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LIVE

Deep Learning




Innovations in deep learning

Deep learning (neural networks)
IS the core idea behind the
current revolution in Al.

Errata (misspoke):
* Checkers is the last solved game (from game
theory, where perfect player outcomes can be

fully predicted from any gameboard).
https://en.wikipedia.org/wiki/Solved _game

* The first machine learning algorithm defeated a

world champion in Chess in 1996.
https://en.wikipedia.org/wiki/Deep Blue (chess computer)
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https://en.wikipedia.org/wiki/Solved_game
https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)

Computers making art

The Next Rembrandt A Neural Algorithm of Artistic Style o |
://medium.com/@DutchDigital/the- https://arxiv.org/abs/1508.06576 = Sgei'i;)rﬂzrfbg?n'?g?e26?}3096 .
next-rembrandt-bringing-the-old-master- https://github.com/jcjohnson/neural-style neural.html
back-to-life-35dfb 1653597
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https://medium.com/@DutchDigital/the-next-rembrandt-bringing-the-old-master-back-to-life-35dfb1653597
https://arxiv.org/abs/1508.06576
https://github.com/jcjohnson/neural-style
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Detecting skin cancer

Skin Lesion Image Deep Convolutional Neural Training Classes
Network (Inception-v3) (757)

Acral-lent. melanoma
//: Amelanotic melanoma
| Lentigo melanoma
oW 0000660

Blue nevus
'. Halo nevus
i\. Mongolian spot

-3

Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with deep neural networks."
Nature 542.7639 (2017): 115-118.
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Deep learning

def Deep learning is def A neural network is
maximum likelihood estimation (at its core) many logistic
with neural networks. regression pieces stacked on

top of each other.

LOL ~
[1,0,..,1] © \__/~ ~—> J,output  >0s? es
X, Input Lots of Logistic P(Y|X = x)

(regressions)
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Logistic Regression Model

m

: y =P =1|X) Y =argmaxP(Y | X)
=1 R wrrs y={0,1}

<

Let’s focus on the
model up to V.
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Logistic Regression Model

9 =P = 1|X) Y =argmaxP(Y | X)

m
j=1 y={0,1}

y Let’s focus on the
model up to .

eQ Q0980000
(+)
Q
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One neuron = One logistic regression

~—~— .
—>Dcndrites

x| 0eq ~qreeccess

<
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Biological basis for neural networks

A neuron
X1 0
X5 6, X One neuron =
v 0 y one logistic
T regression
X4
Your brain
X1
X, Neural network =
y many logistic
3 .
regressions
X4

(aCtua”y’ prObably someone else S braln) Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 11




Digit recognition example

Input image Input feature vector Output label

x® =10,0,0,0, ...,1,0,0,1, ...,0,0,1,0] y® =0

x® =10,0,11,..,0,1,1,0, ...,0,1,0,0] y® =1

We make feature vectors from (digitized) pictures of humbers.
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Logistic Regression

(o)

y, output
P(Y =1|X = x)

(288 399999008

X, input features
( p |Xe |S, O n/Off) Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 13




Logistic Regression

indicates logistic

regression connection No
> 0.5? -
Predict O

¥, output

P(Y = 1|X = x)

X, input features
( p |Xe |S, @) n/Off) Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 14




Logistic Regression

indicates logistic

regression connection Yes
> 0.5? -
Predict 1

¥, output

{ O0e® ..O000 OOOOQCJ

X, input features
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Logistic Regression

X, input features

indicates logistic
regression connection

Lisa Yan and Jerry Cain, CS109, 2020

Yes.
-
@ > 058 Predict 1

y, output X

What can we do to increase
complexity of our model?

Stanford University 16



Take two big ideas from Logistic Regression Review

) L
PS Bigidea#1 P(Y|X = x)
O Model conditional probability
O y of class label given input
o
® L .
p indicates logistic
° %
®
': y, output
Bigidea #2 o(067x)
: Non-linear transform of multiple
O values into one value, using
parameter 0

X, input features
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Introducing: The Neural network

)
®
O )
O O
® O
® e
® O
No.
® O @ > 0.57? .
® o Predict O
® ~
. ® y, output v
: . v
® O
®
O h, hidden
— layer

X, input features
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Neural network

X, input features

{OOQ COOCOO]

h, hidden

Lisa

layer

Yan and Jerry Cain, CS109, 2020

Bigidea#1 P(Y|X = x)
Model conditional probability
y of class label given input

No.
0.57?
@ ” Predict O

y, output

Stanford University 19



Feed neurons into other neurons

hidden
neuron

lOOCéO}

No.
0.57
@ ” Predict O

Bigidea #2 o(6"x) p, output
Non-linear transform of multiple
values into one value, using
parameter 0

v’ I 10 Wi Wi w1

Neuron = logistic regression

Cee .eeecescoe]

layer

X, input features

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 20




Feed neurons into other neurons

)
‘\ .
O
@
0\ o .
‘\ another O @ > 0.57 .
0\ nidden o Predict O
‘;\ neuron ¢ y, output
e O
o —~0
‘/ —
Q/ h, hidden Neuron = logistic regression

layer Different parameters for
x, input features every connection

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 21




Feed neurons into other neurons

)
®
O )
O
® | |h| logistic 8
® regression °
® | connections O
® o Predict O
¢ |x1 - |h| ® 9, output
' parameters O
® O
® -
O h, hidden Neuron = logistic regression
_ layer Different parameters for
X, input features every connection
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Feed neurons into other neurons

)
®
O
O | )
- o output
® O neuron
® 8: g No.
O @ " Predict O
C? O‘? y, output
® O/
8 h, hidden Neuron = logistic regression

layer Different parameters for
x, input features every connection
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Feed neurons into other neurons

)
®
O )
O
® 8 1 logistic
® P regression
® o | connection
® o Predict O
¢ o [kl 9, output
' O parameters
® O
® —
O h, hidden Neuron = logistic regression
_ layer Different parameters for
X, input features every connection
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Think

Slide 26 asks you to think over by yourself.
Post any clarifications in chat!

Think by yourself: 2 min



Why doesn't a linear model introduce “complexity”?

Neural network:
1. forj=1,..,|h|:

hi =0 (Hj(h)Tx)

0. 9=0(69"h)=P(Y =1|X = x)

2.

(e

¥, output

h, hidden
Linear network: x. input features layer

1. forj=1,..,|h|

(Ges -eesevecos]
}
(covvesvos]

_ o7
h] = H] X

0. 9=0(6® R)=PY =1X=x P>
y=0o( ) = P( | ) Ao

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVeI‘Sity 26



Why doesn't a linear model introduce “complexity”?

Neural network: "o
O
forj=1,..,|h|: O (o )
w7 o o
hi =0 (9]- x) : 8 @
T ® ®)
y=0(69 h) =P =1|X = x) . o | . oupu
o o
o
O h, hidden
Linear network: x. input features 2"
forj=1,..,|h|:
T
h =g | . .
s M The linear model is effectively

=0 (g(ﬁ)Th) =P(Y = 1|X = x) a single logistic regression
with |x| parameters.
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Demonstration

Draw your number here

0123456789
]

v 4
I
Downsampled drawing: @

Firstguess:@ i -

Second guess: o

Layer visibility

Input layer
Convolution layer 1
Downsampling layer 1
Convolution layer 2

Downsampling layer 2

SCS.ryerson.ca
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http://scs.ryerson.ca/~aharley/vis/conv/

Interlude for jokes




Probability as college students

(A useful construct that connects discrete PMF to continuous PDF)
Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 30




Neural networks

A neural network (like logistic regression) gets intelligence from its
parameters 6.

Learn parameters 6
Training Find 6, that maximizes likelihood of
training data (MLE)

For input feature vector X = x:
Testing/ Use parameters to compute y = P(Y = 1|X = x)
Prediction Classify instance as: 1 9> 0.5
{O otherwise

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 31



Neural networks

A neural network (like logistic regression) gets intelligence from its
parameters 6.

Learn parameters 6
Training Find 6, that maximizes likelihood of
training data (MLE)

How do we learn the |x| - |h| + |h| parameters?
Gradient ascent + chain rule!

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 32




Training: Logistic Regression Review

n
1. Optimization Oy = arg maxl_[f(y(i)l x),9) = arg max LL(8)
o 1 0
i=1

problem:
n
LL®) = Y yOlogy® + (1 —yD)log(1—y®)
=1
$=0(0Tx) =P(Y = 1|1X = x)
2. Compute gradient Find |x| parameters
3. Optimize initialize params

repeat many times:
compute gradient
params += n *x gradient

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVCI‘Sity 33




Training: Neural networks

1. Optimization

n
OmLE = 1_[ D) x® ) = LL(6
oroblem: MLE argénax | | f(y | x ) arg;nax (6)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVCI‘Sity 34




Same output y, same log conditional likelihood

o

S —

o
° S N
o ®
o o = — U — (1 Binary class labels:
Inalimet L@ = | |P(r=yOix=x0,6) Eroyce
.= o y, output i=1 )
' o
o O
8 h, hidden n @ o

X, inplﬁtures aver — 1_[(5;(1))3’ (1 _ y(i))l_y
=1
forj=1,..,|h|:

hi=o (9].”‘)Tx) o | . -

LL(B) = 2 y®DlogyW® + (1- y(‘)) log(1 — y(l))
T =1
9 = 0(90’) h) =P(Y =1|X = x)
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(model is a little more complicated)

S
O e
o ) n
o ®
° o . Nz . (i
S mp o —»{ o] LL(B) = E yDlogy® + (1 — y®)log(1 —y®)
.: o v, output i=1
' O
°® O
°® —
@) h, hidden
— layer

X, input features

To optimize for
forj=1,..,h log conditional likelihood,

. we now need to find:
hj=o0 (Qj(h)\ x) dimension |x|
\h| - |x| +|x| parameters

=0 g(f/)Th) =P(Y =1|X =x) dimension |h]
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>. Compute gradient

hj = G@TX) forj=1,...,|h| y = a(:H(y) h)

2. Compute gradient Take gradient with respect to all 8 parameters
Calculus refresher #1. Calculus refresher #2:
Derivative(sum) = Chain rule
sum(derivative)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul’liVeI‘Sity 37




3. Optimize

3. Optimize

initialize params

repeat many times:
compute gradient
params += n *x gradient

Lisa Yan and Jerry Cain, CS109, 2020
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Training a neural net

Wait, did we just skip something difficult?

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVCI‘Sity 39




>. Compute gradient via backpropagation

hj = G@TX) forj=1,...,|h| y = a(:H@) h)

2. Compute gradient Take gradient with respect to all 8 parameters

Learn the tricks behind
backpropagation in
CS229, CS231N, CS224N,
etc.

Lisa Yan and Jerry Cain, C$109, 2020 Stantord Ul‘llVCI‘Sity 40




Beyond the
basics




Shared weights?

<K

— CAR
— TRUCK
— VAN
1 N
— :
7./'/‘\ e . . .

' \ ] [] — BicYCLE
, INPUT CONVOLUTION + RELU  POOLING  CONVOLUTION + RELU  POOLING FLATIEN FULLY  soFTmax
i iy FE o g
FEATURE LEARNING CLASSIFICATION

It turns out if you want to force some of your weights to be shared over
different neurons, the math isn’t much harder.

Convolution is an example of such weight-sharing and is used a lot for
vision (Convolutional Neural Networks, CNN).

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 42




Neural networks with multiple layers

y LL

(\
Lisa Yan and Jerry Cain, 08109.K2020 Stanford University




Neurons learn features of the dataset

Neurons in later layers will respond strongly to high-level
features of your training data.

T Bl
- At . If your training data is faces, you will get lots of face neurons.

If your training data u YOUT“be

IS all of YouTube...

...you get a cat
neuron.

_ Top stimuli in test set Optimal stimulus found
by numerical optimization

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012 Stanforc 44




Hire IllB,S,IIIﬂI'IﬂSl people inthe world

invent cat detector

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul’liVeI‘Sity 45




Multiple outputs?

Softmax is a generalization of
the sigmoid function.

sigmoid(z): value in range [0, 1]
0123456789 z € R:
_ | P(Y=1|X=x) =0(2)

(equivalent: Bernoulli p)

softmax(z): k-dimensional values in
range[0,1] thatadd upto 1

z € Rk:
P(Y = i|X = x) = softmax(z);

(equivalent: Multinomial p, ..., px)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul’liVeI‘Sity 46



Softmax test metric: Top-5 error

(probabilities of predictions)

0123456789

Y=y |PY=y|X=x) B
5 0.14
8 0.13
I 0.12 Top-5 classification error
2 0.10 What % of datapoints
0] 0.10 did not have the correct
4 0.09 class label in the top-5
1 0.09 predictions?
0 0.09
6 0.08 (class label: 5)
3 0.05

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 47




ImageNet classification

22 OOO Categories .s}noothhound, smoothhound shark, Mustelus mustelus
’ . ) ‘

American smooth dogfish, Mustelus canis
Florida smoothhound, Mustelus norrisi
whitetip shark, reef whitetip shark, Triaenodon obseus
14,000’000 imageS Atlantic spiny dogfish, Squalus acanthias Stingray
Pacific spiny dogfish, Squalus suckleyi v_ e S
hammerhead, hammerhead shark

Ha nd_engi neered featu res smooth hammerhead, Sphyrna zygaena |

smalleye hammerhead, Sphyrna tudes

(S|FT’ HOG’ LBP)’ shovelhead, bonnethead, bonnet shark, S

. . angel shark, angelfish, Squatina squatina, monkflsh
Spatlal pyram |d, electric ray, crampfish, numbfish, torpedo

smalltooth sawfish, Pristis pectinatus

SparseCoding/Compression  _yiarish

J U C \V dV
eagle ray

spotted eagle ray, spotted ray, Aetobatus narinari
cownose ray, cow-nosed ray, Rhinoptera bonasus

manta, manta ray, devilfish
Atlantic manta, Manta birostris
devil ray, Mobula hypostoma

grey skate, gray skate, Raja batis
little skate, Raja erinacea

Manta ray

Le, et al., Building high-level features using large-scale tihsupervised leatnitig” ICML 2012 Stanford University 48




ImageNet classification challenge

QQ_GQ.@_ea{e.ge.H.es_' 1000 Categories moothhound shark, Mustelus mustelus
’ n dogfish, Mustelus canis

Florida smoothhound. Mustelus norrisi

14,000,000 images | 200,000 images in train set 1odon obseus

200,000 images in test set

Hand-engineered features
(SIFT, HOG, LBP),

Spatial pyramid,
SparseCoding/Compression

smooth hammerhead, Sphyrna zygaena

smalleye hammerhead, Sphyrna tudes

shovelhead, bonnethead, bonnet shark, Sphyrna tiburo
angel shark, angelfish, Squatina squatina, monkfish
electric ray, crampfish, numbfish, torpedo
smalltooth sawfish, Pristis pectinatus

guitarfish

roughtail stingray, Dasyatis centroura

butterfly ray

eagle ray

spotted eagle ray, spotted ray, Aetobatus narinari
cownose ray, cow-nosed ray, Rhinoptera bonasus
manta, manta ray, devilfish

Atlantic manta, Manta birostris

devil ray, Mobula hypostoma

grey skate, gray skate, Raja batis

little skate, Raja erinacea

Le, et al., Building high-level features using large-scale-thsupérvised learnirg’ ICML 2012

Stanford University 49



ImageNet challenge: Top-5 classification error

(lower is better)

99.5%

Random guess

999
| 5 ) 995
P (true class label not in 5 guesses) = (1000) ~ 1000
5

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 50




ImageNet challenge: Top-5 classification error

(lower is better)

99.5% 25.8% 5.1%

Random guess Pre-Neural Networks Humans
(2014)

16.4%

Google Net
(2015)

Russakovsky et al., ImageNet Large Scale Visual Recognition Challenge. [JCV 2015
Szegedy et al., Going Deeper With Convolutions. CVPR 2015

Hu et al., Squeeze-and-Excitation Networks. Preprint arXiV 2017
Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 51




ImageNet challenge: Top-5 classification error

(lower is better)

99.5% 25.8% 5.1%

Random guess Pre-Neural Networks Humans
(2014)
% 2.25%
1 6 " 4 0, . 0,
Google Net SENet
(2015) (2017)

Russakovsky et al., ImageNet Large Scale Visual Recognition Challenge. IJCV 2015
Szegedy et al., Going Deeper With Convolutions. CVPR 2015

Hu et al., Squeeze-and-Excitation Networks. Preprint arXiV 2017
Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 52




GooglLeNet (2015)

o:‘ ': Google Brain L Tillion Artificial Neurons

(btw human brains have 1 billion neurons)

Multiple,
Multi class output

22 layers deep!

Szegedy et al., Going Deeper With Convolutions. CVPR 2015 -anford University 53




Speeding up gradient descent minimizes loss (a function of prediction error)

IA

initialize 6, = @ for 0 = ] m

repeat many times:
gradient[j] = @ for @ = j = m
for each training example (x,y): What if we have 1,200,000
for each @ = j = m: Images in our training set?

compute gradient

6, == n * gradient[j] for all @ <= j = m How can we speed up the update?

Our batch gradient descent (over the entire training set) will be slow + expensive.

Use stochastic gradient descent
(randomly select training examples with replacement).

Momentum update
(Incorporate “acceleration” or “deceleration” of gradient updates so far)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 54



Good ML = Generalization

n n 5
4.5 |y =3343.x°- 7453.x° + 7007.x* - 3435.x% + 896.0x? - 111.9x + 5.241'
Overfitting : |
\
3.5
\

Fitting the training data too well, \ / | P
such that we lose generality of )+ \ o N

model for predictin g new data o o1 o2 03 o4 o5 os 0 o 0z 03 o4 05 0
perfect fit, but bad more general fit + better
predictor for new data predictor for new data
Dropout

During training, randomly leave out
some neurons each training step.

It will make your network more robust.

(a) Standard Neural Net (b) After applying dropout.

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 55




Making decisions?

Not everything is classification.

i. ._; | Deep Reinforcement Learning

— Instead of having the output of
—

‘%— a model be a probability, you
— make output an expectation.

http://cs.stanford.edu/people/karpathy/convnetis/demo/rldemo.html

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 56



http://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html

Deep Reinforcement Learning

o0

http://cs.stanford.edu/people/karpathy

/convnetjs/demo/rldemo.html

Video Pinball
Boxing
Breakout

Star Gunner
Robotank
Atlantis

Crazy Climber
Gopher

Lisa Yan and Jerry Cain, CS109, 2020
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Deep Mind Atari Games

Score compared to best

human

Stanford University 57
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What's missing?




How are you getting your
data?




Ethics and datasets

| —

Sometimes machine learning feels universally unbiased.
We can even prove our estimators are “unbiased” (mathematically).
Google/Nikon/HP had biased datasets.

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 60




Should your data be unbiased?

Dataset: Google News

\ —
man — woman A king — queeﬁ

\ \

\ 7 4
manh — woman ~ computer programmer — homemaker.

Should our unbiased data collection reflect society’s systemic bias?

Bolukbasi et al., Man is to Computer Programmer as Woman is to
Homemaker? Debiasing Word Embeddings. NIPS 2016y, g sery cain, cs100, 2020 Stanford University 61




How can we explain decisions?

If your task is image classification,
reasoning about high-level features is
relatively easy.

Everything can be visualized.

*  Criminal recidivism

What if you are trying to classify * Job performance

social outcomes? ° PO”Cir)g |
* Terrorist risk

* At-risk kids

Lisa Yan and Jerry Cain, CS109, 2020 Stanford University 62




Ethics in Machine Learning

is a whole new field. ®




