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Quick slide reference
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Innovations in deep learning

Deep learning (neural networks) 
is the core idea behind the 
current revolution in AI.

4AlphaGO (2016)

Errata (misspoke):
• Checkers is the last solved game (from game 

theory, where perfect player outcomes can be 
fully predicted from any gameboard). 
https://en.wikipedia.org/wiki/Solved_game

• The first machine learning algorithm defeated a 
world champion in Chess in 1996. 
https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)

https://en.wikipedia.org/wiki/Solved_game
https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
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Computers making art

5

The Next Rembrandt
https://medium.com/@DutchDigital/the-
next-rembrandt-bringing-the-old-master-

back-to-life-35dfb1653597

A Neural Algorithm of Artistic Style
https://arxiv.org/abs/1508.06576

https://github.com/jcjohnson/neural-style

Google Deep Dream
https://ai.googleblog.com/2015/06/in

ceptionism-going-deeper-into-
neural.html

https://medium.com/@DutchDigital/the-next-rembrandt-bringing-the-old-master-back-to-life-35dfb1653597
https://arxiv.org/abs/1508.06576
https://github.com/jcjohnson/neural-style
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
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Detecting skin cancer

6

Esteva, Andre, et al. "Dermatologist-level classification of skin cancer with deep neural networks." 
Nature 542.7639 (2017): 115-118. 
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Deep learning

def Deep learning is 
maximum likelihood estimation 
with neural networks.
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[1,0, … , 1]
𝒙, input

(𝑦, output
𝑃 𝑌|𝑿 = 𝒙

> 0.5? Yes.
Predict 1

Lots of Logistic 
(regressions)

LOL

def A neural network is
(at its core) many logistic 
regression pieces stacked on 
top of each other.
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Logistic Regression Model
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Logistic Regression Model
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One neuron

10

+

…

σ

𝒙

(𝑦
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= One logistic regression
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Neural network =
many logistic
regressions

Biological basis for neural networks

11

A neuron

Your brain

One neuron =
one logistic
regression

(actually, probably someone else’s brain)
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Digit recognition example

12

Input feature vector

𝒙(() = 0,0,0,0, … , 1,0,0,1, … , 0,0,1,0

𝒙(() = 0,0,1,1, … , 0,1,1,0, … , 0,1,0,0

𝑦 ( = 0

𝑦 ( = 1

Output labelInput image

We make feature vectors from (digitized) pictures of numbers.
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Logistic Regression

13

…

𝒙, input features

"𝑦, output
+ σ

(pixels, on/off)

𝑃 𝑌 = 1|𝑿 = 𝒙
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Logistic Regression

14

…

> 0.5?

𝒙, input features

"𝑦, output

indicates logistic 
regression connection No. 

Predict 0

✅

(pixels, on/off)

𝑃 𝑌 = 1|𝑿 = 𝒙
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Logistic Regression

15

…

> 0.5?

𝒙, input features

"𝑦, output

indicates logistic 
regression connection Yes. 

Predict 1

✅
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Logistic Regression

16

…

> 0.5?

𝒙, input features

"𝑦, output

indicates logistic 
regression connection Yes. 

Predict 1

❌

What can we do to increase
complexity of our model?
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Take two big ideas from Logistic Regression

17

…

𝒙, input features

"𝑦, output

indicates logistic 
regression connection

Big idea #1 𝑃 𝑌|𝑿 = 𝒙
Model conditional probability 
"𝑦 of class label given input

Big idea #2 σ θ*𝒙
Non-linear transform of multiple 
values into one value, using 
parameter θ

Review
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Introducing: The Neural network

18

…

𝒙, input features

"𝑦, output

𝒉, hidden
layer

> 0.5?
No. 
Predict 0

✅
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Neural network

19

…

𝒙, input features

"𝑦, output

Big idea #1 𝑃 𝑌|𝑿 = 𝒙
Model conditional probability 
"𝑦 of class label given input

𝒉, hidden
layer

> 0.5?
No. 
Predict 0
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Feed neurons into other neurons

20

…

𝒉, hidden
layer

+ σ

hidden
neuron

• Neuron = logistic regression

𝒙, input features

"𝑦, output

> 0.5?
No. 
Predict 0

Big idea #2 σ θ*𝒙
Non-linear transform of multiple 
values into one value, using 
parameter θ
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Feed neurons into other neurons

21

…

𝒉, hidden
layer

+ σ

another
hidden
neuron

• Neuron = logistic regression
• Different parameters for

every connection𝒙, input features

"𝑦, output

> 0.5?
No. 
Predict 0
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Feed neurons into other neurons

22

…

𝒙, input features

"𝑦, output

𝒉, hidden
layer

|𝒉| logistic 
regression 

connections

• Neuron = logistic regression
• Different parameters for

every connection

> 0.5?
No. 
Predict 0

𝒙 ⋅ |𝒉|
parameters
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Feed neurons into other neurons

23

…

𝒉, hidden
layer

> 0.5?
No. 
Predict 0+ σ

output
neuron

• Neuron = logistic regression
• Different parameters for

every connection𝒙, input features

"𝑦, output

|𝒉| logistic 
regression 

connections

𝒙 ⋅ |𝒉|
parameters
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Feed neurons into other neurons

24

…

𝒙, input features

"𝑦, output

𝒉, hidden
layer

> 0.5?
No. 
Predict 0

1 logistic 
regression 
connection

|𝒉| logistic 
regression 

connections

𝒙 ⋅ |𝒉|
parameters

|𝒉|
parameters

• Neuron = logistic regression
• Different parameters for

every connection



Think Slide 26 asks you to think over by yourself.

Post any clarifications in chat!

Think by yourself: 2 min

25

🤔(by yourself)
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Why doesn’t a linear model introduce “complexity”?
Neural network:

1.

2.

Linear network:
1.

2.

26

…

!, input features

"#, output

$, hidden
layer

for 𝑗 = 1,… , |𝒉|:

ℎ! = 𝜎 𝜃!
" #

𝒙 1. 2.

🤔(by yourself)

for 𝑗 = 1,… , |𝒉|:

ℎ! = 𝜃!
" #

𝒙

,𝑦 = 𝜎 𝜃 $% #
𝒉 = 𝑃 𝑌 = 1|𝑿 = 𝒙

,𝑦 = 𝜎 𝜃 $% #
𝒉 = 𝑃 𝑌 = 1|𝑿 = 𝒙
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Why doesn’t a linear model introduce “complexity”?
Neural network:

1.

2.

Linear network:
1.

2.

27

…

!, input features

"#, output

$, hidden
layer

,𝑦 = 𝜎 𝜃 $% #
𝒉 = 𝑃 𝑌 = 1|𝑿 = 𝒙

for 𝑗 = 1,… , |𝒉|:

ℎ! = 𝜎 𝜃!
" #

𝒙 1. 2.

for 𝑗 = 1,… , |𝒉|:

ℎ! = 𝜃!
" #

𝒙 The linear model is effectively 
a single logistic regression 
with 𝒙 parameters.

,𝑦 = 𝜎 𝜃 $% #
𝒉 = 𝑃 𝑌 = 1|𝑿 = 𝒙
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Demonstration

http://scs.ryerson.ca/~aharley/vis/conv/

28

http://scs.ryerson.ca/~aharley/vis/conv/


Interlude for jokes

29
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Probability as college students

30
(A useful construct that connects discrete PMF to continuous PDF)
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Neural networks

31

Testing/
Prediction

Training

A neural network (like logistic regression) gets intelligence from its 
parameters 𝜃.

• Learn parameters 𝜃
• Find 𝜃&'( that maximizes likelihood of

training data (MLE)

For input feature vector 𝑿 = 𝒙:
• Use parameters to compute "𝑦 = 𝑃 𝑌 = 1|𝑿 = 𝒙
• Classify instance as:

-1 "𝑦 > 0.5
0 otherwise
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Neural networks

32

Training

A neural network (like logistic regression) gets intelligence from its 
parameters 𝜃.

• Learn parameters 𝜃
• Find 𝜃&'( that maximizes likelihood of

training data (MLE)

How do we learn the 𝒙 ⋅ 𝒉 + |𝒉| parameters?
Gradient ascent + chain rule!
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1. Optimization
problem:

2. Compute gradient

3. Optimize

Training: Logistic Regression

33

Find |𝒙| parameters

𝜃+,- = arg max
.

8
("%

/

𝑓 𝑦 ( | 𝒙 ( , 𝜃 = arg max
.

𝐿𝐿 𝜃

𝐿𝐿 𝜃 =;
("%

/

𝑦(() log "𝑦 ( + 1 − 𝑦(() log 1 − "𝑦 (

Review

"𝑦 = 𝜎 𝜃*𝒙(() = 𝑃 𝑌 = 1|𝑿 = 𝒙

initialize params
repeat many times:
compute gradient
params += η * gradient

🌟
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1. Optimization
problem:

2. Compute gradient

3. Optimize

Training: Neural networks

34

𝜃+,- = arg max
.

8
("%

/

𝑓 𝑦 ( | 𝒙 ( , 𝜃 = arg max
.

𝐿𝐿 𝜃
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1. Same output !𝑦, same log conditional likelihood

35

𝜃+,- = arg max
.

8
("%

/

𝑓 𝑦 ( | 𝒙 ( , 𝜃 = arg max
.

𝐿𝐿 𝜃

,𝑦 = 𝜎 𝜃 $% #
𝒉 = 𝑃 𝑌 = 1|𝑿 = 𝒙

for 𝑗 = 1,… , |𝒉|:

ℎ! = 𝜎 𝜃!
" #

𝒙
𝐿𝐿 𝜃 =;

("%

/

𝑦(() log "𝑦 ( + 1 − 𝑦(() log 1 − "𝑦 (

𝐿 𝜃 =8
("%

/

𝑃 𝑌 = 𝑦 ( |𝑿 = 𝒙 ( , 𝜃

=8
("%

/

"𝑦 ( ! !
1 − "𝑦 ( %0! !

…

!, input features

"#, output

$, hidden
layer

Binary class labels: 
𝑌 ∈ 0, 1
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(model is a little more complicated)

36

𝜃+,- = arg max
.

8
("%

/

𝑓 𝑦 ( | 𝒙 ( , 𝜃 = arg max
.

𝐿𝐿 𝜃

,𝑦 = 𝜎 𝜃 $% #
𝒉 = 𝑃 𝑌 = 1|𝑿 = 𝒙

for 𝑗 = 1,… , |𝒉|:

ℎ! = 𝜎 𝜃!
" #

𝒙

…

!, input features

"#, output

$, hidden
layer

𝐿𝐿 𝜃 =;
("%

/

𝑦(() log "𝑦 ( + 1 − 𝑦(() log 1 − "𝑦 (

dimension 𝒙

dimension 𝒉

To optimize for 
log conditional likelihood,
we now need to find:

parameters𝒉 ⋅ 𝒙 + 𝒙
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1. Optimization
problem:

2. Compute gradient

3. Optimize

2. Compute gradient

37

𝜃+,- = arg max
.

8
("%

/

𝑓 𝑦 ( | 𝒙 ( , 𝜃 = arg max
.

𝐿𝐿 𝜃

𝐿𝐿 𝜃 =;
("%

/

𝑦(() log "𝑦 ( + 1 − 𝑦(() log 1 − "𝑦 (

ℎ3 = 𝜎 𝜃3
4 *

𝒙 "𝑦 = 𝜎 𝜃 5! *
𝒉for 𝑗 = 1,… , |𝒉|

Calculus refresher #1:
Derivative(sum) = 

sum(derivative)

Calculus refresher #2:
Chain rule 🌟🌟🌟

Take gradient with respect to all 𝜃 parameters
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ℎ3 = 𝜎 𝜃3
4 *

𝒙

1. Optimization
problem:

2. Compute gradient

3. Optimize

3. Optimize

38

𝜃+,- = arg max
.

8
("%

/

𝑓 𝑦 ( | 𝒙 ( , 𝜃 = arg max
.

𝐿𝐿 𝜃

𝐿𝐿 𝜃 =;
("%

/

𝑦(() log "𝑦 ( + 1 − 𝑦(() log 1 − "𝑦 (

initialize params
repeat many times:

compute gradient
params += η * gradient

"𝑦 = 𝜎 𝜃 5! *
𝒉for 𝑗 = 1,… , |𝒉|

Take gradient with respect to all 𝜃 parameters
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ℎ3 = 𝜎 𝜃3
4 *

𝒙 "𝑦 = 𝜎 𝜃 5! *
𝒉for 𝑗 = 1,… , |𝒉|

Take gradient with respect to all 𝜃 parameters

1. Optimization
problem:

2. Compute gradient

3. Optimize

Training a neural net

39

𝜃+,- = arg max
.

8
("%

/

𝑓 𝑦 ( | 𝒙 ( , 𝜃 = arg max
.

𝐿𝐿 𝜃

𝐿𝐿 𝜃 =;
("%

/

𝑦(() log "𝑦 ( + 1 − 𝑦(() log 1 − "𝑦 (

initialize params
repeat many times:

compute gradient
params += η * gradient

Wait, did we just skip something difficult?
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1. Optimization
problem:

2. Compute gradient

3. Optimize

2. Compute gradient via backpropagation

40

𝜃+,- = arg max
.

8
("%

/

𝑓 𝑦 ( | 𝒙 ( , 𝜃 = arg max
.

𝐿𝐿 𝜃

𝐿𝐿 𝜃 =;
("%

/

𝑦(() log "𝑦 ( + 1 − 𝑦(() log 1 − "𝑦 (

initialize params
repeat many times:

compute gradient
params += η * gradient

Learn the tricks behind 
backpropagation in 
CS229, CS231N, CS224N, 
etc.

ℎ3 = 𝜎 𝜃3
4 *

𝒙 "𝑦 = 𝜎 𝜃 5! *
𝒉for 𝑗 = 1,… , |𝒉|

Take gradient with respect to all 𝜃 parameters



Beyond the 
basics

41

extra
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Shared weights?

It turns out if you want to force some of your weights to be shared over 
different neurons, the math isn’t much harder.
Convolution is an example of such weight-sharing and is used a lot for 
vision (Convolutional Neural Networks, CNN).

42
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Neural networks with multiple layers

43

𝒙 𝒂 𝒃 𝒄 𝒅 𝒆 𝒇 I𝒚 𝐿𝐿
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Neurons learn features of the dataset

44Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

Neurons in later layers will respond strongly to high-level 
features of your training data.
If your training data is faces, you will get lots of face neurons.

If your training data
is all of YouTube…

Top stimuli in test set Optimal stimulus found
by numerical optimization

…you get a cat 
neuron.
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Multiple outputs?
Softmax is a generalization of 
the sigmoid function.

46

𝑧 ∈ ℝ:
𝑃 𝑌 = 1|𝑿 = 𝒙 = 𝜎 𝑧

𝒛 ∈ ℝ6:
𝑃 𝑌 = 𝑖|𝑿 = 𝒙 = softmax 𝒛 (

softmax 𝑧 : 𝑘-dimensional values in 
range[0,1] that add up to 1

sigmoid 𝑧 : value in range [0, 1]

(equivalent: Bernoulli 𝑝)

(equivalent: Multinomial 𝑝$, … , 𝑝))
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Softmax test metric: Top-5 error

47

𝑌 = 𝑦 𝑃 𝑌 = 𝑦|𝑿 = 𝒙
5 0.14
8 0.13
7 0.12
2 0.10
9 0.10
4 0.09
1 0.09
0 0.09
6 0.08
3 0.05

Top-5 classification error
What % of datapoints
did not have the correct 
class label in the top-5
predictions?

(class label: 5)

(probabilities of predictions)
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ImageNet classification

48

22,000 categories

14,000,000 images

Hand-engineered features 
(SIFT, HOG, LBP), 
Spatial pyramid,  
SparseCoding/Compression

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

…
smoothhound, smoothhound shark, Mustelus mustelus
American smooth dogfish, Mustelus canis
Florida smoothhound, Mustelus norrisi
whitetip shark, reef whitetip shark, Triaenodon obseus
Atlantic spiny dogfish, Squalus acanthias
Pacific spiny dogfish, Squalus suckleyi
hammerhead, hammerhead shark
smooth hammerhead, Sphyrna zygaena
smalleye hammerhead, Sphyrna tudes
shovelhead, bonnethead, bonnet shark, Sphyrna tiburo
angel shark, angelfish, Squatina squatina, monkfish
electric ray, crampfish, numbfish, torpedo
smalltooth sawfish, Pristis pectinatus
guitarfish
roughtail stingray, Dasyatis centroura
butterfly ray
eagle ray
spotted eagle ray, spotted ray, Aetobatus narinari
cownose ray, cow-nosed ray, Rhinoptera bonasus
manta, manta ray, devilfish
Atlantic manta, Manta birostris
devil ray, Mobula hypostoma
grey skate, gray skate, Raja batis
little skate, Raja erinacea
…

S"ngray

Mantaray
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ImageNet classification challenge

49

22,000 categories

14,000,000 images

Hand-engineered features 
(SIFT, HOG, LBP), 
Spatial pyramid,  
SparseCoding/Compression

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

…
smoothhound, smoothhound shark, Mustelus mustelus
American smooth dogfish, Mustelus canis
Florida smoothhound, Mustelus norrisi
whitetip shark, reef whitetip shark, Triaenodon obseus
Atlantic spiny dogfish, Squalus acanthias
Pacific spiny dogfish, Squalus suckleyi
hammerhead, hammerhead shark
smooth hammerhead, Sphyrna zygaena
smalleye hammerhead, Sphyrna tudes
shovelhead, bonnethead, bonnet shark, Sphyrna tiburo
angel shark, angelfish, Squatina squatina, monkfish
electric ray, crampfish, numbfish, torpedo
smalltooth sawfish, Pristis pectinatus
guitarfish
roughtail stingray, Dasyatis centroura
butterfly ray
eagle ray
spotted eagle ray, spotted ray, Aetobatus narinari
cownose ray, cow-nosed ray, Rhinoptera bonasus
manta, manta ray, devilfish
Atlantic manta, Manta birostris
devil ray, Mobula hypostoma
grey skate, gray skate, Raja batis
little skate, Raja erinacea
…

1000 categories

200,000 images in test set
1,200,000 images in train set
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ImageNet challenge: Top-5 classification error

50

99.5%
Random guess

𝑃 true class label not in 5 guesses =
999
5

1000
5

=
995
1000

(lower is better)
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ImageNet challenge: Top-5 classification error

51

99.5%
Random guess

25.8%

?

Pre-Neural Networks

GoogLe Net
(2015)

16.4%

5.1%
Humans
(2014)

(lower is better)

Russakovsky et al., ImageNet Large Scale Visual Recognition Challenge. IJCV 2015
Szegedy et al., Going Deeper With Convolutions. CVPR 2015
Hu et al., Squeeze-and-Excitation Networks. Preprint arXiV 2017
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ImageNet challenge: Top-5 classification error

52

99.5%
Random guess

25.8%

?

Pre-Neural Networks

GoogLe Net
(2015)

16.4%

5.1%
Humans
(2014)

SENet
(2017)

2.25%

Russakovsky et al., ImageNet Large Scale Visual Recognition Challenge. IJCV 2015
Szegedy et al., Going Deeper With Convolutions. CVPR 2015
Hu et al., Squeeze-and-Excitation Networks. Preprint arXiV 2017

(lower is better)
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GoogLeNet (2015)

53

1 Trillion Artificial Neurons
(btw human brains have 1 billion neurons)

22 layers deep!

Multiple,
Multi class output

Szegedy et al., Going Deeper With Convolutions. CVPR 2015
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Speeding up gradient descent

Our batch gradient descent (over the entire training set) will be slow + expensive.
1. Use stochastic gradient descent

(randomly select training examples with replacement).
2. Momentum update

(Incorporate “acceleration” or “deceleration” of gradient updates so far)
54

initialize !! = 0 for 0 ≤ j ≤ m
repeat many times:

gradient[j] = 0 for 0 ≤ j ≤ m
for each training example (",#):

 
   !! -= η  * gradient[j] for all 0 ≤ j ≤ m

for each 0 ≤ j ≤ m:

compute gradient

⚠

⚠

1. What if we have 1,200,000 
images in our training set?

2. How can we speed up the update?

minimizes loss (a function of prediction error)
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Good ML = Generalization
Overfitting
Fitting the training data too well,
such that we lose generality of
model for predicting new data

Dropout
During training, randomly leave out
some neurons each training step.
It will make your network more robust.
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perfect fit, but bad
predictor for new data

more general fit + better
predictor for new data



Lisa Yan and Jerry Cain, CS109, 2020

Making decisions?

Not everything is classification.

Deep Reinforcement Learning
Instead of having the output of 
a model be a probability, you 
make output an expectation.
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http://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html

http://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
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Deep Reinforcement Learning

57

http://cs.stanford.edu/people/karpathy
/convnetjs/demo/rldemo.html

Deep Mind Atari Games
Score compared to best 
human

http://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html


What’s missing?
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How are you getting your 
data?
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Ethics and datasets

Sometimes machine learning feels universally unbiased.
We can even prove our estimators are “unbiased” (mathematically).
Google/Nikon/HP had biased datasets.
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Should your data be unbiased?
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Man is to Computer Programmer as Woman is to Homemaker?

Debiasing Word Embeddings

Tolga Bolukbasi1, Kai-Wei Chang2, James Zou2, Venkatesh Saligrama1,2, Adam Kalai2
1Boston University, 8 Saint Mary’s Street, Boston, MA

2Microsoft Research New England, 1 Memorial Drive, Cambridge, MA
tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@microsoft.com

Abstract
The blind application of machine learning runs the risk of amplifying biases present in data. Such a

danger is facing us with word embedding, a popular framework to represent text data as vectors which
has been used in many machine learning and natural language processing tasks. We show that even
word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing
extent. This raises concerns because their widespread use, as we describe, often tends to amplify these
biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding.
Second, gender neutral words are shown to be linearly separable from gender definition words in the word
embedding. Using these properties, we provide a methodology for modifying an embedding to remove
gender stereotypes, such as the association between between the words receptionist and female, while
maintaining desired associations such as between the words queen and female. We define metrics to
quantify both direct and indirect gender biases in embeddings, and develop algorithms to “debias” the
embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate
that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties
such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can
be used in applications without amplifying gender bias.

1 Introduction

There have been hundreds or thousands of papers written about word embeddings and their applications,
from Web search [27] to parsing Curriculum Vitae [16]. However, none of these papers have recognized how
blatantly sexist the embeddings are and hence risk introducing biases of various types into real-world systems.

A word embedding that represent each word (or common phrase) w as a d-dimensional word vector
~w 2 Rd. Word embeddings, trained only on word co-occurrence in text corpora, serve as a dictionary of sorts
for computer programs that would like to use word meaning. First, words with similar semantic meanings
tend to have vectors that are close together. Second, the vector differences between words in embeddings
have been shown to represent relationships between words [32, 26]. For example given an analogy puzzle,
“man is to king as woman is to x” (denoted as man:king :: woman:x), simple arithmetic of the embedding
vectors finds that x=queen is the best answer because:

��!man �����!woman ⇡
��!
king ����!queen

Similarly, x=Japan is returned for Paris:France :: Tokyo:x. It is surprising that a simple vector arithmetic
can simultaneously capture a variety of relationships. It has also excited practitioners because such a tool
could be useful across applications involving natural language. Indeed, they are being studied and used
in a variety of downstream applications (e.g., document ranking [27], sentiment analysis [18], and question
retrieval [22]).

However, the embeddings also pinpoint sexism implicit in text. For instance, it is also the case that:

��!man �����!woman ⇡ ����������������!computer programmer �
��������!
homemaker.
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could be useful across applications involving natural language. Indeed, they are being studied and used
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Dataset: Google News

Bolukbasi et al., Man is to Computer Programmer as Woman is to 
Homemaker? Debiasing Word Embeddings. NIPS 2016

Should our unbiased data collection reflect society’s systemic bias?
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How can we explain decisions?

62

If your task is image classification,
reasoning about high-level features is 
relatively easy.
Everything can be visualized.

What if you are trying to classify 
social outcomes?

• Criminal recidivism
• Job performance
• Policing 
• Terrorist risk
• At-risk kids



Ethics in Machine Learning 
is a whole new field. 🙂
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