28: Probability Bounds

Lisa Yan and Jerry Cain November 16, 2020

Quick slide reference

- 5 Markov's and Chebyshev's Inequalities
- 12 Jensen's Inequality
- Laws of Large Numbers

LIVE

LIVE

LIVE

Computing probabilities involving *X*

If we know the full parameterized distribution:

(we can compute any sort of probability on *X*)

If we don't have the distribution, but we have an i.i.d. sample:

(we can use bootstrapping to compute probabilities on *X*)

If we know the model but not the parameter + we have an i.i.d. sample:

 $X \sim \text{Poi}(\lambda)$

(we can estimate X's parameters and then use the estimated θ to compute probabilities)

Today: Even if we only have a statistic of the sample (e.g., E[X] or Var(X)), we can still <u>bound</u> probabilities of X

Probabilities: What the CLT tells us

$$E[X_i] = \mu, \operatorname{Var}(X_i) = \sigma^2, \text{ where } X_i \text{ i.i.d.}$$

As $n \to \infty$, $X = \sum_{i=1}^n X_i \sim \mathcal{N}(n\mu, n\sigma^2)$

Central Limit Theorem

Suppose we could observe E[X] and Var(X).

If we knew that X was a sum of many i.i.d. X_i's:

- By the CLT, X is Normal (for large n)
- Therefore we can compute any probability involving *X*!

LIVE

Markov's and Chebyshev's Inequalities

Aside: Inequalities of random variables

Let *X* and *Y* be jointly distributed. Suppose that

$$X \leq Y \quad \Leftrightarrow$$

 $X \leq Y$ for all possible X = x, Y = y(i.e., with nonzero joint PDF or PMF)

<u>Property</u>

If
$$X \leq Y$$
, then $E[X] \leq E[Y]$.

Proof

1. $Y - X \ge 0$ 2. $E[Y - X] \ge 0$ 3. $E[Y] - E[X] \ge 0$ 4. $E[X] \le E[Y]$ (for all possible X = x, Y = y) (Expectation) (Linearity of Expectation) (rearrange)

Markov's Inequality

Let X be a non-negative random variable ($X \ge 0$). Then

$$P(X \ge a) \le \frac{E[X]}{a}$$
 for all $a > 0$

<u>Interpret</u> The probability that *X* is greater than *a* is bounded by its mean (and *a*).

$$\frac{\text{Proof}}{1.} \text{ Define } I = \begin{cases} 1 & \text{if } X \ge a \\ 0 & \text{otherwise} \end{cases}$$

$$2. \quad I \le \frac{X}{a}$$

$$3. \quad E[I] = P(X \ge a)$$

$$4. \quad E[I] \le E[X/a] = \frac{E[X]}{a}$$

(since I is 1 whenever $X \ge a$)

(*I* is Bernoulli)

$$(\text{If } X \leq Y \text{ then } E[X] \leq E[Y])$$

Lisa Yan and Jerry Cain, CS109, 2020

Chebyshev's Inequality

Let X be a random variable where $E[X] = \mu$, $Var(X) = \sigma^2$.

$$P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}$$
 for all $k > 0$

Interpret

The probability that X is further than k from its mean is bounded by its variance (and k).

Proof

1. $(X - \mu)^2 \ge 0$ 2. $P((X - \mu)^2 \ge k^2) \le \frac{E[(X - \mu)^2]}{k^2} = \frac{\sigma^2}{k^2}$ (Markov's Inequality with $a = k^2$) 3. $(X - \mu)^2 \ge k^2 \iff |X - \mu| \ge k$ 4. $P(|X - \mu| \ge k) \le \sigma^2/k^2$

(i.e, $(X - \mu)^2$ is a non-negative RV)

(def. absolute value)

(re-define event expressed in 2.)

Bounding happiness

- Suppose you read aggregate survey results of Bhutanese happiness points (h.p.).
- You learn that the average happiness is 86.7 h.p. and variance is 405.62 (h.p.)².
- Let X = the happiness of a Bhutanese person.

1. $P(X \ge 100)$

2.
$$P(|X - 86.7| \ge 25)$$

Bounding happiness

- Suppose you read aggregate survey results of Bhutanese happiness points (h.p.).
- You learn that the average happiness is 86.7 h.p. and variance is 405.62 (h.p.)².
- Let X = the happiness of a Bhutanese person.

1.
$$P(X \ge 100) \le \frac{86.7}{100} = 0.867$$
2. $P(|X - 86.7| \ge 25) \le \frac{405.62}{625} \approx 0.6490$ Markov bound:In reality (suppose
you research more):
 $\le 86.7\%...$ In reality (suppose
you research more):
 $\le 30.1\%...$ Chebyshev bound:
 $\le 64.90\%...$ In reality (suppose
you research more):
 $\le 20.61\%...$

...of Bhutan has \geq 100 h.p.

...of Bhutan has \geq 111.7 or \leq 61.7 h.p.

Both inequalities can give very loose bounds, but they make <u>no assumptions</u> at all about form or distribution of *X*!

Andrey Andreyevich Markov and Pafnuty Chebyshev

Andrey Andreyevich Markov (1856– 1922) was a Russian mathematician.

Andrei Markov, Russian-Canadian pro ice hockey player

Things named after him:

Markov's Inequality, Markov Chains, Hidden Markov Models, Markov Decision Processes, Markov Blanket...

- Markov Chain is the basis for Google's PageRank algorithm
- Also good for reinforcement learning (e.g., robots traveling worlds, simple games)

Pafnuty Lvovich Chebyshev (1821– 1894) was also a Russian mathematician.

Vint Cerf, one of "the fathers of the Internet"

- Chebyshev's Inequality is named after him (but actually formulated by colleague Irénée-Jules Bienaymé)
- He was Markov's doctoral advisor (and sometimes credited with first deriving Markov's inequality)
- There is a crater on the moon named in his honor

LIVE

Jensen's Inequality

Jensen's inequality

Jensen's inequality:

If g(x) is a convex function, then $E[g(X)] \ge g(E[X])$.

Johan Ludwig William Valdemar Jensen Danish mathematician (1859–1925)

Dr. Eggman from Sonic the Hedgehog?

Jensen's inequality

Jensen's inequality:

If g(x) is a convex function, then $E[g(X)] \ge g(E[X])$.

<u>def</u> convex function g(x): if $g''(x) \ge 0$ for all x. (Convex = "bowl") <u>def</u> concave function g(x): if -g(x) is convex.

Jensen's quick check

g(x) is convex, $\forall x : g''^{(x)} \ge 0$ $E[g(X)] \ge g(E[X])$

Let $X \sim \text{Uniform}$ for the domain of each below graph. Compare E[g(X)] and g(E[X]): (>, <, =)

Jensen's quick check

g(x) is convex, $\forall x : g''^{(x)} \ge 0$ $E[g(X)] \ge g(E[X])$

Let $X \sim \text{Uniform}$ for the domain of each below graph. Compare E[g(X)] and g(E[X]): (>, <, =)

g is both concave and convex only if it is linear. E[g(X)] = g(E[X]) only if g(x) is a linear function.

Why Jensen's is useful

g(x) is convex, $\forall x : g''^{(x)} \ge 0$ $E[g(X)] \ge g(E[X])$

Jensen's Inequality also used in:

- CS229, EM algorithm: How do we iteratively find the the maximum likelihood or MAP estimates without performing gradient ascent?
- CS228, KL divergence

LIVE

Laws of Large Numbers

In the limit: What the CLT tells us

Review

$$E[X_i] = \mu, \operatorname{Var}(X_i) = \sigma^2, \text{ where } X_i \text{ i.i.d.}$$

As $n \to \infty$, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

Central Limit Theorem

As $n \to \infty$,

- The sample mean \overline{X} on average is the population mean μ .
- Often \overline{X} will not be exactly μ ; it has a standard deviation of σ/\sqrt{n} from μ .

Can we write a probabilistic claim on how close \overline{X} is to μ ? (yes, with the laws of large numbers!)

Weak Law of Large Numbers

$$E[X_i] = \mu$$
, $Var(X_i) = \sigma^2$, where X_i i.i.d.
$$\lim_{n \to \infty} P(|\overline{X} - \mu| \ge \varepsilon) \longrightarrow 0 \quad \text{for any } \varepsilon \ge 0$$

<u>Interpret</u> As our sample size grows to infinity, it is extremely unlikely that \overline{X} deviates by $\geq \varepsilon$ from the population mean μ .

<u>Proof</u>

 $n \rightarrow \infty$

1.
$$P(|\bar{X} - E[\bar{X}]| \ge \varepsilon) \le \frac{\operatorname{Var}(\bar{X})}{\varepsilon^2}$$

2. $P(|\bar{X} - \mu| \ge \varepsilon) \le \frac{\sigma^2}{n\varepsilon^2}$
3. $0 \le P(|\bar{X} - \mu| \ge \varepsilon) \le \frac{\sigma^2}{n\varepsilon^2}$
4. $\lim P(|\bar{X} - \mu| \ge \varepsilon) = 0$

(Chebyshev's Inequality)

(Sum of i.i.d. RVs: $Var(\overline{X}) = \sigma^2/n$)

(Probability is a number b/t 0 and 1)

$$(\lim_{n\to\infty}\sigma^2/(n\varepsilon^2)=0)$$

Strong Law of Large Numbers

E

$$[X_i] = \mu, \operatorname{Var}(X_i) = \sigma^2, \text{ where } X_i \text{ i.i.d.}$$

$$P\left(\lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^n X_i\right) = \mu\right) = 1$$

<u>Interpret</u> As our sample size grows to infinity, \overline{X} will approach the population mean μ with probability 1.

- "with probability 1": All outcomes that aren't in this event have probability 0. Read more: https://en.wikipedia.org/wiki/Convergence_of_random_variables
- Strong Law \implies Weak Law, but not vice versa
- Also implies that for any $\varepsilon > 0$, there are a *finite number* of values of n such that Weak Law condition $|\overline{X} \mu| \ge \varepsilon$ holds

History of LLN and CLT

Central Limit Theorem 1700 1733: CLT for $X \sim \text{Ber}(1/2)$ Abraham de Moivre 1800 1823: CLT for Bin(n, p)**Pierre-Simon Laplace** 1900 1901: Proof of general CLT Alexandr Lyapunov

Law of Large Numbers

1713: Weak LLN described by Jacob Bernoulli

1835: Poisson calls it "La Loi des Grands Nombres" (French for "Law of Large Numbers")

1909: Émile Borel develops Strong LLN for Bernoulli

1928: Andrei Nikolaevich Kolmogorov proves general Strong LLN Stanford University 22

Lisa Yan and Jerry Cain, CS109, 2020

Takeaways of LLN

 Frequentist definition of probability

For event *E*,
$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

- Define X_i as 1 if E occurs on i-th trial (O otherwise). $\mu = E[X_i] = P(E)$
- By definition,

By SLLN,

 $X_1 + \dots + X_n = n(E)$ (# of times *E* observed), and $\overline{X} = n(E)/n$ (fraction of times *E* observed)

$$P\left(\lim_{n\to\infty}(\bar{X})=\mu\right)=1 \implies P\left(\lim_{n\to\infty}\left(\frac{n(E)}{n}\right)=P(E)\right)=1$$

2. Common misconception (The Gambler's Fallacy)

- LLN only guarantees expectation μ at infinity
- Consider being due for a heads after repeated coin flips

Gambler%27s fallacy

https://en.wikipedia.org/wiki/