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1. Weighted sum
If 𝑿 = 𝑋!, 𝑋", … , 𝑋# :

4

dot product

𝑍 = 𝜃!𝑋! + 𝜃"𝑋" +⋯+ 𝜃#𝑋#

=*
$%!

#

𝜃$𝑋$ weighted sum

= 𝜃&𝑿
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1. Weighted sum
Recall the linear regression model, where 𝑿 = 𝑋!, 𝑋", … , 𝑋# and 𝑌 ∈ ℝ:

𝑔 𝑿 = 𝜃' +*
$%!

#

𝜃$𝑋$

How would you rewrite this expression as a single dot product?

5

🤔

𝜃!𝑿 =$
"#$

%

𝜃"𝑋"
Dot product/
weighted sum
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1. Weighted sum
Recall the linear regression model, where 𝑿 = 𝑋!, 𝑋", … , 𝑋# and 𝑌 ∈ ℝ:

𝑔 𝑿 = 𝜃' +*
$%!

#

𝜃$𝑋$

How would you rewrite this expression as a single dot product?

6

Define 𝑋! = 1𝑔 𝑿 = 𝜃'𝑋' + 𝜃!𝑋! + 𝜃"𝑋" +⋯+ 𝜃#𝑋#

= 𝜃&𝑿

𝜃!𝑿 =$
"#$

%

𝜃"𝑋"
Dot product/
weighted sum

New 𝑿 = 1, 𝑋", 𝑋#, … , 𝑋$

Prepending 𝑋! = 1 to each feature vector 𝑿 makes 
matrix operators more accessible.
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2. Sigmoid function 𝜎 𝑧
• The sigmoid function:

• Sigmoid squashes 𝑧 to
a number between 0 and 1.

• Recall definition of probability:
A number between 0 and 1

7
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1 + 𝑒!"

𝜎 𝑧

𝑧

𝜎 𝑧 can represent 
a probability.
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3. Conditional likelihood function
Training data (𝑛 datapoints):
• 𝒙 % , 𝑦 % drawn i.i.d. from a distribution 𝑓 𝑿 = 𝒙 % , 𝑌 = 𝑦 % |𝜃 = 𝑓 𝒙 % , 𝑦 % |𝜃

8

𝜃+,- = arg max
.

6
/%!

0

𝑓 𝑦 / | 𝒙 / , 𝜃 conditional likelihood
of training data

log conditional likelihood

• MLE in this lecture is estimator that 
maximizes conditional likelihood

• Confusingly, log conditional 
likelihood is also written as 𝐿𝐿 𝜃

= arg max
.

*
/%!

0

log 𝑓 𝑦 / | 𝒙 / , 𝜃

= arg max
.

𝐿𝐿 𝜃

Review



Logistic 
Regression

9

25b_logistic_regression
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✅ 𝑿 can be dependent
🤷 Regression model ( 0𝑌 ∈ ℝ, not discrete)

10

Prediction models so far
Linear Regression (Regression)

𝜃! +3
"#$

%

𝜃"𝑋"𝑿 0𝑌

✅ Tractable with NB assumption, but…
⚠ Realistically, 𝑋& features not

necessarily conditionally independent
🤷 Actually models 𝑃 𝑿, 𝑌 , not 𝑃 𝑌|𝑿 ?

0𝑃 𝑿|𝑌 0𝑃 𝑌
𝑿

𝑌
0𝑃 𝑿, 𝑌

Naïve Bayes (Classification)

Review

0𝑌 = arg max
'( !,"

𝑃 𝑌 | 𝑿

= arg max
'( !,"

𝑃 𝑿|𝑌 𝑃 𝑌

0𝑌 = 𝜃! + ∑&("$ 𝜃&𝑋&
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Introducing Logistic Regression!

11

Linear Regression ideas Classification models

+ compute power
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Logistic Regression

Logistic Regression
Model:

Predict >𝑌 as the most likely 𝑌
given our observation 𝑿 = 𝒙:

• Since 𝑌 ∈ 0,1 , 𝑃 𝑌 = 0|𝑿 = 𝒙 = 1 − 𝜎 𝜃' + ∑$%!# 𝜃$𝑥$
• Sigmoid function also known as “logit” function

12

𝜃! +3
"#$

%

𝜃"𝑋"𝑿 𝑃 𝑌 = 1|𝑿

>𝑌 = arg max
4% ',!

𝑃 𝑌 | 𝑿

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃' +*
$%!

#

𝜃$𝑥$

sigmoid function

𝜎 𝑧 =
1

1 + 𝑒!"
𝑍
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Logistic Regression

13

0.81
𝒙 = [0,1,1]

𝑃 𝑌 = 1|𝑿 = 𝒙
conditional likelihood𝑿

input features

𝜃 parameter

Slides courtesy of Chris Piech

𝑃 𝑌 = 1|𝑿 = 𝑥 = 𝜎 𝜃! +?
&("

$

𝜃&𝑥&



Lisa Yan and Jerry Cain, CS109, 2020

Logistic Regression cartoon

14

𝜃 parameter

Slides courtesy of Chris Piech
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Logistic Regression cartoon

15Slides courtesy of Chris Piech

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃! +?
&("

$

𝜃&𝑥&

+

x0

x1

x2

x3

✓0

✓1

✓2

✓3

𝑧 𝜎 𝑧
𝑃 𝑌 = 1|𝒙
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Logistic Regression cartoon

16Slides courtesy of Chris Piech

𝑿, input features
0,1,1

>𝑌, output

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃! +?
&("

$

𝜃&𝑥&

+

x0

x1

x2

x3

✓0

✓1

✓2

✓3

𝑧 𝜎 𝑧
𝑃 𝑌 = 1|𝒙
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Components of Logistic Regression

17Slides courtesy of Chris Piech

+

x0

x1

x2

x3

✓0

✓1

✓2

✓3

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃! +?
&("

$

𝜃&𝑥&

𝑧 𝜎 𝑧

𝜃 weights
(aka parameters)

𝑃 𝑌 = 1|𝒙
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Components of Logistic Regression

18Slides courtesy of Chris Piech

+

x0

x1

x2

x3

✓0

✓1

✓2

✓3

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃! +?
&("

$

𝜃&𝑥&

𝑧 𝜎 𝑧

weighted sum

𝑃 𝑌 = 1|𝒙
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Components of Logistic Regression

19Slides courtesy of Chris Piech

+

x0

x1

x2

x3

✓0

✓1

✓2

✓3

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃! +?
&("

$

𝜃&𝑥&

𝑧 𝜎 𝑧

squashing function
b/t 0 and 1

𝑃 𝑌 = 1|𝒙
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Components of Logistic Regression

20Slides courtesy of Chris Piech

+

x0

x1

x2

x3

✓0

✓1

✓2

✓3

𝑧 𝜎 𝑧
𝑃 𝑌 = 1|𝒙

prediction

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃! +?
&("

$

𝜃&𝑥&
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Different predictions for different inputs

21Slides courtesy of Chris Piech

+

x0
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x2

x3

✓0

✓1

✓2

✓3

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃! +?
&("

$

𝜃&𝑥&

𝑃 𝑌 = 1|𝒙

𝑿, input features
0,1,1

𝑧 =
2.1

𝜎 𝑧
= 0

.7
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Different predictions for different inputs

22Slides courtesy of Chris Piech

+
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✓2

✓3

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃! +?
&("

$

𝜃&𝑥&

𝑃 𝑌 = 1|𝒙

𝑿, input features
0,0,1

𝑧 =
−1.
9

𝜎 𝑧
= 0

.3
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Parameters affect prediction

23Slides courtesy of Chris Piech

+
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✓3

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃! +?
&("

$

𝜃&𝑥&

𝑧 =
2.1

𝑃 𝑌 = 1|𝒙
𝜎 𝑧

= 0
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Parameters affect prediction

24Slides courtesy of Chris Piech

+
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✓0

✓1

✓2

✓3

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃! +?
&("

$

𝜃&𝑥&

𝑧 =
−1.
5

𝑃 𝑌 = 1|𝒙
𝜎 𝑧

= 0
.4
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For simplicity

25

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃' +*
$%!

#

𝜃$𝑥$

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 *
$%'

#

𝜃$𝑥$ = 𝜎 𝜃&𝒙 where 𝑥! = 1
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Logistic regression classifier

2626

Testing >𝑌 = arg max
4% ',!

𝑃 𝑌|𝑿

Training 𝜃 = 𝜃', 𝜃!, 𝜃", … , 𝜃#

Given an observation 𝑿 = 𝑋!, 𝑋", … , 𝑋# , predict

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 ∑$%'# 𝜃$𝑥$ = 𝜎 𝜃&𝒙

Estimate parameters
from training data

>𝑌 = arg max
4% ',!

𝑃 𝑌|𝑿



Training:
The big picture

27

25c_lr_training
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Logistic regression classifier

2828

Testing >𝑌 = arg max
4% ',!

𝑃 𝑌|𝑋

Training 𝜃 = 𝜃', 𝜃!, 𝜃", … , 𝜃#

Given an observation 𝑿 = 𝑋!, 𝑋", … , 𝑋# , predict

Estimate parameters
from training data

Choose 𝜃 that optimizes some objective:
1. Determine objective function
2. Find gradient with respect to 𝜃
3. Solve analytically by setting to 0, or

computationally with gradient ascent

We are modeling 𝑃 𝑌|𝑋
directly, so we maximize the 
conditional likelihood of 
training data.

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 ∑$%'# 𝜃$𝑥$ = 𝜎 𝜃&𝒙

>𝑌 = arg max
4% ',!

𝑃 𝑌|𝑿
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1. Determine objective
function

2. Gradient w.r.t. 𝜃$, for 𝑗 = 0, 1, … ,𝑚

3. Solve
• No analytical derivation of 𝜃+,-…
• …but can still compute 𝜃+,-

with gradient ascent!

Estimating 𝜃

29

𝜃123 = arg max
4

H
%("

5

𝑓 𝑦 % | 𝒙 % , 𝜃

initialize x
repeat many times:

compute gradient
x += η * gradient
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1. Determine objective function

30

𝜃123 = arg max
4

H
%("

5

𝑓 𝑦 % | 𝒙 % , 𝜃 = arg max
4

𝐿𝐿 𝜃
𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 ∑&(!$ 𝜃&𝑥&

= 𝜎 𝜃6𝒙

First: Interpret
conditional likelihood
with Logistic Regression

Second: Write a differentiable
expression for log conditional
likelihood
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1. Determine objective function (interpret)

Suppose you have 𝑛 = 2 training datapoints: 𝒙 " , 1 , 𝒙 # , 0
Consider the following expressions for a given 𝜃:

31

🤔

A. 𝜎 𝜃6𝒙 " 𝜎 𝜃6𝒙 #

B. 1 − 𝜎 𝜃6𝒙 " 𝜎 𝜃6𝒙 #

1. Interpret the above expressions as probabilities.
2. If we let 𝜃 = 𝜃!"#, which probability should be highest?

C. 𝜎 𝜃6𝒙 " 1 − 𝜎 𝜃6𝒙 #

D. 1 − 𝜎 𝜃6𝒙 " 1 − 𝜎 𝜃6𝒙 #

𝜃123 = arg max
4

H
%("

5

𝑓 𝑦 % | 𝒙 % , 𝜃 = arg max
4

𝐿𝐿 𝜃
𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 ∑&(!$ 𝜃&𝑥&

= 𝜎 𝜃6𝒙
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1. Determine objective function (interpret)

Suppose you have 𝑛 = 2 training datapoints: 𝒙 " , 1 , 𝒙 # , 0
Consider the following expressions for a given 𝜃:

32

A. 𝜎 𝜃6𝒙 " 𝜎 𝜃6𝒙 #

B. 1 − 𝜎 𝜃6𝒙 " 𝜎 𝜃6𝒙 #

1. Interpret the above expressions as probabilities.
2. If we let 𝜃 = 𝜃!"#, which probability should be highest?

C. 𝜎 𝜃6𝒙 " 1 − 𝜎 𝜃6𝒙 #

D. 1 − 𝜎 𝜃6𝒙 " 1 − 𝜎 𝜃6𝒙 #

𝜃123 = arg max
4

H
%("

5

𝑓 𝑦 % | 𝒙 𝒊 , 𝜃 = arg max
4

𝐿𝐿 𝜃
𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 ∑&(!$ 𝜃&𝑥&

= 𝜎 𝜃6𝒙
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1. Determine objective function (write)

33

1. What is a differentiable
expression for 𝑃 𝑌 = 𝑦| 𝑿 = 𝒙 ?

2. What is a differentiable expression
for 𝐿𝐿 𝜃 , log conditional likelihood?

𝑃 𝑌 = 𝑦|𝑿 = 𝒙 = <𝜎 𝜃&𝒙 if 𝑦 = 1
1 − 𝜎 𝜃&𝒙 if 𝑦 = 0

𝐿𝐿 𝜃 = logD
'#$

(

𝑓 𝑦 ' | 𝒙 ' , 𝜃

🤔

𝜃123 = arg max
4

H
%("

5

𝑓 𝑦 % | 𝒙 % , 𝜃 = arg max
4

𝐿𝐿 𝜃
𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 ∑&(!$ 𝜃&𝑥&

= 𝜎 𝜃6𝒙
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1. Determine objective function (write)

34

1. What is a differentiable
expression for 𝑃 𝑌 = 𝑦| 𝑿 = 𝒙 ?

2. What is a differentiable expression
for 𝐿𝐿 𝜃 , log conditional likelihood?

𝑃 𝑌 = 𝑦|𝑿 = 𝒙 = <𝜎 𝜃&𝒙 if 𝑦 = 1
1 − 𝜎 𝜃&𝒙 if 𝑦 = 0

𝐿𝐿 𝜃 = logD
'#$

(

𝑓 𝑦 ' | 𝒙 ' , 𝜃

Recall
Bernoulli MLE!

𝜃123 = arg max
4

H
%("

5

𝑓 𝑦 % | 𝒙 % , 𝜃 = arg max
4

𝐿𝐿 𝜃
𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 ∑&(!$ 𝜃&𝑥&

= 𝜎 𝜃6𝒙
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1. Determine objective function (write)

35

1. What is a differentiable
expression for 𝑃 𝑌 = 𝑦| 𝑿 = 𝒙 ?

2. What is a differentiable expression
for 𝐿𝐿 𝜃 , log conditional likelihood?

𝑃 𝑌 = 𝑦|𝑿 = 𝒙 = 𝜎 𝜃&𝒙
4
1 − 𝜎 𝜃&𝒙

!F4

𝐿𝐿 𝜃 =?
%("

5

𝑦(%) log 𝜎 𝜃6𝒙(%) + 1 − 𝑦(%) log 1 − 𝜎 𝜃6𝒙(%)

𝜃123 = arg max
4

H
%("

5

𝑓 𝑦 % | 𝒙 % , 𝜃 = arg max
4

𝐿𝐿 𝜃
𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 ∑&(!$ 𝜃&𝑥&

= 𝜎 𝜃6𝒙
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2. Find gradient with respect to 𝜃

Optimization
problem:

Gradient w.r.t. 𝜃$, for 𝑗 = 0, 1, … ,𝑚:

36

𝜃123 = arg max
4

H
%("

5

𝑓 𝑦 % | 𝒙 % , 𝜃 = arg max
4

𝐿𝐿 𝜃

𝐿𝐿 𝜃 =?
%("

5

𝑦(%) log 𝜎 𝜃6𝒙(%) + 1 − 𝑦(%) log 1 − 𝜎 𝜃6𝒙(%)

𝜕𝐿𝐿 𝜃
𝜕𝜃&

=?
%("

5

𝑦(%) − 𝜎 𝜃6𝒙(%) 𝑥&
(%) (derived later)

How do we interpret the gradient 
contribution of the i-th training datapoint? 🤔
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2. Find gradient with respect to 𝜃

Optimization
problem:

Gradient w.r.t. 𝜃$, for 𝑗 = 0, 1, … ,𝑚:

37

𝜃123 = arg max
4

H
%("

5

𝑓 𝑦 % | 𝒙 % , 𝜃 = arg max
4

𝐿𝐿 𝜃

𝐿𝐿 𝜃 =?
%("

5

𝑦(%) log 𝜎 𝜃6𝒙(%) + 1 − 𝑦(%) log 1 − 𝜎 𝜃6𝒙(%)

𝜕𝐿𝐿 𝜃
𝜕𝜃&

=?
%("

5

𝑦(%) − 𝜎 𝜃6𝒙(%) 𝑥&
(%) (derived later)

scale by j-th feature
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𝑃 𝑌 = 1|𝑿 = 𝒙 %

2. Find gradient with respect to 𝜃

Optimization
problem:

Gradient w.r.t. 𝜃$, for 𝑗 = 0, 1, … ,𝑚:

38

𝜃123 = arg max
4

H
%("

5

𝑓 𝑦 % | 𝒙 % , 𝜃 = arg max
4

𝐿𝐿 𝜃

𝐿𝐿 𝜃 =?
%("

5

𝑦(%) log 𝜎 𝜃6𝒙(%) + 1 − 𝑦(%) log 1 − 𝜎 𝜃6𝒙(%)

𝜕𝐿𝐿 𝜃
𝜕𝜃&

=?
%("

5

𝑦(%) − 𝜎 𝜃6𝒙(%) 𝑥&
(%) (derived later)

1 or 0
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Suppose 𝑦(') = 1 (the true class label for 𝑖-th datapoint):
• If 𝜎 𝜃&𝒙 𝒊 ≥ 0.5, correct 
• If 𝜎 𝜃&𝒙 𝒊 < 0.5, incorrect à change 𝜃" more

2. Find gradient with respect to 𝜃

Optimization
problem:

Gradient w.r.t. 𝜃$, for 𝑗 = 0, 1, … ,𝑚:

39

𝜃123 = arg max
4

H
%("

5

𝑓 𝑦 % | 𝒙 % , 𝜃 = arg max
4

𝐿𝐿 𝜃

𝐿𝐿 𝜃 =?
%("

5

𝑦(%) log 𝜎 𝜃6𝒙(%) + 1 − 𝑦(%) log 1 − 𝜎 𝜃6𝒙(%)

𝜕𝐿𝐿 𝜃
𝜕𝜃&

=?
%("

5

𝑦(%) − 𝜎 𝜃6𝒙(%) 𝑥&
(%) (derived later)
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1. Optimization
problem:

2. Gradient w.r.t. 𝜃$, for 𝑗 = 0, 1, … ,𝑚:

3. Solve

3. Solve

40

𝜕𝐿𝐿 𝜃
𝜕𝜃&

=?
%("

5

𝑦(%) − 𝜎 𝜃6𝒙(%) 𝑥&
(%)

𝜃123 = arg max
4

H
%("

5

𝑓 𝑦 % | 𝒙 % , 𝜃 = arg max
4

𝐿𝐿 𝜃

𝐿𝐿 𝜃 =?
%("

5

𝑦(%) log 𝜎 𝜃6𝒙(%) + 1 − 𝑦(%) log 1 − 𝜎 𝜃6𝒙(%)

Stay tuned!



(live)
26: Logistic Regression
Lisa Yan and Jerry Cain
November 11,  2020

41
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Logistic Regression Model

42

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 ∑$%'# 𝜃$𝑥$ = 𝜎 𝜃&𝒙

>𝑌 = arg max
4% ',!

𝑃 𝑌|𝑿

𝜃! +3
"#$

%

𝜃"𝑋"𝑿
sigmoid function

𝜎 𝑧 =
1

1 + 𝑒!" 0

0.2

0.4

0.6

0.8

1

-10 -8 -6 -4 -2 0 2 4 6 8 10

! "

"

where 𝑥! = 1

𝑃 𝑌 = 1|𝑿

Review
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Introducing notation (𝑦

4343

𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 ∑$%'# 𝜃$𝑥$ = 𝜎 𝜃&𝒙

>𝑌 = arg max
4% ',!

𝑃 𝑌|𝑿

H𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃&𝒙 𝑃 𝑌 = 𝑦|𝑿 = 𝒙 = IH𝑦 if 𝑦 = 1
1 − H𝑦 if 𝑦 = 0

Small M𝑦 is conditional probability of 
𝑌 = 1 given 𝑿 = 𝒙. M𝑦 ∈ [0,1]

0𝑌 is prediction of 𝑌. 0𝑌 ∈ {0,1}

𝜃! +3
"#$

%

𝜃"𝑋"𝑿
sigmoid function

𝜎 𝑧 =
1

1 + 𝑒!"

where 𝑥! = 1

H𝑦𝑃 𝑌 = 1|𝑿 =
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For the “correct” parameters 𝜃:
𝒙, 𝑌 = 1 should have 𝜃&𝒙 > 0
𝒙, 𝑌 = 0 should have 𝜃&𝒙 ≤ 0

Another view of Logistic Regression

𝜃&𝒙
0

H𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 ∑$%'# 𝜃$𝑥$ = 𝜎 𝜃&𝒙

>𝑌 = arg max
4% ',!

𝑃 𝑌|𝑿

compute M𝑦

predict 0𝑌
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Today’s goals: Logistic Regresison
At a high level
• Understand the model
• Training: Use gradient ascent

Details
• Gradient ascent pseudocode
• Testing

Philosophy
• Logistic Regression vs Naïve Bayes
• Linearly separable functions

Derivation of gradient (Calculus)
45

✅

For the 
problem set

Machine learning 
insights



Training:
The details

46

LIVE
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Training: Learning parameters

47

Training
Learn parameters 𝜃 = 𝜃', 𝜃!, … , 𝜃#
that maximize log conditional likelihood of training data

Some reminders:
• Log conditional

likelihood:

• Gradient with
respect to 𝜃:

• No analytical solution; optimize with gradient ascent

𝐿𝐿 𝜃 =?
%("

5

𝑦(%) log 𝜎 𝜃6𝒙(%) + 1 − 𝑦(%) log 1 − 𝜎 𝜃6𝒙(%)

𝜕𝐿𝐿 𝜃
𝜕𝜃&

=?
%("

5

𝑦(%) − 𝜎 𝜃6𝒙(%) 𝑥&
(%)

for 𝑗 = 0, 1, … ,𝑚

Review

(derived at 
end of 
lecture)
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Training: Gradient ascent step

48

𝜕𝐿𝐿 𝜃
𝜕𝜃&

=?
%("

5

𝑦(%) − 𝜎 𝜃6𝒙(%) 𝑥&
(%)

𝜃$NOP = 𝜃$QRS + 𝜂 ⋅
𝜕𝐿𝐿 𝜃QRS

𝜕𝜃$QRS

for all thetas:

= 𝜃$QRS + 𝜂 ⋅*
/%!

0

𝑦(/) − 𝜎 𝜃QRS&𝒙(/) 𝑥$
(/) What does 

this look like 
in code?

repeat many times:

for 𝑗 = 0, 1, … ,𝑚



Think Slide 50 has code to think over by yourself.

Post any clarifications here or in chat!
https://us.edstem.org/courses/2678/discussion/171556

Think by yourself: 2 min

49

🤔(by yourself)

https://us.edstem.org/courses/2678/discussion/171556
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Training: Gradient Ascent

50

initialize 𝜃& = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
// TODO: your code here
// compute all gradient[j]’s
// based on n training examples

𝜃& += η * gradient[j] for all 0 ≤ j ≤ m 🤔(by yourself)

𝜃"&'( = 𝜃")*+ + 𝜂 ⋅$
,#$

-

𝑦(,) − 𝜎 𝜃)*+!𝒙(,) 𝑥"
(,)Gradient 

Ascent Step

for 𝑗 = 0, 1, … ,𝑚:
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Training: Gradient Ascent

51

for each 0 ≤ j ≤ m:

initialize 𝜃& = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (𝒙,𝑦):

𝜃& += η * gradient[j] for all 0 ≤ j ≤ m

// update gradient[j] for
// current (𝒙,𝑦) example

𝜃"&'( = 𝜃")*+ + 𝜂 ⋅$
,#$

-

𝑦(,) − 𝜎 𝜃)*+!𝒙(,) 𝑥"
(,)Gradient 

Ascent Step

for 𝑗 = 0, 1, … ,𝑚:

outer loop

inner loop

compute
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initialize 𝜃& = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (𝒙,𝑦):

𝜃& += η * gradient[j] for all 0 ≤ j ≤ m

Training: Gradient Ascent

52

for each 0 ≤ j ≤ m:

gradient[j] += 𝑦 −
1

1 + 𝑒:4!𝒙
𝑥&

Some important 
details…

𝜃"&'( = 𝜃")*+ + 𝜂 ⋅$
,#$

-

𝑦(,) − 𝜎 𝜃)*+!𝒙(,) 𝑥"
(,)Gradient 

Ascent Step

for 𝑗 = 0, 1, … ,𝑚:

outer loop

inner loop

compute
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initialize 𝜃& = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (𝒙,𝑦):

𝜃& += η * gradient[j] for all 0 ≤ j ≤ m

Training: Gradient Ascent

53

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃"&'( = 𝜃")*+ + 𝜂 ⋅$
,#$

-

𝑦(,) − 𝜎 𝜃)*+!𝒙(,) 𝑥"
(,)Gradient 

Ascent Step

𝑦 −
1

1 + 𝑒:4!𝒙
𝑥&

• Finish computing
gradient with 𝜃<=>
prior to any 𝜃 update
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initialize 𝜃& = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (𝒙,𝑦):

𝜃& += η * gradient[j] for all 0 ≤ j ≤ m

Training: Gradient Ascent

54

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃"&'( = 𝜃")*+ + 𝜂 ⋅$
,#$

-

𝑦(,) − 𝜎 𝜃)*+!𝒙(,) 𝑥"
(,)Gradient 

Ascent Step

𝑦 −
1

1 + 𝑒:4!𝒙
𝑥&

• Finish computing
gradient with 𝜃<=>
prior to any 𝜃 update

• Learning rate 𝜂 is a 
constant you set 
before training



Lisa Yan and Jerry Cain, CS109, 2020

initialize 𝜃& = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (𝒙,𝑦):

𝜃& += η * gradient[j] for all 0 ≤ j ≤ m

Training: Gradient Ascent

55

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃"&'( = 𝜃")*+ + 𝜂 ⋅$
,#$

-

𝑦(,) − 𝜎 𝜃)*+!𝒙(,) 𝑥"
(,)Gradient 

Ascent Step

𝑦 −
1

1 + 𝑒:4!𝒙
𝑥&

• Finish computing
gradient with 𝜃<=>
prior to any 𝜃 update

• Learning rate 𝜂 is a 
constant you set 
before training

• 𝑥& is 𝑗-th feature of
input 𝒙 = 𝑥", … , 𝑥$
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initialize 𝜃& = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (𝒙,𝑦):

𝜃& += η * gradient[j] for all 0 ≤ j ≤ m

Training: Gradient Ascent

56

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃"&'( = 𝜃")*+ + 𝜂 ⋅$
,#$

-

𝑦(,) − 𝜎 𝜃)*+!𝒙(,) 𝑥"
(,)Gradient 

Ascent Step

𝑦 −
1

1 + 𝑒:4!𝒙
𝑥&

• Finish computing
gradient with 𝜃<=>
prior to any 𝜃 update

• Learning rate 𝜂 is a 
constant you set 
before training

• 𝑥& is 𝑗-th feature of
input 𝒙 = 𝑥", … , 𝑥$

• Insert 𝑥! = 1 before 
training
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initialize 𝜃& = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (𝒙,𝑦):

𝜃& += η * gradient[j] for all 0 ≤ j ≤ m

Training: Gradient Ascent

57

for each 0 ≤ j ≤ m:

gradient[j] += 

𝜃"&'( = 𝜃")*+ + 𝜂 ⋅$
,#$

-

𝑦(,) − 𝜎 𝜃)*+!𝒙(,) 𝑥"
(,)Gradient 

Ascent Step

𝑦 −
1

1 + 𝑒:4!𝒙
𝑥&

• Finish computing
gradient with 𝜃<=>
prior to any 𝜃 update

• Learning rate 𝜂 is a 
constant you set 
before training

• 𝑥& is 𝑗-th feature of
input 𝒙 = 𝑥", … , 𝑥$

• Insert 𝑥! = 1 before 
training

🌟



Testing

58

LIVE



Lisa Yan and Jerry Cain, CS109, 2020

Testing: Classification with Logistic Regression

59

Testing

• Compute H𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝜃&𝒙 =
• Classify instance as:

I1 H𝑦 > 0.5, equivalently 𝜃&𝒙 > 0
0 otherwise

Training
Learn parameters 𝜃 = 𝜃', 𝜃!, … , 𝜃#
via gradient
ascent: 𝜃&?@A = 𝜃&<=> + 𝜂 ⋅?

%("

5

𝑦(%) − 𝜎 𝜃<=>6𝒙(𝒊) 𝑥&
(%)

1
1 + 𝑒:4!𝒙

Parameters 𝜃& are not updated during testing phase⚠



Interlude for 
jokes/announcements

60

https://www.bagelbakerygainesville.com/top-8-bagel-jokes-of-all-time/

https://www.bagelbakerygainesville.com/top-8-bagel-jokes-of-all-time/
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Announcements

61

Quiz #3

Time frame: Wednesday 11/18 2:00pm – Friday 11/20 12:59pm PT
Covers: Up to and including logistic regression
Info and practice: Quizzes page

Next week: Last section

Review session for Quiz #3

Probability Reference (Overleaf)

Updated to include all of Quiz 3-relevant 
material (sampling defs, MLE/MAP, 
classifiers)

http://web.stanford.edu/class/cs109/exams/quizzes.html
https://www.overleaf.com/read/wyhtzmdsfwkb
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Interesting probability news

62

The Time Everyone 
“Corrected” the 
World’s Smartest 
Woman

https://priceonomics.com/the-time-everyone-
corrected-the-worlds-smartest/

https://priceonomics.com/the-time-everyone-corrected-the-worlds-smartest/
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Today’s goals: Logistic Regression
At a high level
• Understand the model
• Training: Use gradient ascent

Details
• Gradient ascent pseudocode
• Testing

Philosophy
• Logistic Regression vs Naïve Bayes
• Linearly separable functions

Derivation of gradient (Calculus)
63

✅

✅

For the 
problem set

Machine learning 
insights



Philosophy

64

LIVE



Think Slide 64 asks you to think over by yourself.

Post any clarifications here or in chat!
https://us.edstem.org/courses/2678/discussion/171556

Think by yourself: 2 min

65

🤔(by yourself)

https://us.edstem.org/courses/2678/discussion/171556
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Naïve Bayes vs Logistic Regression

V𝑃 𝑿|𝑌 V𝑃 𝑌
𝑿

𝑌
V𝑃 𝑿, 𝑌

V𝑌 = arg max
,# !,$

𝑃 𝑌 | 𝑿 = arg max
,# !,$

𝑃 𝑿|𝑌 𝑃 𝑌 V𝑌 = arg max
,# !,$

𝑃 𝑌|𝑿

𝜃#𝒙𝑿
0

0.2

0.4

0.6

0.8

1

-10 -8 -6 -4 -2 0 2 4 6 8 10

! "

"

𝑃 𝑌 = 1|𝑿

🤔(by yourself)

Compare/contrast:
1. What distributions are we modeling?
2. After learning our parameters, could we randomly generate a new datapoint 𝒙, 𝑦 ?
3. Could we model a continuous 𝑋& feature (e.g., 𝑋&~Normal, or 𝑋&~Unknown)?
4. Could we model a non-binary discrete 𝑋& (e.g., 𝑋& ∈ 1,2, … , 6 )?

𝜃
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Tradeoffs: Naïve Bayes Logistic Regression

67

1. Modeling goal 𝑃 𝑿, 𝑌 𝑃 𝑌|𝑿

Generative: could use joint 
distribution to generate new 
points (⚠but you might not 
need this extra effort)

2. Generative or
discriminative?

Discriminative: just tries to 
discriminate 𝑦 = 0 vs 𝑦 = 1
(❌ cannot generate new points 
b/c no 𝑃 𝑿, 𝑌 )

3. Continuous
input features ✅ Yes, easily

⚠ Needs parametric form  
(e.g., Gaussian) or 
discretized buckets (for 
multinomial features)

4. Discrete
input features

✅ Yes, multi-value discrete 
data = multinomial 𝑃 𝑋%|𝑌

⚠ Multi-valued discrete data 
hard (e.g., if 𝑋% ∈ {𝐴, 𝐵, 𝐶}, not 
necessarily good to encode as 
1, 2, 3
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Logistic Regression is trying to fit
a line that separates data instances
where 𝑦 = 1 from those where 𝑦 = 0:

• We call such data (or functions
generating the data) linearly separable.

• Naïve Bayes is linear too, because there is 
one parameter for each feature
(and no parameters that involve multiple 
features).

Linearly separable data

68

𝜃&𝒙 = 0

!!"0

0𝑃 𝑿|𝑌 =H
&("

$

0𝑃 𝑋&|𝑌
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Data is often not linearly separable

• Not possible to draw a line that successfully separates all the 
𝑦 = 1 points (green) from the 𝑦 = 0 points (red)

• Despite this fact, Logistic Regression and Naive Bayes
still often work well in practice

69



Gradient 
Derivation

70

LIVE
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Background: Calculus

71

𝜕𝑓 𝑥
𝜕𝑥

=
𝜕𝑓 𝑧
𝜕𝑧

𝜕𝑧
𝜕𝑥

Calculus Chain Rule

aka decomposition
of composed functions𝑓 𝑥 = 𝑓 𝑧 𝑥

Calculus refresher #1:
Derivative(sum) = 

sum(derivative)

Calculus refresher #2:
Chain rule 🌟🌟🌟

𝜕
𝜕𝑥
*
#$%

&

𝑓# 𝑥 =*
#$%

&
𝜕𝑓# 𝑥
𝜕𝑥
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Are you ready?

72

Right now!!!
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Our goal

73

𝐿𝐿 𝜃 =?
%("

5

𝑦(%) log 𝜎 𝜃6𝒙(%) + 1 − 𝑦(%) log 1 − 𝜎 𝜃6𝒙(%)
log conditional 
likelihood

𝜕𝐿𝐿 𝜃
𝜕𝜃$

whereFind:

Two “pre-processing” steps to prepare for chain rule
1. Rewrite 𝐿𝐿 𝜃 with M𝑦
2. Compute gradient of M𝑦
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1. Rewriting 𝐿𝐿 𝜃 with (𝑦

74

𝐿𝐿 𝜃 =?
%("

5

𝑦(%) log 𝜎 𝜃6𝒙(%) + 1 − 𝑦(%) log 1 − 𝜎 𝜃6𝒙(%)
log conditional 
likelihood

𝜕𝐿𝐿 𝜃
𝜕𝜃$

whereFind:

𝐿𝐿 𝜃 =?
%("

5

𝑦(%) log M𝑦 % + 1 − 𝑦(%) log 1 − M𝑦 % Let M𝑦 % = 𝜎 𝜃6𝒙(%)
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2. Compute gradient of (𝑦 = 𝜎 𝜃#𝒙

75

Derivative:Sigmoid function:

𝜎 𝑧 =
1

1 + 𝑒:C
𝑑
𝑑𝑧
𝜎 𝑧 = 𝜎 𝑧 1 − 𝜎 𝑧

Aside: Sigmoid has a 
beautiful derivative!



Think Slide 72 has code to think over by yourself.

Post any in chat!

Think by yourself: 2 min

76

🤔(by yourself)
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What is [
[.!

H𝑦 = [
[.!

𝜎 𝜃&𝒙 ?

A. 𝜎 𝑥$ 1 − 𝜎 𝑥$ 𝑥$
B. 𝜎 𝜃&𝒙 1 − 𝜎 𝜃&𝒙 𝒙
C. 𝜎 𝜃&𝒙 1 − 𝜎 𝜃&𝒙 𝑥$
D. 𝜎 𝜃&𝒙 𝑥$ 1 − 𝜎 𝜃&𝒙 𝑥$
E. None/other

2. Compute gradient of (𝑦 = 𝜎 𝜃#𝒙

77

🤔

Derivative:Sigmoid function:

𝜎 𝑧 =
1

1 + 𝑒:C
𝑑
𝑑𝑧
𝜎 𝑧 = 𝜎 𝑧 1 − 𝜎 𝑧

(by yourself)
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2. Compute gradient of (𝑦 = 𝜎 𝜃#𝒙

What is [
[.!

𝜎 𝜃&𝒙 ?

A. 𝜎 𝑥$ 1 − 𝜎 𝑥$ 𝑥$
B. 𝜎 𝜃&𝒙 1 − 𝜎 𝜃&𝒙 𝒙
C. 𝜎 𝜃&𝒙 1 − 𝜎 𝜃&𝒙 𝑥$
D. 𝜎 𝜃&𝒙 𝑥$ 1 − 𝜎 𝜃&𝒙 𝑥$
E. None/other

78

Derivative:Sigmoid function:

𝜎 𝑧 =
1

1 + 𝑒:C
𝑑
𝑑𝑧
𝜎 𝑧 = 𝜎 𝑧 1 − 𝜎 𝑧

Let 𝑧 = 𝜃&𝒙

𝜕
𝜕𝜃$

𝜎 𝜃&𝒙 =
𝜕
𝜕𝑧
𝜎 𝑧 ⋅

𝜕𝑧
𝜕𝜃$

(Chain Rule)

= ?
D(!

$

𝜃D𝑥D .

= 𝜎 𝜃&𝒙 1 − 𝜎 𝜃&𝒙 𝑥$
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Compute gradient of log conditional likelihood

79

Let M𝑦 % = 𝜎 𝜃6𝒙(%)
𝜕𝐿𝐿 𝜃
𝜕𝜃&

=?
%("

5
𝜕
𝜕𝜃&

𝑦(%) log M𝑦 % + 1 − 𝑦(%) log 1 − M𝑦 %

=?
%("

5
𝜕

𝜕 M𝑦 % 𝑦(%) log M𝑦 % + 1 − 𝑦(%) log 1 − M𝑦 % ⋅
𝜕 M𝑦 %

𝜕𝜃&
(Chain Rule)

=?
%("

5

𝑦(%)
1
M𝑦 % − 1 − 𝑦(%)

1
1 − M𝑦 % ⋅ M𝑦 % 1 − M𝑦 % 𝑥&

% (calculus)

=?
%("

5

𝑦(%) − M𝑦 % 𝑥&
(%) =?

%("

5

𝑦(%) − 𝜎 𝜃6𝒙 % 𝑥&
(%) (simplify)
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Let M𝑦 % = 𝜎 𝜃6𝒙(𝒊)
𝜕𝐿𝐿 𝜃
𝜕𝜃&

=?
%("

5
𝜕
𝜕𝜃&

𝑦(%) log M𝑦 % + 1 − 𝑦(%) log 1 − M𝑦 %

=?
%("

5
𝜕

𝜕 M𝑦 % 𝑦(%) log M𝑦 % + 1 − 𝑦(%) log 1 − M𝑦 % ⋅
𝜕 M𝑦 %

𝜕𝜃&

=?
%("

5

𝑦(%)
1
M𝑦 % − 1 − 𝑦(%)

1
1 − M𝑦 % ⋅ M𝑦 % 1 − M𝑦 % 𝑥&

%

=?
%("

5

𝑦(%) − M𝑦 % 𝑥&
(%) =?

%("

5

𝑦(%) − 𝜎 𝜃6𝒙 % 𝑥&
(%) 🎉

(Chain Rule)

(calculus)

(simplify)



Interlude for jokes

81



Lisa Yan and Jerry Cain, CS109, 2020

Probability as college students

82
(A useful construct that connects discrete PMF to continuous PDF)


