{Stanford University}}}^{m} \widehat{P}(X_j|\boldsymbol{Y})$$

Data is often not linearly separable





- Not possible to draw a line that successfully separates all the y = 1 points (green) from the y = 0 points (red)
- Despite this fact, Logistic Regression and Naive Bayes still often work well in practice

LIVE

Gradient Derivation

Background: Calculus

Calculus refresher #1: Derivative(sum) = sum(derivative)

 $\frac{\partial}{\partial x} \sum_{i=1}^{n} f_i(x) = \sum_{i=1}^{n} \frac{\partial f_i(x)}{\partial x}$

Calculus refresher #2: Chain rule 🛠 🛠 🛠

 $\frac{\partial f(x)}{\partial x} = \frac{\partial f(z)}{\partial z} \frac{\partial z}{\partial x}$

Calculus Chain Rule

f(x) = f(z(x))

aka decomposition of composed functions

Are you ready?

Quora	Home	🖉 Answer	Con Spaces	🛆 Notific	ations	Q Searc
Moments Per	rsonal Experience	es Important Lif	e Lessons +5	/		
What is your best "I've never been more ready in my life" moment?						
🔀 Answer	බ Follow · 2	→ Request	£) 🖓 A	9 4>	000
1 Answer						
Right no	ow!!!					
12 views · View	Upvoters					

Our goal

Find:
$$\frac{\partial LL(\theta)}{\partial \theta_j}$$
 where

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^T \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log (1 - \sigma(\theta^T \mathbf{x}^{(i)})) \quad \begin{array}{l} \text{log conditional} \\ \text{likelihood} \end{array}$$

Think

Slide 72 has code to think over by yourself.

Post any clarifications here or in chat!

https://us.edstem.org/courses/2678/discussion/171556

Think by yourself: 2 min

Aside: Sigmoid has a beautiful derivative

Sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

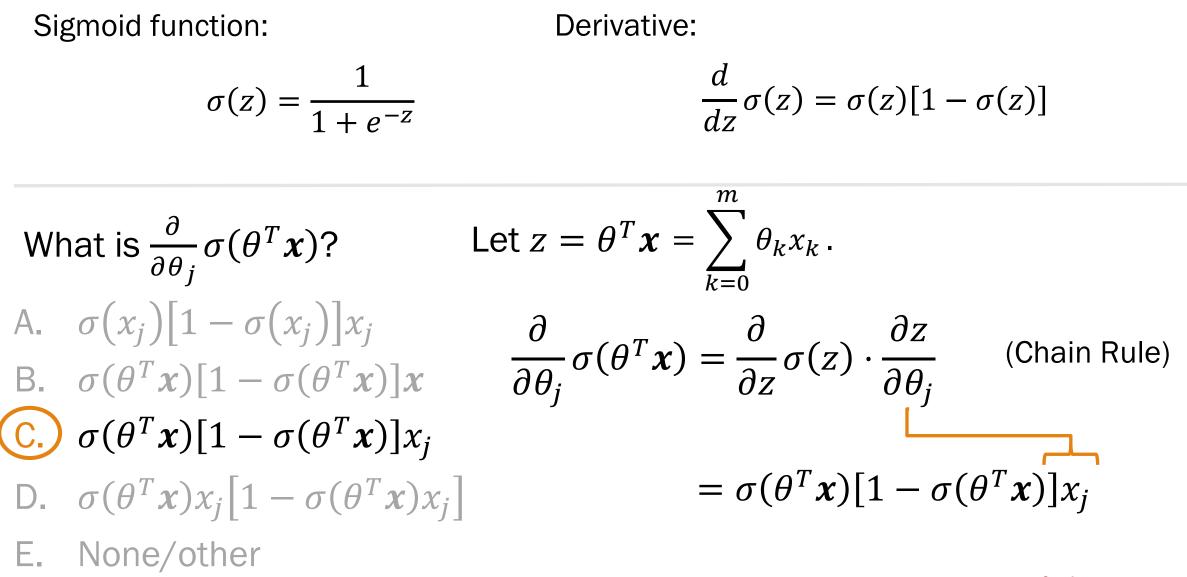
$$\frac{d}{dz}\sigma(z) = \sigma(z)[1 - \sigma(z)]$$

What is
$$\frac{\partial}{\partial \theta_j} \sigma(\theta^T x)$$
?
A. $\sigma(x_j) [1 - \sigma(x_j)] x_j$
B. $\sigma(\theta^T x) [1 - \sigma(\theta^T x)] x$
C. $\sigma(\theta^T x) [1 - \sigma(\theta^T x)] x_j$
D. $\sigma(\theta^T x) x_j [1 - \sigma(\theta^T x) x_j]$

E. None/other

Derivative:

Aside: Sigmoid has a beautiful derivative



Our goal: Re-introducing notation \hat{y}

Find:
$$\frac{\partial LL(\theta)}{\partial \theta_j}$$
 where

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^T \boldsymbol{x}^{(i)}) + (1 - y^{(i)}) \log \left(1 - \sigma(\theta^T \boldsymbol{x}^{(i)})\right) \quad \begin{array}{l} \log \text{ conditional} \\ \text{likelihood} \end{array}$$
$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}) \quad \text{Let } \hat{y}^{(i)} = \sigma(\theta^T \boldsymbol{x}^{(i)})$$

Compute gradient of log conditional likelihood

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \frac{\partial}{\partial \theta_j} \left[y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right] \qquad \text{Let } \hat{y}^{(i)} = \sigma(\theta^T \boldsymbol{x}^{(i)})$$

$$=\sum_{i=1}^{n}\frac{\partial}{\partial\hat{y}^{(i)}}\left[y^{(i)}\log(\hat{y}^{(i)}) + (1-y^{(i)})\log(1-\hat{y}^{(i)})\right] \cdot \frac{\partial\hat{y}^{(i)}}{\partial\theta_{j}}$$

(Chain Rule)

$$= \sum_{i=1}^{n} \left[y^{(i)} \frac{1}{\hat{y}^{(i)}} - (1 - y^{(i)}) \frac{1}{1 - \hat{y}^{(i)}} \right] \cdot \hat{y}^{(i)} (1 - \hat{y}^{(i)}) x_j^{(i)}$$
(calculus)
$$= \sum_{i=1}^{n} \left[y^{(i)} - \hat{y}^{(i)} \right] x_j^{(i)} = \sum_{i=1}^{n} \left[y^{(i)} - \sigma(\theta^T \boldsymbol{x}^{(i)}) \right] x_j^{(i)}$$
(simplify)

Compute gradient of log conditional likelihood

n

=

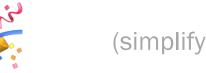
$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \frac{\partial}{\partial \theta_j} \left[y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right] \qquad \text{Let } \hat{y}^{(i)} = \sigma(\theta^T x^{(i)})$$

$$=\sum_{i=1}^{n} \frac{\partial}{\partial \hat{y}^{(i)}} \left[y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right] \cdot \frac{\partial \hat{y}^{(i)}}{\partial \theta_{j}}$$

$$\left[y^{(i)}\frac{1}{\hat{y}^{(i)}} - (1 - y^{(i)})\frac{1}{1 - \hat{y}^{(i)}}\right] \cdot \hat{y}^{(i)}(1 - \hat{y}^{(i)})x_j^{(i)}$$
(calculus)

$$= \sum_{i=1}^{n} [y^{(i)} - \hat{y}^{(i)}] x_j^{(i)} = \sum_{i=1}^{n} [y^{(i)} - \sigma(\theta^T x^{(i)})] x_j^{(i)}$$

Lisa Yan and Jerry Cain, CS109, 2020



(Chain Rule)