26: Logistic Regression

Lisa Yan and Jerry Cain November 11, 2020

Quick slide reference

з Background	26a_background
9 Logistic Regression	26b_logistic_regression
27 Training: The big picture	26c_lr_training
56 Training: The details, Testing	LIVE
59 Philosophy	LIVE
63 Gradient Derivation	26e_derivation

Background

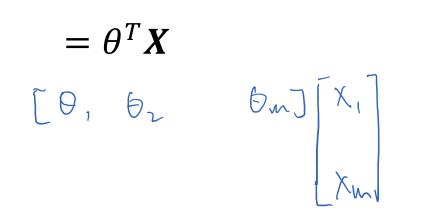
1. Weighted sum

If
$$X = (X_1, X_2, ..., X_m)$$
:

$$Z = \theta_1 X_1 + \theta_2 X_2 + \dots + \theta_m X_m$$

$$=\sum_{j=1}^m \theta_j X_j$$

$$[\theta, \theta_{2}]$$



weighted sum

dot product

1. Weighted sum

Dot product/ weighted sum $\theta^T X = \sum_{j=1}^m \theta_j X_j$

Recall the linear regression model, where $X = (X_1, X_2, ..., X_m)$ and $Y \in \mathbb{R}$:

$$\widehat{Y} = g(X) = \theta_0 + \sum_{j=1}^m \theta_j X_j$$

How would you rewrite this expression as a single dot product?

1. Weighted sum

Dot product/ weighted sum $\theta^T X = \sum_{j=1}^m \theta_j X_j$

Recall the linear regression model, where $X = (X_1, X_2, ..., X_m)$ and $Y \in \mathbb{R}$:

$$g(X) = \theta_0 + \sum_{j=1}^m \theta_j X_j$$

How would you rewrite this expression as a single dot product?

$$g(\mathbf{X}) = \theta_0 X_0 + \theta_1 X_1 + \theta_2 X_2 + \dots + \theta_m X_m \qquad \text{Define } X_0 = 1$$

$$= \theta^T \mathbf{X} \qquad \text{New } \mathbf{X} = (1, X_1, X_2, \dots, X_m) \quad \theta^T \left(\mathbf{Q}_0, \mathbf{Q}_1, \dots, \mathbf{Q}_m \right)$$

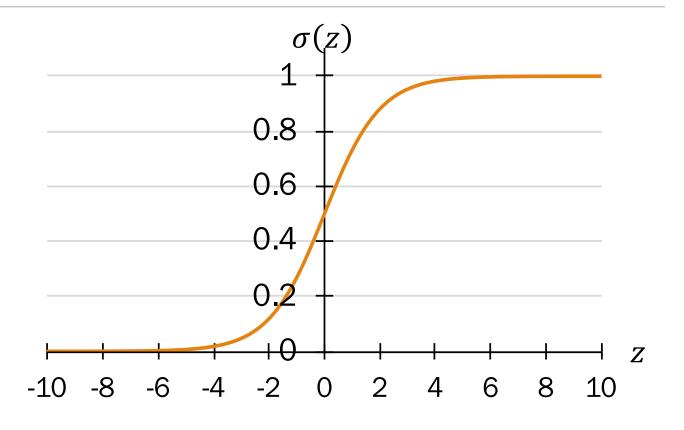
Prepending $X_0 = 1$ to each feature vector X makes matrix operators more accessible.

2. Sigmoid function $\sigma(z)$

The sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

 Sigmoid squashes z to a number between 0 and 1.



Recall definition of probability:
 A number between 0 and 1

 $\sigma(z)$ can represent a probability.

3. Conditional likelihood function

Training data (*n* datapoints):

• $(x^{(i)}, y^{(i)})$ drawn i.i.d. from a distribution $f(X = x^{(i)}, Y = y^{(i)}|\theta) = f(x^{(i)}, y^{(i)}|\theta)$

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta)$$

$$= \arg\max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)}| x^{(i)}, \theta)$$

$$= \arg\max_{\theta} LL(\theta)$$

conditional likelihood of training data

log conditional likelihood

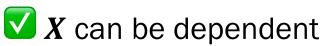
- MLE in this lecture is estimator that maximizes <u>conditional likelihood</u>
- Confusingly, log conditional likelihood is also written as $LL(\theta)$

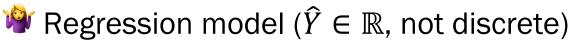
Logistic Regression

Linear Regression (Regression)

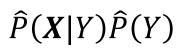
$$\theta_0 + \sum_{j=1}^m \theta_j X_j$$

$$\hat{Y} = \theta_0 + \sum_{j=1}^m \theta_j X_j$$





Naïve Bayes (Classification)



$$\hat{P}(X,Y)$$

$$\widehat{Y} = \arg \max_{y=\{0,1\}} P(Y \mid X)$$

$$= \arg \max_{y=\{0,1\}} P(X|Y)P(Y)$$

$$y=\{0,1\}$$

- ✓ Tractable with NB assumption, but...
- \triangle Realistically, X_i features not necessarily conditionally independent
- Actually models P(X,Y), not P(Y|X)?

Introducing Logistic Regression!

Linear Regression ideas

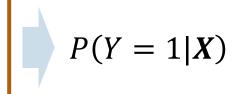
Classification models

+ compute power

Logistic Regression

$$\theta_0 + \sum_{j=1}^m \theta_j X_j$$

sigmoid function
$$\sigma(z) = \frac{1}{1 + e^{-z}}$$



Logistic Regression Model:

$$P(Y = 1 | X = x) = \sigma \left(\theta_0 + \sum_{j=1}^m \theta_j x_j\right)$$

Predict \hat{Y} as the most likely Ygiven our observation X = x:

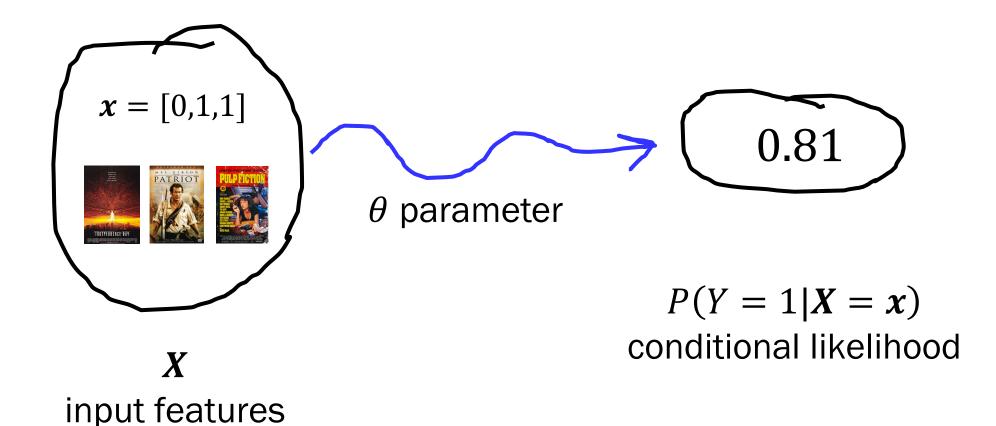
$$\widehat{Y} = \arg \max_{y = \{0,1\}} P(Y \mid X)$$

• Since
$$Y \in \{0,1\}$$
,

$$P(Y = 0 | \mathbf{X} = \mathbf{x}) = 1 - \sigma(\theta_0 + \sum_{j=1}^m \theta_j x_j)$$

Sigmoid function also known as "logit" function

Logistic Regression

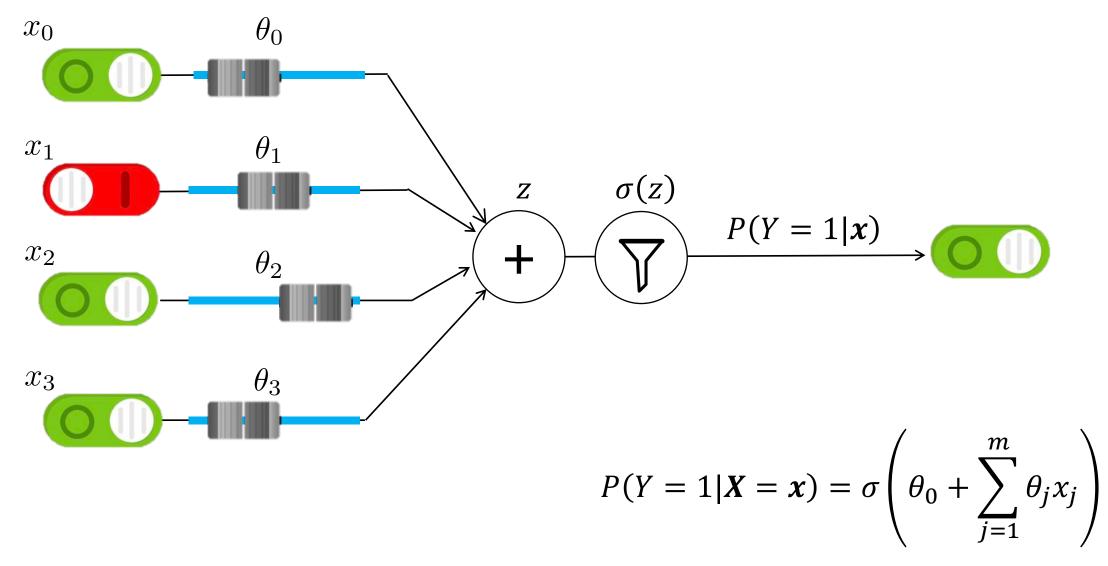


$$P(Y = 1 | X = x) = \sigma \left(\theta_0 + \sum_{j=1}^m \theta_j x_j\right)$$

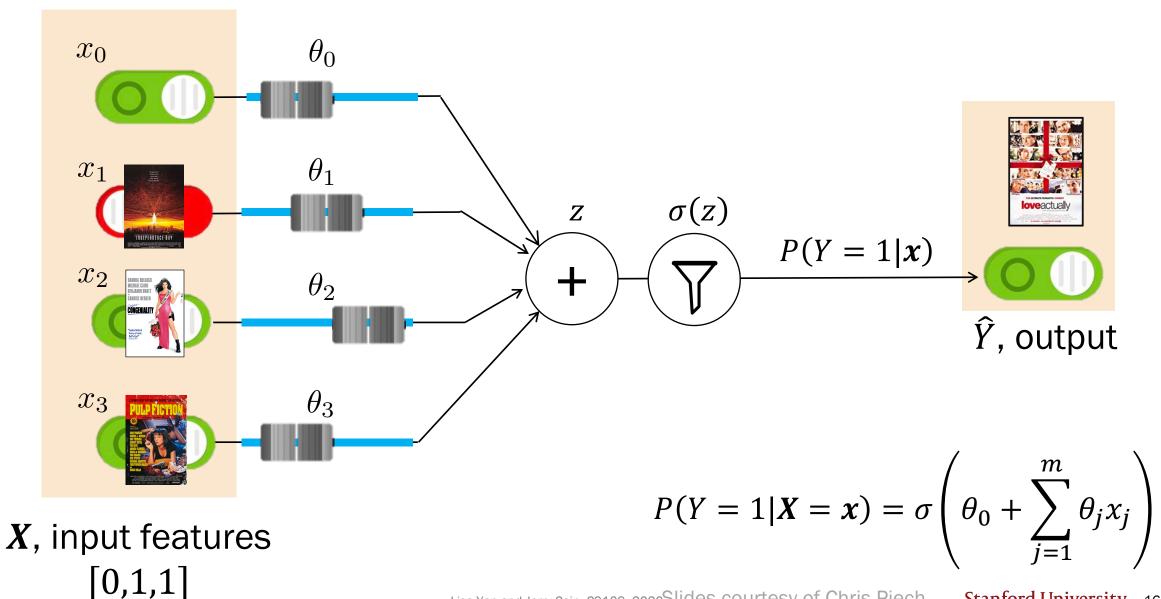
Logistic Regression cartoon

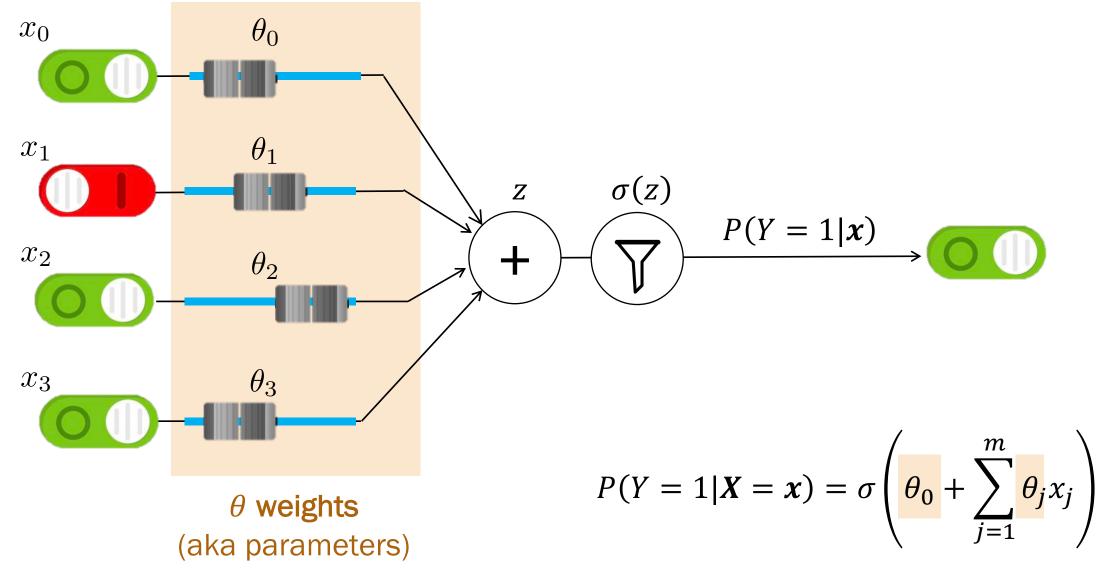
 θ parameter

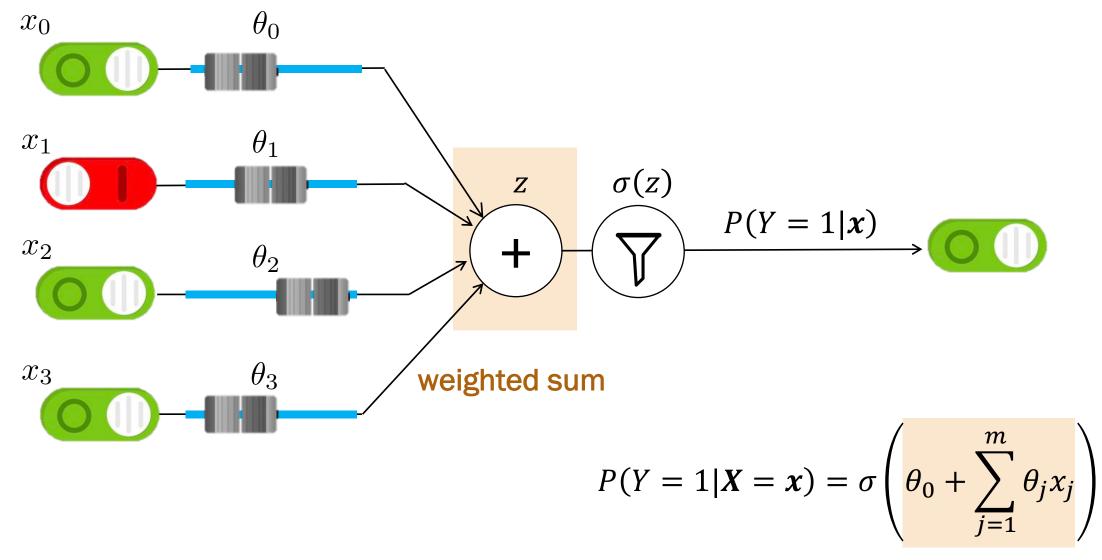
Logistic Regression cartoon

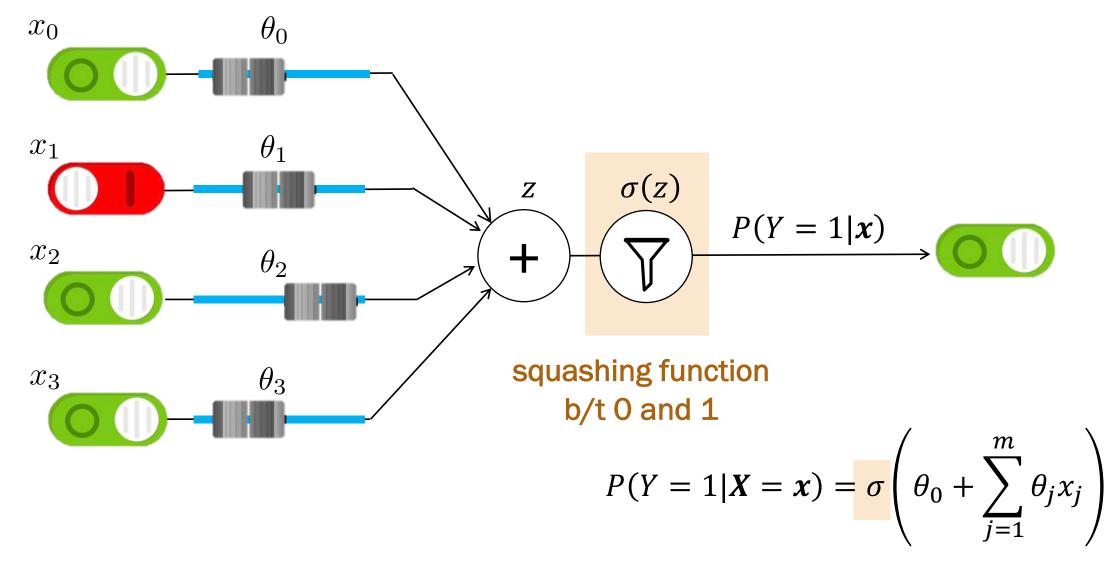


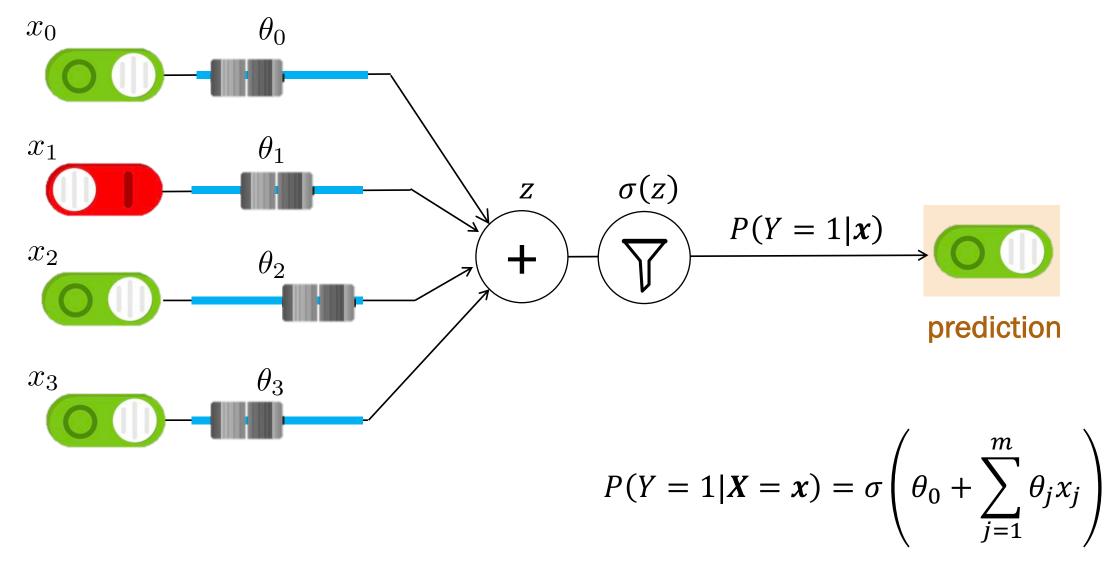
Logistic Regression cartoon



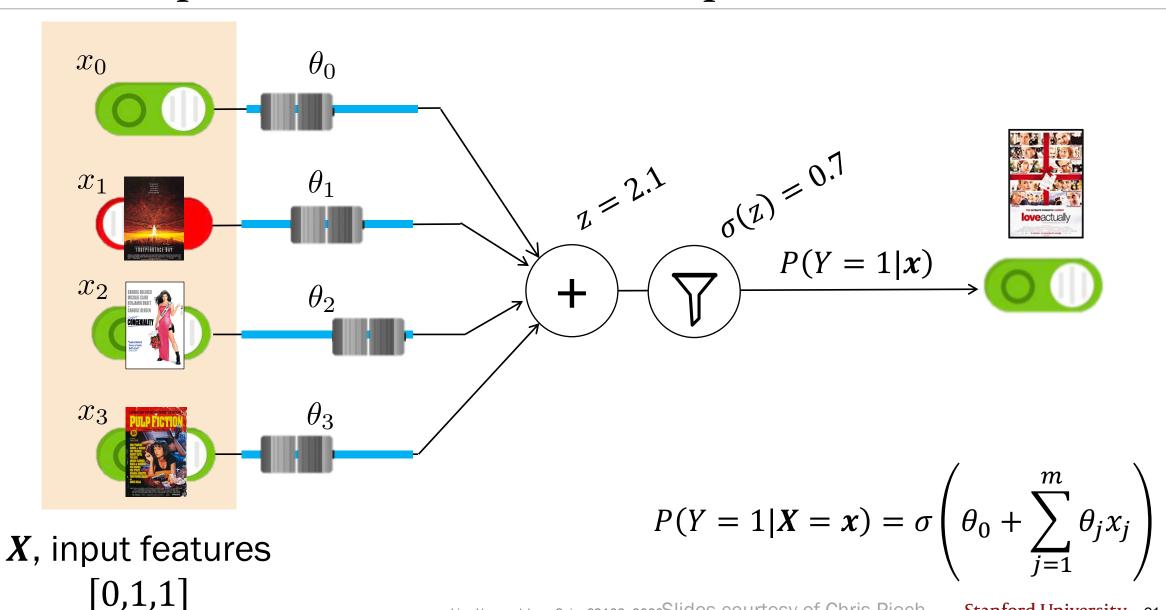




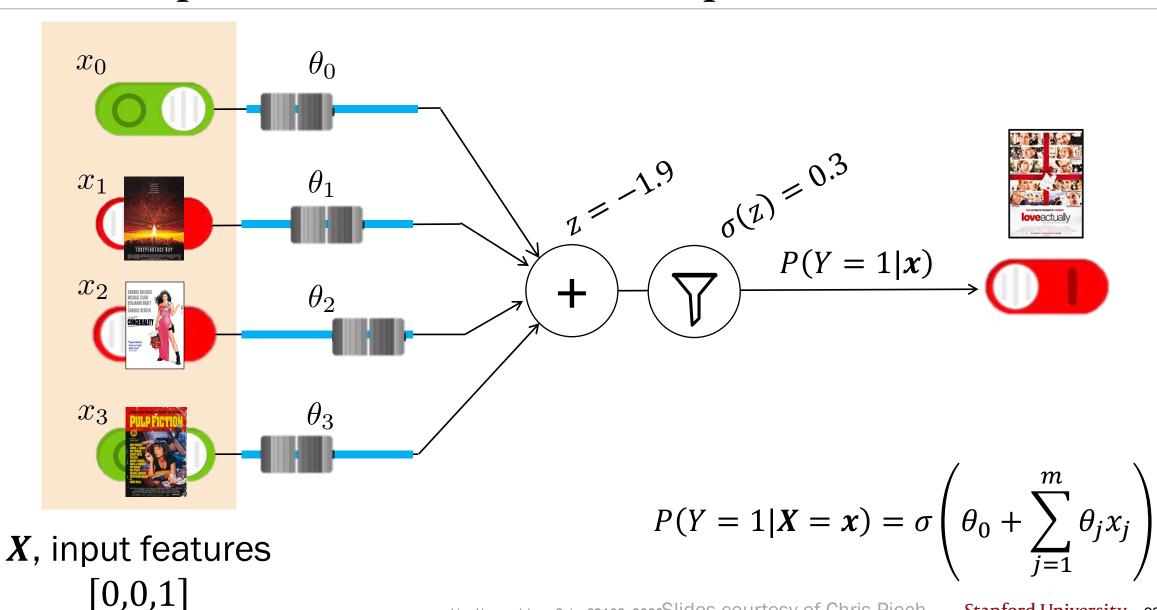




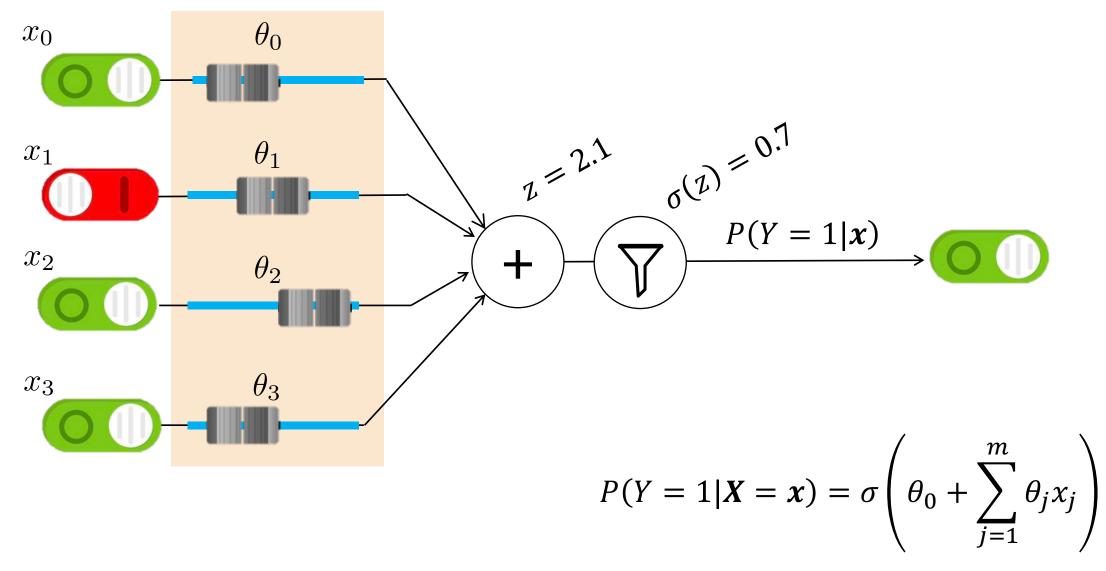
Different predictions for different inputs



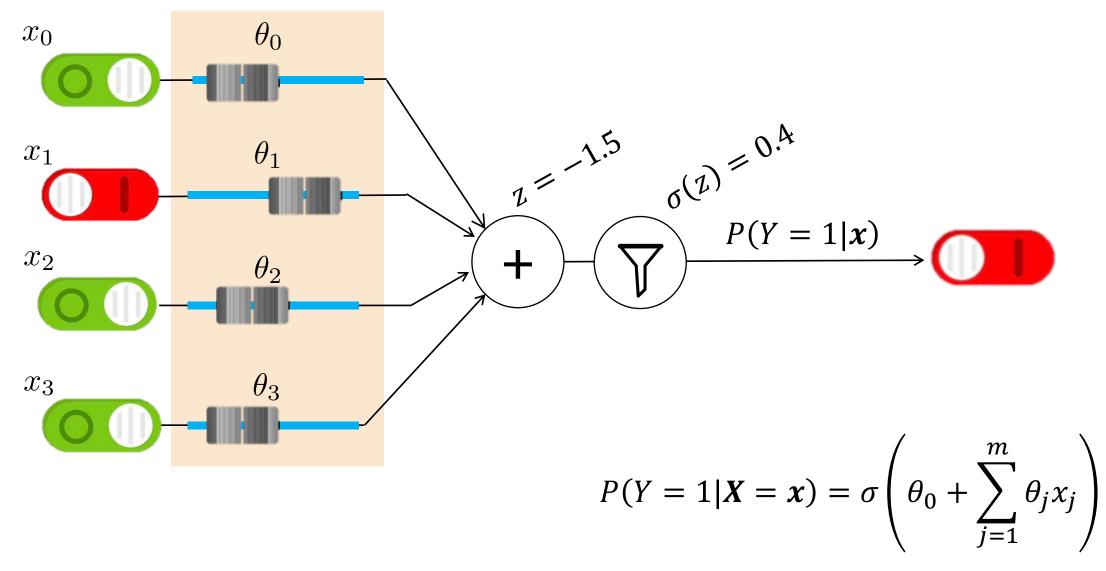
Different predictions for different inputs



Parameters affect prediction



Parameters affect prediction



For simplicity

$$P(Y = 1 | X = x) = \sigma \left(\theta_0 + \sum_{j=1}^m \theta_j x_j\right)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma \left(\sum_{j=0}^{m} \theta_j x_j \right) = \sigma(\theta^T \mathbf{x})$$
 where $x_0 = 1$

Logistic regression classifier

$$\hat{Y} = \underset{y=\{0,1\}}{\arg \max} P(Y|X)$$

$$P(Y = 1|X = x) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j}) = \sigma(\theta^{T} x)$$

Training

Estimate parameters from training data

$$\theta = (\theta_0, \theta_1, \theta_2, \dots, \theta_m)$$

Testing

Given an observation $X = (X_1, X_2, ..., X_m)$, predict $\hat{Y} = \arg \max P(Y|X)$ $y = \{0,1\}$

Training: The big picture

Logistic regression classifier

$$\hat{Y} = \arg \max_{y = \{0,1\}} P(Y|X)$$

$$P(Y = 1|X = x) = \sigma(\sum_{j=0}^{m} \theta_j x_j) = \sigma(\theta^T x)$$

Training

Estimate parameters from training data

$$\theta = (\theta_0, \theta_1, \theta_2, \dots, \theta_m)$$

Choose θ that optimizes some objective:

- Determine objective function
- Find gradient with respect to θ
- Solve analytically by setting to 0, or computationally with gradient ascent

We are modeling P(Y|X)directly, so we maximize the conditional likelihood of training data.

Estimating θ

1. Determine objective function

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta)$$

2. Gradient w.r.t. θ_i , for j = 0, 1, ..., m

3. Solve

- No analytical derivation of θ_{MLE} ...
- ...but can still compute θ_{MLE} with gradient ascent!

```
initialize x
repeat many times:
  compute gradient
  x += \eta * gradient
```

1. Determine objective function

$$\theta_{MLE} = \arg \max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg \max_{\theta} LL(\theta)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j})$$

$$= \sigma(\theta^{T} \mathbf{x})$$

First: Interpret conditional likelihood with Logistic Regression

Second: Write a differentiable expression for log conditional likelihood

1. Determine objective function (interpret)

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j})$$

$$= \sigma(\theta^{T} \mathbf{x})$$

Suppose you have n=2 training datapoints:

$$(x^{(1)}, 1), (x^{(2)}, 0)$$

Consider the following expressions for a given θ :

A.
$$\sigma(\theta^T \mathbf{x}^{(1)}) \sigma(\theta^T \mathbf{x}^{(2)})$$

C.
$$\sigma(\theta^T \mathbf{x}^{(1)}) \left(1 - \sigma(\theta^T \mathbf{x}^{(2)})\right)$$

B.
$$\left(1 - \sigma(\theta^T \boldsymbol{x}^{(1)})\right) \sigma(\theta^T \boldsymbol{x}^{(2)})$$

D.
$$\left(1 - \sigma(\theta^T \mathbf{x}^{(1)})\right) \left(1 - \sigma(\theta^T \mathbf{x}^{(2)})\right)$$

- Interpret the above expressions as probabilities.
- If we let $\theta = \theta_{MLE}$, which probability should be highest?

1. Determine objective function (interpret)

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j})$$

$$= \sigma(\theta^{T} \mathbf{x})$$

Suppose you have n=2 training datapoints:

$$(x^{(1)},1),(x^{(2)},0)$$

Consider the following expressions for a given θ :

A.
$$\sigma(\theta^T \mathbf{x}^{(1)}) \sigma(\theta^T \mathbf{x}^{(2)})$$

C.
$$\sigma(\theta^T \mathbf{x}^{(1)}) \left(1 - \sigma(\theta^T \mathbf{x}^{(2)})\right)$$

B.
$$\left(1 - \sigma(\theta^T \boldsymbol{x}^{(1)})\right) \sigma(\theta^T \boldsymbol{x}^{(2)})$$

D.
$$\left(1 - \sigma(\theta^T \mathbf{x}^{(1)})\right) \left(1 - \sigma(\theta^T \mathbf{x}^{(2)})\right)$$

- Interpret the above expressions as probabilities.
- If we let $\theta = \theta_{MLE}$, which probability should be highest?

1. Determine objective function (write)

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j})$$

$$= \sigma(\theta^{T} \mathbf{x})$$

What is a differentiable expression for P(Y = y | X = x)?

$$P(Y = y | \mathbf{X} = \mathbf{x}) = \begin{cases} \sigma(\theta^T \mathbf{x}) & \text{if } y = 1\\ 1 - \sigma(\theta^T \mathbf{x}) & \text{if } y = 0 \end{cases}$$

2. What is a differentiable expression for $LL(\theta)$, log conditional likelihood?

$$LL(\theta) = \log \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta)$$

1. Determine objective function (write)

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j})$$

$$= \sigma(\theta^{T} \mathbf{x})$$

What is a differentiable expression for P(Y = y | X = x)?

$$P(Y = y | \mathbf{X} = \mathbf{x}) = \begin{cases} \sigma(\theta^T \mathbf{x}) & \text{if } y = 1\\ 1 - \sigma(\theta^T \mathbf{x}) & \text{if } y = 0 \end{cases}$$

Recall Bernoulli MLE!

2. What is a differentiable expression for $LL(\theta)$, log conditional likelihood?

$$LL(\theta) = \log \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta)$$

1. Determine objective function (write)

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | x^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$P(Y = 1 | X = x) = \sigma(\sum_{j=0}^{m} \theta_{j} x_{j})$$

$$= \sigma(\theta^{T} x)$$

What is a differentiable expression for P(Y = y | X = x)?

$$P(Y = y | X = x) = (\sigma(\theta^T x))^y (1 - \sigma(\theta^T x))^{1-y}$$

2. What is a differentiable expression for $LL(\theta)$, log conditional likelihood?

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^T \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log \left(1 - \sigma(\theta^T \mathbf{x}^{(i)})\right)$$

2. Find gradient with respect to θ

Optimization problem:

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

Gradient w.r.t. θ_i , for j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T x^{(i)}) \right] x_j^{(i)}$$
 (derived later)

How do we interpret the gradient contribution of the i-th training datapoint?

2. Find gradient with respect to θ

Optimization problem:

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

Gradient w.r.t. θ_i , for j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T \boldsymbol{x}^{(i)}) \right] \boldsymbol{x}_j^{(i)}$$
 (derived later)

scale by j-th feature

2. Find gradient with respect to θ

Optimization problem:

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

Gradient w.r.t. θ_i , for j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \begin{bmatrix} y^{(i)} - \sigma(\theta^T x^{(i)}) \end{bmatrix} x_j^{(i)} \qquad \text{(derived later)}$$

$$1 \text{ or } 0 \quad P(Y = 1 | X = x^{(i)})$$

2. Find gradient with respect to θ

Optimization problem:

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

Gradient w.r.t. θ_i , for j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T x^{(i)}) \right] x_j^{(i)}$$
 (derived later)

Suppose $y^{(i)} = 1$ (the true class label for *i*-th datapoint):

- If $\sigma(\theta^T x^{(i)}) \ge 0.5$, correct
- If $\sigma(\theta^T x^{(i)}) < 0.5$, incorrect \rightarrow change θ_i more

3. Solve

1. Optimization problem:

$$\theta_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \theta) = \arg\max_{\theta} LL(\theta)$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

2. Gradient w.r.t. θ_i , for j = 0, 1, ..., m:

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T \mathbf{x}^{(i)}) \right] x_j^{(i)}$$

3. Solve

Stay tuned!

(live) 26: Logistic Regression

Lisa Yan and Jerry Cain November 11, 2020

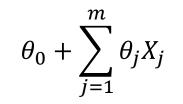
Logistic Regression Model

$$\widehat{Y} = \arg \max_{y = \{0,1\}} P(Y|X)$$

$$y = \{0,1\}$$

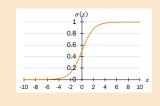
$$P(Y = 1|X = x) = \sigma(\sum_{j=0}^{m} \theta_j x_j) = \sigma(\theta^T x)$$

where $x_0 = 1$



sigmoid function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$



$$P(Y=1|\boldsymbol{X})$$

Introducing notation \hat{y}

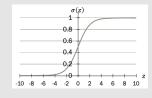
$$\frac{\hat{Y}}{\hat{Y}} = \arg\max_{y=\{0,1\}} P(Y|X)$$

$$P(Y = 1 | \mathbf{X} = \mathbf{x}) = \sigma(\sum_{j=0}^{m} \theta_j x_j) = \sigma(\theta^T \mathbf{x})$$

 \hat{Y} is prediction of Y. $\hat{Y} \in \{0,1\}$

where
$$x_0 = 1$$

$$\theta_0 + \sum_{j=1}^m \theta_j X_j$$



$$\hat{y} = 1|X) = \hat{y}$$

$$\hat{y} = P(Y = 1 | X = x) = \sigma(\theta^T x)$$

$$P(Y = y | \mathbf{X} = \mathbf{x}) = \begin{cases} \hat{y} & \text{if } y = 1\\ 1 - \hat{y} & \text{if } y = 0 \end{cases}$$

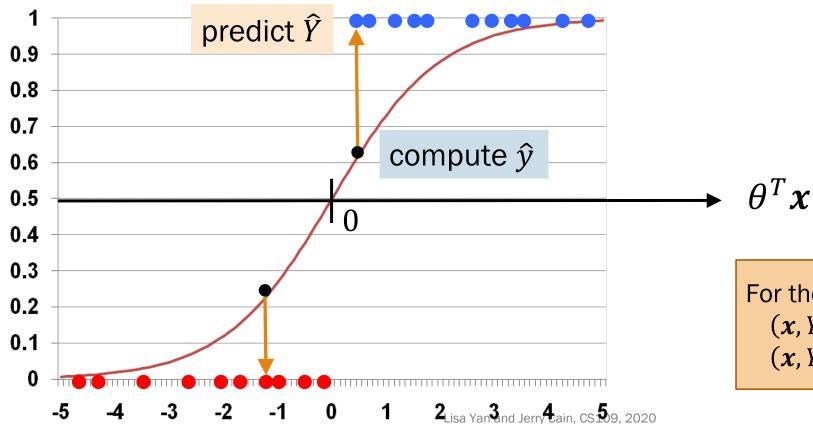
Small \hat{y} is conditional probability of

$$Y = 1$$
 given $X = x$. $\hat{y} \in [0,1]$

Another view of Logistic Regression

$$\hat{Y} = \underset{y=\{0,1\}}{\arg \max} P(Y|X)$$

$$\hat{y} = P(Y = 1|X = x) = \sigma(\sum_{j=0}^{m} \theta_j x_j) = \sigma(\theta^T x)$$



For the "correct" parameters θ :

$$(x, Y = 1)$$
 should have $\theta^T x > 0$

$$(x, Y = 0)$$
 should have $\theta^T x \le 0$

Today's goals: Logistic Regresison

- At a high level
 - Understand the model
 - Training: Use gradient ascent

Details

- Gradient ascent pseudocode
- **Testing**

Philosophy

- Logistic Regression vs Naïve Bayes
- Linearly separable functions

Derivation of gradient (Calculus)

For the problem set

Machine learning insights

Training: The details

Training: Learning parameters

Training

Learn parameters $\theta = (\theta_0, \theta_1, ..., \theta_m)$

that maximize log conditional likelihood of training data

Some reminders:

Log conditional likelihood:

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^{T} \boldsymbol{x}^{(i)}) + (1 - y^{(i)}) \log \left(1 - \sigma(\theta^{T} \boldsymbol{x}^{(i)})\right)$$

Gradient with respect to θ :

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T \boldsymbol{x}^{(i)}) \right] x_j^{(i)} \quad \text{for } j = 0, 1, ..., m \quad \begin{array}{l} \text{(derived at end of lecture)} \end{array}$$

No analytical solution; optimize with gradient ascent

Training: Gradient ascent step

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \left[y^{(i)} - \sigma(\theta^T \mathbf{x}^{(i)}) \right] x_j^{(i)} \qquad \text{for } j = 0, 1, ..., m$$

repeat many times:

for all thetas:

$$\theta_{j}^{\text{new}} = \theta_{j}^{\text{old}} + \eta \cdot \frac{\partial LL(\theta^{\text{old}})}{\partial \theta_{j}^{\text{old}}}$$

$$= \theta_{j}^{\text{old}} + \eta \cdot \sum_{i=1}^{n} \left[y^{(i)} - \sigma \left(\theta^{\text{old}^{T}} \boldsymbol{x}^{(i)} \right) \right] x_{j}^{(i)}$$

What does this look like in code?

Think

Slide 50 has code to think over by yourself.

Post any clarifications here or in chat!

https://us.edstem.org/courses/2678/discussion/171556

Think by yourself: 2 min

$$\begin{aligned} &\text{for } j = 0, 1, \dots, m \text{:} \\ &\text{Gradient Ascent Step } \theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \pmb{x}^{(i)} \right) \right] \, x_j^{(i)} \end{aligned}$$

```
initialize \theta_i = \emptyset for \emptyset \le j \le m
repeat many times:
  gradient[j] = 0 for 0 \le j \le m
  // TODO: your code here
   // compute all gradient[j]'s
   // based on n training examples
   \theta_i += \eta * gradient[j] for all 0 \le j \le m
```



```
inner loop for j = 0, 1, ..., m:
               Gradient Ascent Step \theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^{n} \left[ y^{(i)} - \sigma \left( \theta^{\text{old}^T} x^{(i)} \right) \right] x_j^{(i)}
```



```
initialize \theta_i = \emptyset for \emptyset \le j \le m
repeat many times:
  gradient[j] = 0 for 0 \le j \le m
  for each training example (x,y):
     for each 0 \le j \le m:
        // update gradient[j] for
        // current (x,y) example
   \theta_i += \eta * gradient[j] for all 0 \le j \le m
```

inner loop for
$$j = 0, 1, ..., m$$
:

Gradient Ascent Step $\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} x^{(i)} \right) \right] x_j^{(i)}$


```
initialize \theta_i = \emptyset for \emptyset \le j \le m
repeat many times:
```

```
gradient[j] = 0 for 0 \le j \le m
```

for each training example
$$(x,y)$$
:

for each
$$0 \le j \le m$$
:

gradient[j] +=
$$\left[y - \frac{1}{1 + e^{-\theta^T x}}\right] x_j$$

$$\theta_j$$
 += η * gradient[j] for all $0 \le j \le m$

Some important details...

Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x}^{(i)} \right) \right] x_j^{(i)}$$

```
initialize \theta_i = \emptyset for \emptyset \le j \le m
repeat many times:
   gradient[j] = 0 for 0 \le j \le m
   for each training example (x,y):
      for each 0 \le j \le m:
         gradient[j] += \left[y - \frac{1}{1 + e^{-\theta^T x}}\right] x_j
              * gradient[j] for all 0 ≤ j ≤ m
```

Finish computing gradient with θ^{old} prior to any θ update

Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \boldsymbol{x}^{(i)} \right) \right] x_j^{(i)}$$

```
initialize \theta_i = \emptyset for \emptyset \le j \le m
repeat many times:
   gradient[j] = 0 for 0 \le j \le m
   for each training example (x,y):
      for each 0 \le j \le m:
          gradient[j] += \left[y - \frac{1}{1 + e^{-\theta^T x}}\right] x_j
   \theta_j += n * gradient[j] for all 0 \le j \le m
```

- Finish computing gradient with $\theta^{\rm old}$ prior to any θ update
- Learning rate η is a constant you set before training

$$\begin{array}{l} \text{Gradient} \\ \text{Ascent Step} \ \theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \pmb{x}^{(i)} \right) \right] \, x_j^{(i)} \end{array}$$

```
initialize \theta_i = \emptyset for \emptyset \le j \le m
repeat many times:
   gradient[j] = 0 for 0 \le j \le m
   for each training example (x,y):
      for each 0 \le j \le m:
          gradient[j] += \left[y - \frac{1}{1 + e^{-\theta^T x}}\right]^T x_j
    \theta_i += \eta * gradient[j] for all 0 \le j \le m
```

- Finish computing gradient with $\theta^{\rm old}$ prior to any θ update
- Learning rate η is a constant you set before training
- x_i is j-th feature of input $x = (x_1, ..., x_m)$

$$\begin{array}{l} \text{Gradient} \\ \text{Ascent Step} \ \theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \pmb{x}^{(i)} \right) \right] \, x_j^{(i)} \end{array}$$

```
initialize \theta_i = \emptyset for \emptyset \le j \le m
repeat many times:
   gradient[j] = 0 for 0 \le j \le m
   for each training example (x,y):
       for each 0 \le j \le m:
          gradient[j] += \left[y - \frac{1}{1 + e^{-\theta^T x}}\right]^{x_j}
    \theta_i += \eta * gradient[j] for all 0 \le j \le m
```

- Finish computing gradient with $\theta^{\rm old}$ prior to any θ update
- Learning rate η is a constant you set before training
- x_i is j-th feature of input $x = (x_1, ..., x_m)$
- Insert $x_0 = 1$ before training

Ascent Step
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} \mathbf{x}^{(i)} \right) \right] x_j^{(i)}$$

```
initialize \theta_i = \emptyset for \emptyset \le j \le m
repeat many times:
```

```
gradient[j] = 0 for 0 \le j \le m
```

for each training example (x,y):

for each $0 \le j \le m$:

gradient[j] +=
$$\left[y - \frac{1}{1 + e^{-\theta^T x}}\right] x_j$$

$$\theta_i$$
 += η * gradient[j] for all $0 \le j \le m$

- Finish computing gradient with θ^{old} prior to any θ update
- Learning rate η is a constant you set before training
- x_i is j-th feature of input $x = (x_1, ..., x_m)$
- Insert $x_0 = 1$ before training

Testing

Testing: Classification with Logistic Regression

Training

Learn parameters
$$\theta = (\theta_0, \theta_1, \dots, \theta_m)$$

via gradient ascent:
$$\theta_j^{\text{new}} = \theta_j^{\text{old}} + \eta \cdot \sum_{i=1}^n \left[y^{(i)} - \sigma \left(\theta^{\text{old}^T} x^{(i)} \right) \right] x_j^{(i)}$$

Testing

• Compute
$$\hat{y} = P(Y = 1 | X = x) = \sigma(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

Classify instance as:

$$\begin{cases} 1 & \hat{y} > 0.5, \text{ equivalently } \theta^T x > 0 \\ 0 & \text{otherwise} \end{cases}$$

Parameters θ_i are **not** updated during testing phase

Interlude for jokes/announcements

https://www.bagelbakerygainesville.com/top-8-bagel-jokes-of-all-time/

Announcements

Quiz #3

Time frame: Wednesday 11/18 2:00pm - Friday 11/20 12:59pm PT

Up to and including logistic regression Covers:

Info and practice: Quizzes page

Next week: Last section

Review session for Quiz #3

Probability Reference (Overleaf)

Updated to include all of Quiz 3-relevant material (sampling defs, MLE/MAP, classifiers)

Interesting probability news

The Time Everyone "Corrected" the World's Smartest Woman

Today's goals: Logistic Regression

- At a high level
 - Understand the model
 - Training: Use gradient ascent

Details

- Gradient ascent pseudocode
- Testing

Philosophy

- Logistic Regression vs Naïve Bayes
- Linearly separable functions

Derivation of gradient (Calculus)

For the problem set

Machine learning insights

Philosophy

Think

Slide 64 asks you to think over by yourself.

Post any clarifications here or in chat!

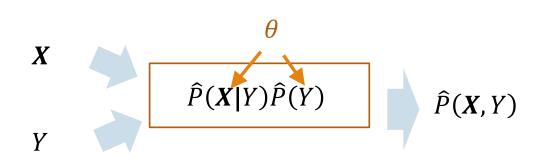
https://us.edstem.org/courses/2678/discussion/171556

Think by yourself: 2 min

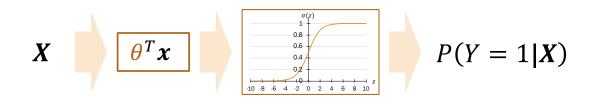
Naïve Bayes

VS

Logistic Regression



$$\hat{Y} = \arg \max_{y = \{0,1\}} P(Y \mid X) = \arg \max_{y = \{0,1\}} P(X|Y)P(Y)$$



$$\widehat{Y} = \arg \max_{y = \{0,1\}} P(Y|X)$$

Compare/contrast:

- What **distributions** are we modeling?
- After learning our parameters, could we randomly generate a new datapoint (x, y)?
- Could we model a **continuous** X_i feature (e.g., $X_i \sim \text{Normal}$, or $X_i \sim \text{Unknown}$)?
- Could we model a non-binary **discrete** X_i (e.g., $X_i \in \{1,2,...,6\}$)?

Tradeoffs:

Naïve Bayes

Logistic Regression

1. Modeling goal

P(X,Y)

P(Y|X)

2. Generative or discriminative?

Generative: could use joint distribution to generate new points (but you might not need this extra effort)

Discriminative: just tries to discriminate y = 0 vs y = 1(X cannot generate new points b/c no P(X,Y)

3. Continuous input features Needs parametric form (e.g., Gaussian) or discretized buckets (for multinomial features)

Yes, easily

4. Discrete input features Yes, multi-value discrete data = multinomial $P(X_i|Y)$

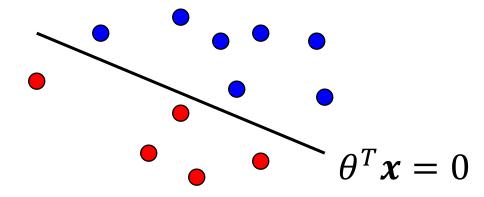
Multi-valued discrete data hard (e.g., if $X_i \in \{A, B, C\}$, not necessarily good to encode as $\{1, 2, 3\}$ Stanford University 67

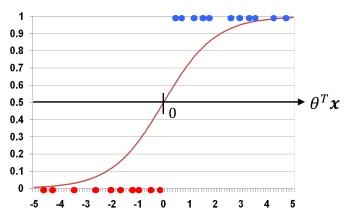
Linearly separable data

Logistic Regression is trying to fit a **line** that separates data instances where y = 1 from those where y = 0:

 We call such data (or functions) generating the data) linearly separable.

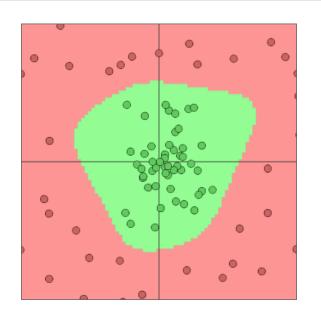
Naïve Bayes is linear too, because there is one parameter for each feature (and no parameters that involve multiple features).

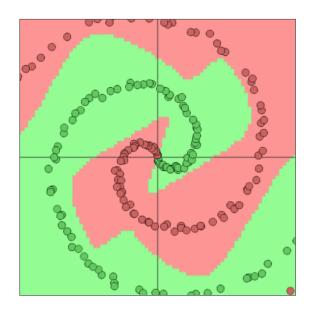




$$\widehat{P}(X|Y) = \prod_{\substack{j=1 \\ \text{Stanford University}}}^{m} \widehat{P}(X_{j}|Y)$$

Data is often not linearly separable





- Not possible to draw a line that successfully separates all the y = 1 points (green) from the y = 0 points (red)
- Despite this fact, Logistic Regression and Naive Bayes still often work well in practice

Gradient Derivation

Background: Calculus

Calculus refresher #1:

Derivative(sum) = sum(derivative)

$$\frac{\partial}{\partial x} \sum_{i=1}^{n} f_i(x) = \sum_{i=1}^{n} \frac{\partial f_i(x)}{\partial x}$$

Calculus refresher #2:

Chain rule 📈 📈 📈

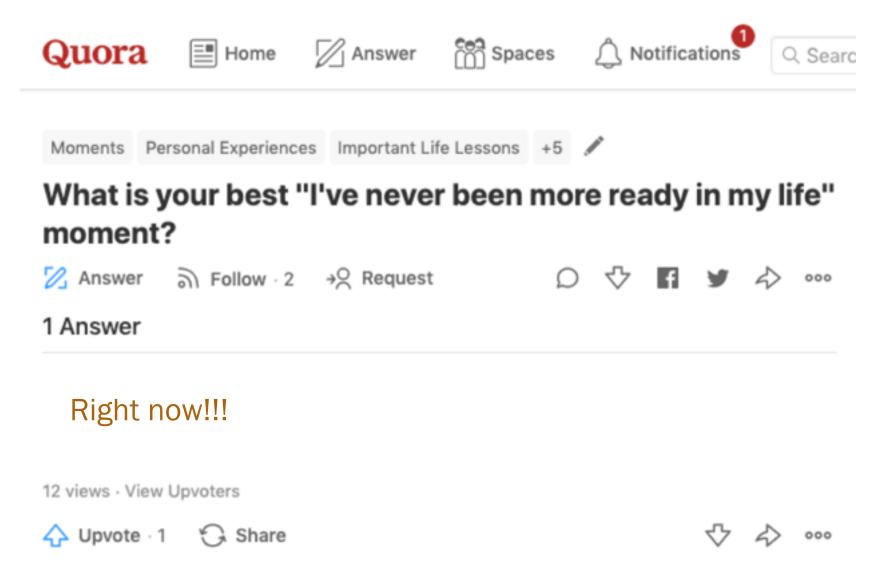
$$\frac{\partial f(x)}{\partial x} = \frac{\partial f(z)}{\partial z} \frac{\partial z}{\partial x}$$

Calculus Chain Rule

$$f(x) = f(z(x))$$

aka decomposition of composed functions

Are you ready?



Our goal

Find:
$$\frac{\partial LL(\theta)}{\partial \theta_j}$$
 where

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^T \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log \left(1 - \sigma(\theta^T \mathbf{x}^{(i)})\right) \quad \text{log conditional likelihood}$$

Two "pre-processing" steps to prepare for chain rule

- **1.** Rewrite $LL(\theta)$ with \hat{y}
- 2. Compute gradient of \hat{y}

1. Rewriting $LL(\theta)$ with \hat{y}

Find:
$$\frac{\partial LL(\theta)}{\partial \theta_j}$$
 where

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \sigma(\theta^T \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log \left(1 - \sigma(\theta^T \mathbf{x}^{(i)})\right) \quad \text{log conditional likelihood}$$

$$LL(\theta) = \sum_{i=1}^{n} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Let
$$\hat{y}^{(i)} = \sigma(\theta^T \mathbf{x}^{(i)})$$

2. Compute gradient of $\hat{y} = \sigma(\theta^T x)$

Aside: Sigmoid has a beautiful derivative!

Sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Derivative:

$$\frac{d}{dz}\sigma(z) = \sigma(z)[1 - \sigma(z)]$$

Think

Slide 72 has code to think over by yourself.

Post any in chat!

Think by yourself: 2 min

2. Compute gradient of $\hat{y} = \sigma(\theta^T x)$

Sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Derivative:

$$\frac{d}{dz}\sigma(z) = \sigma(z)[1 - \sigma(z)]$$

What is
$$\frac{\partial}{\partial \theta_j} \hat{y} = \frac{\partial}{\partial \theta_j} \sigma(\theta^T x)$$
?

A.
$$\sigma(x_j)[1-\sigma(x_j)]x_j$$

B.
$$\sigma(\theta^T x)[1 - \sigma(\theta^T x)]x$$

C.
$$\sigma(\theta^T \mathbf{x})[1 - \sigma(\theta^T \mathbf{x})]x_i$$

D.
$$\sigma(\theta^T \mathbf{x}) x_j [1 - \sigma(\theta^T \mathbf{x}) x_j]$$

None/other

2. Compute gradient of $\hat{y} = \sigma(\theta^T x)$

Sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Derivative:

$$\frac{d}{dz}\sigma(z) = \sigma(z)[1 - \sigma(z)]$$

What is
$$\frac{\partial}{\partial \theta_j} \sigma(\theta^T \mathbf{x})$$
?

A.
$$\sigma(x_i)[1-\sigma(x_i)]x_i$$

B.
$$\sigma(\theta^T x)[1 - \sigma(\theta^T x)]x$$

C.
$$\sigma(\theta^T \mathbf{x})[1 - \sigma(\theta^T \mathbf{x})]x_j$$

D.
$$\sigma(\theta^T x) x_j [1 - \sigma(\theta^T x) x_j]$$

None/other

Let
$$z = \theta^T \mathbf{x} = \sum_{k=0}^m \theta_k x_k$$
.

$$\frac{\partial}{\partial \theta_j} \sigma(\theta^T \mathbf{x}) = \frac{\partial}{\partial z} \sigma(z) \cdot \frac{\partial z}{\partial \theta_j} \qquad \text{(Chain Rule)}$$

$$= \sigma(\theta^T \mathbf{x})[1 - \sigma(\theta^T \mathbf{x})]x_j$$

Compute gradient of log conditional likelihood

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \frac{\partial}{\partial \theta_j} \left[y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]$$
 Let $\hat{y}^{(i)} = \sigma(\theta^T \boldsymbol{x}^{(i)})$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial \hat{y}^{(i)}} \left[y^{(i)} \log(\hat{y}^{(i)}) + \left(1 - y^{(i)}\right) \log\left(1 - \hat{y}^{(i)}\right) \right] \cdot \frac{\partial \hat{y}^{(i)}}{\partial \theta_{j}}$$
 (Chain Rule)

$$= \sum_{i=1}^{n} \left[y^{(i)} \frac{1}{\hat{y}^{(i)}} - \left(1 - y^{(i)}\right) \frac{1}{1 - \hat{y}^{(i)}} \right] \cdot \hat{y}^{(i)} \left(1 - \hat{y}^{(i)}\right) x_j^{(i)}$$
 (calculus)

$$= \sum_{i=1}^{n} [y^{(i)} - \hat{y}^{(i)}] x_j^{(i)} = \sum_{i=1}^{n} [y^{(i)} - \sigma(\theta^T \mathbf{x}^{(i)})] x_j^{(i)}$$
 (simplify)

Compute gradient of log conditional likelihood

$$\frac{\partial LL(\theta)}{\partial \theta_j} = \sum_{i=1}^n \frac{\partial}{\partial \theta_j} \left[y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]$$
 Let $\hat{y}^{(i)} = \sigma(\theta^T x^{(i)})$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial \hat{y}^{(i)}} \left[y^{(i)} \log(\hat{y}^{(i)}) + \left(1 - y^{(i)}\right) \log\left(1 - \hat{y}^{(i)}\right) \right] \cdot \frac{\partial \hat{y}^{(i)}}{\partial \theta_{j}}$$
 (Chain Rule)

$$= \sum_{i=1}^{n} \left[y^{(i)} \frac{1}{\hat{y}^{(i)}} - (1 - y^{(i)}) \frac{1}{1 - \hat{y}^{(i)}} \right] \cdot \hat{y}^{(i)} (1 - \hat{y}^{(i)}) x_j^{(i)}$$
 (calculus)

$$= \sum_{i=1}^{n} [y^{(i)} - \hat{y}^{(i)}] x_j^{(i)} = \sum_{i=1}^{n} [y^{(i)} - \sigma(\theta^T x^{(i)})] x_j^{(i)}$$

(simplify)

Interlude for jokes

Probability as college students

