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Background




1. Weighted sum

X = (X, Xy o) X))

Z —_ 61X1 + 82X2 + .-+ Hme

m
= z 0;X; weighted sum
J=1
— 0Tx dot product

BV

E@l @L @ma 7&\

Rin
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. Dot product/ -, _ S .
WElgthd Sum weighted sumi. ;9’ %

Recall the linear regression model, where X = (X1, X,, ..., X,,) and Y € R:

m
N g0 =00+ ) 6,
=1

How would you rewrite this expression as a single dot product?

&
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. Dot product/ ;.. X .
WElgthd Sum weighted sumi. ;9’ &

Recall the linear regression model, where X = (X1, X,, ..., X,,) and Y € R:
m
g(X) = 6, + Z 6, X,
j=1
How would you rewrite this expression as a single dot product?

g(X) — 80X0 + 61X1 + 92X2 + -+ Qme Define XO =1

=0TX New X = (1, Xy, Xz, 0, X)) , 7 (00,0, .. 0.

Prepending X, = 1 to each feature vector X makes
matrix operators more accessible.
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Sigmoid function g(z)

The sigmoid function: 1“82)
1 0.8 +
Z —
02) = Trez 06 1
0.4 A
Sigmoid squashes z to 0d 1
a humber between O and 1. '
L I 1 i }O | l l l I 7

10 8 6 4 2 0 2 4 6 8 10

Recall definition of probability:

A number between O and 1
o(z) can represent

a probability.
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Conditional likelihood function

Training data (n datapoints):
(2@, yD) drawn i.i.d. from a distribution f(X = x®, Y = y®|9) = f(x®,yV|9)

n
— (D)1 (D) conditional likelihood
i arg;naxl_llf(y | x0,0) of training data
1=

n
= arg max z log f(y®W] xV, 6) log conditional likelihood
o 4
=1

* MLE in this lecture is estimator that
arg max LL(Q) maximizes conditional likelihood
6 e Confusingly, log conditional

likelihood is also written as LL(0)
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Logistic
Regression




Prediction models so far

Linear Regression (Regression)

X 6, + z 6. X; v X can be dependent
=1 W Regression model (Y € R, not discrete)

Naive Bayes (Classification)

X R R R Tractable with NB assumption, but...
P(X|Y)P(Y) P(X,Y) 1 Realistically, X; features not
Y necessarily conditionally independent
? = argmax P(Y | X) W Actually models P(X,Y), not P(Y|X)?
y={0,1}

= arg max P(X|Y)P(Y)

y={0,1} Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 10




Introducing Logistic Regression!

Linear Regression ideas Classification models

+ compute power
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Logistic Regression

m sigmoid function
X B0 +29ij Z o(7) = — P(Y = 1]|X)

= 1+e7*

Logistic Regression m

Model: PY=1X=x)=o0 90+29jx]-

j=1
Predict Y as the most likely Y ¥ = argmaxP(Y | X)
given our observation X = x: y={0,1}
Since Y € {0,1}, PY=0X=x)=1- 0(90 + Z}n=1 Hjxj)

Sigmoid function also known as “logit” function

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 12




Logistic Regression

6 parameter

P(Y =1|X = x)
X conditional likelihood

input features

m
P(Y= 1|X=x) =0 80+28jxj
j=1
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Logistic Regression cartoon

6 parameter
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Logistic Regression cartoon

m
P(Y — 1|X — x) — 0'(00 +ZHJX])
=1

]:

Lisa Yan and Jerry Cain, 5109, 20205lides courtesy of Chris Piech Stanford University 15




Logistic Regression cartoon

X, input features
10,1,1]
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Components of Logistic Regression

m
0 weights P =1]X =x) = 0(00 t Z foj)
=1

(aka parameters) J=

Lisa Yan and Jerry Cain, CS109, 20205lides cou rtesy of Chris Piech Stanford University 17




Components of Logistic Regression

weighted sum

m
P(Y — 1|X — x) — O'(HO +ZHJX])
=1

]:
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Components of Logistic Regression

P(Y =1|x) >‘)

squashing function
b/tOand 1

m
j=1
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Components of Logistic Regression

prediction

m
P(Y — 1|X — x) — 0'(00 +ZHJX])
=1

]:

Lisa Yan and Jerry Cain, 5109, 20205lides courtesy of Chris Piech Stanford University 20




Difterent predictions for different inputs

X, input features

P(Y=1|X=x)=a 00+ HJX]
10,1,1]
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Different predictions for different inputs

m
| PY=1X=x) =06 +ze-x-
X, input features : =1 i

10,0,1]
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Parameters affect prediction

m
P(Y — 1|X — x) — 0'(00 +ZHJX])
=1

]:

Lisa Yan and Jerry Cain, 5109, 20205lides courtesy of Chris Piech Stanford University 23




Parameters affect prediction

m
P(Y — 1|X — x) — O'(HO +ZHJX])
=1

]:

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 24




For simplicity

m
P(Yz 1|X:X) — 0 00 +ZH]X]
j=1

m
PY=1|X=x)=o0 2 0;ix; | =0(0"x) wherex, =1
j=0

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVeI‘Sity 25




Logistic regression classifier

Y = arg max P(Y|X)
y=10,1}

P(Y=1|X=x) = 0(27‘:0 Hjxj) =d(0"x)

Estimate parameters

from training data 0 = (09,01,07, ..., )

Training

Given an observation X = (X, X5, ..., X,,,), predict

¥ = arg max P(Y|X)
y={0,1}

Testing

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVCI‘Sity 26
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Training:
The big picture




Logistic regression classifier

¥ = arg max P(Y|X)
y={0,1}

P(Y=1|X=x) = 0(27‘:0 Hjxj) =d(0"x)

Estimate parameters

Training from training data

Choose 6 that optimizes some objective:
Determine objective function
Find gradient with respect to 6

Solve analytically by setting to O, or
computationally with gradient ascent

Lisa Yan and Jerry Cain, CS109, 2020

H — (60, 01, 82, cer Qm)

We are modeling P(Y|X)
directly, so we maximize the
conditional likelihood of
training data.

Stanford University 28



Estimating 6

n
1. Determine objective 1_[ @1 +D
_ 7, = arg max x\’,0
function MLE 89 | | f(y | )

2. Gradientw.r.t. 6;,forj =0,1,..,m

3. Solve initialize x
* No analytical derivation of 8,;; ... repeat many times:
* ...but can still compute 8y, ¢ compute gradient

with gradient ascent! X += n * gradient

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVCI‘Sity 29




1. Determine objective function

P(Y=1|X=x) = 0(271:0 Hjxj)

n
OmLe =|arg maXl_[ f (y(i)l x®, 0) =|arg max LL(6)
6 : 6
i=1

= d(0Tx)
First: Interpret Second: Write a differentiable
conditional likelihood expression for log conditional
with Logistic Regression likelihood

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 30



Determine objective function (interpret)

n o P(Y = 11X = x) = o(XTL, 0;x;)
Oy g = arg maxl_[f(y(‘)| x@, 0) _ G(HJTxO) ™
0 i=1
Suppose you have n = 2 training datapoints: (), 1), (x?),0)
Consider the following expressions for a given 6:
a(6TxV) o(9Tx?) a(6TxW) (1 — a(HTx(Z)))
(1 _ O.(HTx(l))) O'(HTx(Z)) (1 . a(HTx(l))) (1 . O.(HTx(Z)))
Interpret the above expressions as probabilities. % o)

If we let 8 = 0,,;, which probability should be highest? K‘U

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 31




Determine objective function (interpret)

n o P(Y = 11X = x) = o(XTL, 0;x;)
Oy g = arg maxl_[f(y(‘)| x@D, 0) _ G(HJTxO) ™
A
Suppose you have n = 2 training datapoints: (), 1), (x?),0)
Consider the following expressions for a given 6:
a(6TxV) o(9Tx?) a(6TxW) (1 — a(HTx(Z)))
(1 _ O.(HTx(l))) O'(HTx(Z)) (1 . a(HTx(l))) (1 . O.(HTx(Z)))

Interpret the above expressions as probabilities.
If we let 8 = 0,,;, which probability should be highest?

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 32



Determine objective function (write)

P(Y = 11X = x) = o(X7, 6;x/)
OriE = arg;nax LL(6) =g(8Tx)

What is a differentiable
expression for P(Y = y| X = x)?

a(0Tx) ify=1

P(YZY|X=x)={1—a(9Tx) ity =0

What is a differentiable expression 1L0) =1 o1 ,
for LL(8), log conditional likelihood? Ogl;[f(y |x9,0)

\2)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 33




Determine objective function (write)

P(Y = 11X = x) = o(X7, 6;x/)
OriE = arg;nax LL(6) =g(8Tx)

What is a differentiable
expression for P(Y = y| X = x)?

a(0Tx) ify=1

P(YZY|X=x)={1—a(9Tx) ity =0

Recall

Bernoulli MLE!
What is a differentiable expression I DT ,
for LL(6), log conditional likelihood? ©) "ggf (@122, 6)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 34



Determine objective function (write)

P(Y = 11X = x) = o(X7, 6;x/)
OriE = arg;nax LL(6) =g(8Tx)

What is a differentiable
expression for P(Y = y| X = x)?

P(Y =y|X =x) = (c(67x)) (1 - 5(8T%)) °

What is a differentiable expression
for LL(8), log conditional likelihood?
LL(O) = 2 yWlog a(HTx(i)) + (1 - y(i)) log (1 — U(HTx(i)))

1=1

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 35




2. Find gradient with respect to 6

n
o Our e = 1_[ [ xO g) = LL(O
Optimization MLE = Al INax | | ¥ ) arg max (6)

problem: = | . -
LL(O) = z yWlog a(HTx(l)) + (1 - y(‘)) log (1 — U(HTx(l)))

=1

Gradient w.r.t. 6;, forj = 0,1, ..., m:

n
JOLL(O . . :
(6) = 2[}1(0 — O'(HTx(l))] x-(l) (derived later)
691 . J
=1
How do we interpret the gradient K?;rj

contribution of the i-th training datapoint?

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVCI‘Sity 36




Find gradient with respect to 6

Optimization OmLE = arg maXl_[f(y(‘)l x®, 0) = arg max LL(6)

problem:
LL(6) —2 yOlogo(67x®) + (1 - y®)log (1 - o(67xD))

=1

Gradientw.rt. 6;,forj = 0,1, ...,m

n
L
JOLL(6) 2[}](1) O.(HTx(l))] () (derived later)

00, :
i=1 T

scale by j-th feature

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 37




Find gradient with respect to 6

Optimization OmLE = arg maXl_[f(y(‘)l x®, 0) = arg max LL(6)

problem:
LL(6) —2 yOlogo(67x®) + (1 - y®)log (1 - o(67xD))

=1

Gradientw.r.t. 6;, forj =0,1,...,m

dLL(6)
00,

n
2[3’(0 G(eTx(l))] Q (derived later)

=1
lor0 P(Y =1|X =xV)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 38




Find gradient with respect to 6

n
o Ouip = 1_[ [ xO g) = LL(O
Optimization MLE = Al INax | | ¥ ) arg max (6)

problem: = | . -
LL(A) = z yWlog J(BTx(l)) + (1 - y(”) log (1 — U(HTx(l)))

=1

Gradient w.r.t. 6;, forj = 0,1, ..., m:

n
OLL(0 _ _ _
69( ) - E[y(l) - G(eTx(l))] xj(l) (derived later)
J i=1

Suppose y® = 1 (the true class label for i-th datapoint):
If 5(87x®) > 0.5, correct
if 6(67xW) < 0.5, incorrect - change 6, more

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 39




3. Solve

1. Optimization OmLe = arg maXl_[f(y(‘)l x®), 0) = arg max LL(6)

problem:
LL(6) —2 yOlogo(67x®) + (1 - y®)log (1 - o(67xD))

=1

(3LL(0)

2. Gradientw.r.t. 6;,forj =0,1,..,m

Z[y(l) U(@Tx(l))] (®)

3. Solve

Stay tuned!

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVCI‘Sity 40
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Logistic Regression Model Review

Y = arg max P(Y|X)
y=10,1}

P(Y=1|X=x) = 0(27‘:0 Hjxj) =0(07x) | wherex, =1

m sigmoid function
X 0+ ) 0%, e P(Y = 1]X)
j=1 1+e2

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul’liVeI‘Sity 42




Introducing notation y

¥ = arg max P(Y|X) Y is prediction of Y. ¥ € {0,1}
y=10,1}

x ;
§=PY=1X=0=006"") P =ylXx=2 {1_y I

Small y is conditional probability of
Y=1givenX =x.y € [0,1]

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVCI‘Sity 43




Another view of Logistic Regression

Y = arg max P(Y|X)
y=10,1}

y=P(Y =1|X=x) = J(Z}?"‘:O Hjxj) = o0(07x)

0; oredict % W
0.8 //

0.7

% computey

0.6
0.5 / > OTx
0.4 0

0.3 /
0.2 For the “correct” parameters 6:
| / (x,Y = 1) should have 87x > 0

0.1
ﬁ : (x,Y = 0) should have 8Tx < 0
0 B TTTTTTTTITTITTITITTITTITTTITTITTTTTT [TTTTT TTTTTT

TTTT T T
-5 4 -3 -2 -1 0 1 2Lisa Yan%nd Jerry43ain, CS§9, 2020 Stanford Ul‘liVCI‘Sity




Today’s goals: Logistic Regresison

At a high level
Understand the model

Training: Use gradient ascent

Details
Gradient ascent pseudocode

Testing

Philosophy
Logistic Regression vs Naive Bayes
Linearly separable functions

Derivation of gradient (Calculus)

Lisa Yan and Jerry Cain, CS109, 2020

For the
problem set

Machine learning

insights

Stanford University 45



Training:
The details




Training: Learning parameters

. Learn parameters 8 = (6,, 64, ..., 0,,,)
rainin
& that maximize log conditional likelihood of training data

Some reminders:

n
Log conditional (g =z D100 6(0TxD) + (1 — v oo (1 — o(oT x®
likelihood: () £, oga(67x") + (1 - y©)log (1 - o(67x))

(derived at

n
Gradient with OLL(6) . . .
= E [y(‘) — O'(HTx(l))] xj(l) forj=0,1,..,m end of
=1

respect to 6: 00; lecture)

No analytical solution; optimize with gradient ascent

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 47



Training: Gradient ascent step

6LL(9)

z[y@ —a(87xW)] x; ®) forj=0,1,..,m

repeat many times:

for all thetas:

H_IIGW — 9_01(1 aLL(QOId)

002

+7-
.~ What does
T
=67 +7- Z [y(‘) 9°1d x(‘))] 2 this look like

]
in code?

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 48




h- 1 Slide 50 has code to think over by yourself.
Think

Post any clarifications here or in chat!

https://us.edstem.org/courses/2678/discussion/171556

Think by yourself: 2 min

(b If)

49



https://us.edstem.org/courses/2678/discussion/171556

forj=20,1,..

Training: Gradient Ascent Gradient (o, _oa Z[y(” (947 20)] 29

Ascent Step 9

initialize 6; = @ for 0 = ]

repeat many times:

IA
=

gradient[j] = @ for 0 = ]
// TODO: your code here

// compute all gradient[j]’s
// based on n training examples

IA
=

(bjiyeurstf

6; += n * gradient[j] for all 0 =

—
IA
=]

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 50




Inner loop forj=0,1,..,

Training: Gradient Ascent Gradient

Ascent Step i

initialize 6; = @ for 0 = ]

repeat many times:

IA
=

gradient[j] = 0 for 0@ = j = m
for each training example (x,y):
for each @ = J = m:

// update gradient[j] for
// current (x,y) example

6; += n * gradient[j] for all @ = j = m

Lisa Yan and Jerry Cain, CS109, 2020

new _ led +
J

m.

n - zn: [y(i) e (golde(i))] xj(i)
=1 |

i J

compute
outer loop

Stanford University 51



.« e . inner loop forj =0,1,.
Training: Gradient Ascent Gradient e, _ o, Z 10— (49850

new

Ascent Step 9

i=11 J
|

compute
outer loop

initialize 6; = @ for @ = j = m
repeat many times:

gradient[j] = 0 for 0@ = j = m

for each training example (x,y):

for each @ = J = m:
| | 1 Some important
gradient[j] += Y = T —o7x| Y details...

6; += n * gradient[j] for all 0 =

—
IA
=]

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 52




Gradlent

Training: Gradient Ascent Ascent Step ¥

n
Hold Lo Z y(l) Qolde(L) ] @
i=1

initialize 6; = @ for 0 = ]

repeat many times:

IA
=

gradient[j] = 0 for 0@ = j = m
for each training example (x,y):
for each @ = J = m:

, _ 1
gradient[j] += 3%_1;+e—9ﬂJ'%

Finish computing
gradient with g°ld
prior to any 6 update

L2

| 6; += n % gradient[j] for all @ =

m |

Lisa Yan and Jerry Cain, CS109, 2020
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Gradient

new

Training: Gradient Ascent Ascent Step ] 901d_|_77 lZl y(l) Qolde(L) (i)

initialize 6; = @ for 0 = ]

repeat many times:

IA
=

gradient[j] = 0 for @ = j = m Learning rate 7 is a

for each training example (x,y): constant you set

for each 0 < j < m: before training

: . 1
gradient[j] += e

0; +=[_?[LQ gradient[j] for all 0 =

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 54
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.. . Gradient grew _ po - ; o Tl i
Training: Gradient Ascent pscent step " = 6+ ), [0 —a (0°47x0)] 57

initialize 6; = @ for 0 = ]

repeat many times:

IA
=

gradient[j] = 0 for 0@ = j = m
for each training example (x,y):

for each 0 = J = m: .
xj is j-th feature of

1 input x = (xq, ..., X;)

1+e-0"x

gradient[j] += |y -

6; += n * gradient[j] for all 0 =

—
IA
=]

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 55




.. . Gradient grew _ po - ; o Tl i
Training: Gradient Ascent pscent step " = 6+ ), [0 —a (0°47x0)] 57

initialize 6; = @ for 0 = ]

repeat many times:

IA
=

gradient[j] = 0 for 0@ = j = m
for each training example (x,y):
for each @ = J = m:

1
radient[j] += [ - ,j;?
9 ] Y 1 .|_[e—9Tx ! Insert xo = 1 before
training

6; += n * gradient[j] for all 0 =

—
IA
=]

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 56




Gradient gnew _ gold c 1aT 0]
= 09445 ) [y® o (694x0)] x
i=1

Training: Gradient Ascent Ascent Step ¥

initialize 6; = @ for @ = j = m Finish computing
repeat many times: gradient with g°ld
. . . prior to any 6 update
gradient[j] = 0 for 0@ = j = m Learning rate 1 is a
for each training example (x,y): constant you set
for each @ = j =< m: before training
DR x; is j-th feature of
1 - _
radient[i] += _ . input x = (xq, ..., X;)
: ] Y] +e=0Tx] ™/ Insert x, = 1 before
training

IA
=

6; += n * gradient[j] for all @ = j

Lisa Yan and Jerry Cain, CS109, 2020 Stanford UI‘liVeI'Sity 57
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Testing: Classification with Logistic Regression

Compute y =P(Y =1|X =x) =0(8Tx) =
Classify instance as:

Testing 1 9 > 0.5, equivalently 87x > 0
0 otherwise

1+e-0"x

I Parameters 9]- are not updated during testing phase

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 59




Interlude for
jokes/announcements

https://www.bagelbakerygainesville.com/top-8-bagel-jokes-of-all-time/



https://www.bagelbakerygainesville.com/top-8-bagel-jokes-of-all-time/

Announcements

4 N

Quiz #3

Time frame: Wednesday 11/18 2:00pm - Friday 11/20 12:59pm PT

Covers: Up to and including logistic regression

Info and practice: Quizzes page
4 N [ )

Probability Reference (Overleaf)

Next week: Last section

Updated to include all of Quiz 3-relevant
Review session for Quiz #3 material (sampling defs, MLE/MAP,

N . Q:Iassifiers) .

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVCI‘Sity 61



http://web.stanford.edu/class/cs109/exams/quizzes.html
https://www.overleaf.com/read/wyhtzmdsfwkb

Interesting probability news

The Time Everyone
“Corrected’ the
World’s Smartest

MARILYN vos SAVANT
>oluthnist Parade Magazin

https://priceonomics.com/the-time-everyone-

corrected-the-worlds-smartest/ Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 62
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Today’s goals: Logistic Regression

Philosophy

. nglst|c Regression vs Nglve Bayes Machine learning
* Linearly separable functions " insights
Derivation of gradient (Calculus)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 63




Philosophy




h- 1 Slide 64 asks you to think over by yourself.
Think

Post any clarifications here or in chat!

https://us.edstem.org/courses/2678/discussion/171556

Think by yourself: 2 min

(b If)

65



https://us.edstem.org/courses/2678/discussion/171556

Naive Bayes VS Logistic Regression

6
X ol
P(X|Y)P(Y) P(X,Y) X T x EEE P(Y = 1|X)
Y = argmaxP(Y | X) = arg max P(X|Y)P(Y) Y = arg max P(Y|X)
y={0,1} y={0,1} y={0,1}
Compare/contrast:

What distributions are we modeling?
After learning our parameters, could we randomly generate a new datapoint (x,y)?
Could we model a continuous X; feature (e.g., X;~Normal, or X;~Unknown)? ~

Could we model a non-binary discrete X; (e.g., X; € {1,2, ..., 6})? W*XWS )

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 66




Tradeoffs:

Naive Bayes

Logistic Regression

Modeling goal
Generative or

discriminative?

Continuous
input features

Discrete
input features

P(X,Y)

Generative: could use joint
distribution to generate new
points (! but you might not
need this extra effort)

' Needs parametric form
(e.g., Gaussian) or
discretized buckets (for
multinomial features)

Yes, multi-value discrete
data = multinomial P(X;|Y)

Lisa Yan and Jerry Cain, CS109, 2020

P(Y|X)

Discriminative: just tries to
discriminatey =0vsy =1
()( cannot generate new points
b/cno P(X,Y))

Yes, easily

Y. Multi-valued discrete data
hard (e.g., if X; € {A,B,C}, not
necessarily good to encode as
{1, 2,3}

Stanford University 67



Linearly separable data

Logistic Regression is trying to fit
a line that separates data instances
where y = 1 from those where y = 0:

We call such data (or functions =
generating the data) linearly separable. o /
. Vi o
Olgrﬁfﬁ“ummuuu a

5 4 3 2 414 0 1 2 3 4 5

Naive Bayes is linear too, because there is

one parameter for each feature

(and no parameters that involve multiple " T

features). PX|Y) = HP (%1Y)
j=1
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Data is often not linearly separable

@ (0]
ST I o . %
o 0@ | 8
@
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% ® ° :
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s ° o % \TM'
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e o
(&) ° .. e %%% d,)OO
~ (o) @ea on® L]

Not possible to draw a line that successfully separates all the
y = 1 points (green) from the y = 0 points (red)

Despite this fact, Logistic Regression and Naive Bayes
still often work well in practice
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LIVE

Gradient
Derivation




Background: Calculus

Calculus refresher #1.

Derivative(sum) = - 0 fl (x)
sum(derivative) 5 x fl (x) =

Calculus refresher #2: of (x) 0f(z)0z
Chain rule =

0x dz 0x

Calculus Chain Rule

. aka decomposition
f(x) o f(Z(x)) of composed functions
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Are you ready?

Quora Home % Answer EB']J Spaces Q Notificationso

Moments Personal Experiences Important Life Lessons +5 /’

What is your best "I've never been more ready in my life"
moment?

7/, Answer 3 Follow -2 42 Request O < B ¥ 2 oo

1 Answer

Right now!!!

\ 2 A P Yoare
Jiew Upvots

{» Upvote -1 ¥ 3 Share J 4> 000
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Our goal

~ OLL(6)
Find: 69j where

- log conditional

LL(O) = 2 yDloga(67xD) + (1 - y®)log (1 - a(672D))  |ilinood

1=1

Two “pre-processing” steps to prepare for chain rule
1. Rewrite LL(6) with y
2. Compute gradient of y
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1. Rewriting LL(6) with y

~ OLL(6)
Find: 69j where

n
. . _ | | ditional
LL(B) = 2 y® loga(HTx(‘)) + (1 _ y(z)) log (1 _ U(HTx(l))) I?kgeﬁﬁgoldlona
i=1

n

LL(O) = z yDlog9® + (1 —y®)log(1 — V) Let @ = g(6TxD)
=1
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>. Compute gradient of § = o(6" x)

Aside: Sigmoid has a
beautiful derivative!

Sigmoid function: Derivative:

1
1+e™*

d
o(2) = —0(2) = 0(@)[1 - 0(2)]

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 75




Think Slide 72 has code to think over by yourself.
Post any in chat!

Think by yourself: 2 min
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Compute gradient of § = o(67 x)

Sigmoid function:

1
G(Z)=1+e‘z
s 2 o 0 aT v
Whatlsaej —aeja(H X)"

o(x)[1 - o(x;)]x;
ag(8Tx)[1—0c(0"x)]x
(0" x)[1 - 0(8"x)]x;
a(0Tx)x;[1 — (0T x)x;]
None/other

Lisa

Derivative:

Yan and Jerry Cain, CS109, 2020

d
=, 02) =0(2)[1-0(2)]

(bky:au'rs If)
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Compute gradient of § = o(67 x)

Sigmoid function: Derivative:
1 d
0(2) = 70— —0(2) = o(D)[1 - o(2)]
What is = (67 x)? Letz = 0Tx = ) 6.
J k=0
d 0 0z

—g(0Tx) = — — (Chain Rule)
50,70 0 = 5,7 54

(0" x)[1 - 0(8"x)]x;
=0(0"x)[1 - a(0"x)]x;
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Compute gradient of log conditional likelihood

n
JdLL(6 . . . . . .
00, £ 00,
- ay® |
— z S b© l0g(9®) + (1 - y©) log(1 - 3©)] - 2 (Chain Rule)
J
n
2 [y(l) NG ( _ (l)) A(l)] }7(0(1 _ }’;(i))xj(l) (calculus)
:1
=1
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Compute gradient of log conditional likelihood

ILL(6)
06,

n | | @ Zf@ﬁ)—
= ) YO —a(07x®)] 10 £
=1
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Interlude for jokes




Probability as college students

(A useful construct that connects discrete PMF to continuous PDF)
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