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Computing probabilities involving 𝑋
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If we know the full 
parameterized distribution:

If we know the model but not the 
parameter + we have an i.i.d. 
sample:

𝑋~Poi 5 (we can compute any sort of 
probability on 𝑋)

If we don’t have the distribution,
but we have an i.i.d. sample: 3, 4, 1, 6, 0, 2, 3 (we can use bootstrapping to 

compute probabilities on 𝑋)

3, 4, 1, 6, 0, 2, 3

𝑋~Poi 𝜆

(we can estimate 𝑋’s 
parameters and then use the 
estimated 𝜃 to compute 
probabilities)

Today: Even if we only have a statistic of the sample (e.g., 𝐸 𝑋 or Var 𝑋 ),
we can still bound probabilities of 𝑋
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Probabilities: What the CLT tells us

Suppose we could observe 𝐸 𝑋 and Var 𝑋 .

If we knew that 𝑋 was a sum of many i.i.d. 𝑋#’s:
• By the CLT, 𝑋 is Normal (for large 𝑛)
• Therefore we can compute any probability involving 𝑋!
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𝑋 =%
#$%

&

𝑋# ~𝒩(𝑛𝜇, 𝑛𝜎')As 𝑛 → ∞,
Central Limit 
Theorem

𝐸 𝑋! = 𝜇, Var 𝑋! = 𝜎", where 𝑋! i.i.d.

Review



Markov’s and 
Chebyshev’s 
Inequalities
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LIVE
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Aside: Inequalities of random variables
Let 𝑋 and 𝑌 be jointly distributed. Suppose that

Property

Proof
1. 𝑌 − 𝑋 ≥ 0 (for all possible 𝑋 = 𝑥, 𝑌 = 𝑦)
2. 𝐸 𝑌 − 𝑋 ≥ 0 (Expectation)
3. 𝐸 𝑌 − 𝐸 𝑋 ≥ 0 (Linearity of Expectation)
4. 𝐸 𝑋 ≤ 𝐸 𝑌 (rearrange)

6

𝑋 ≤ 𝑌
for all possible 𝑋 = 𝑥, 𝑌 = 𝑦
(i.e., with nonzero joint PDF or PMF)

If 𝑋 ≤ 𝑌, then 𝐸 𝑋 ≤ 𝐸 𝑌 .

⟺ 𝑥 ≤ 𝑦
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Markov’s Inequality
Let 𝑋 be a non-negative random variable (𝑋 ≥ 0). Then

Interpret The probability that 𝑋 is greater than 𝑎 is bounded by its mean (and 𝑎).

Proof
1. Define

2. 𝐼 ≤ !
" (since I is 1 whenever 𝑋 ≥ 𝑎)

3. 𝐸 𝐼 = 𝑃 𝑋 ≥ 𝑎 (𝐼 is Bernoulli)

4. 𝐸 𝐼 ≤ 𝐸 𝑋/𝑎 = # !
" (If 𝑋 ≤ 𝑌 then 𝐸 𝑋 ≤ 𝐸 𝑌 )
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𝑃 𝑋 ≥ 𝑎 ≤
𝐸 𝑋
𝑎

𝐼 = ;1 if 𝑋 ≥ 𝑎
0 otherwise

for all 𝑎 > 0
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Chebyshev’s Inequality
Let 𝑋 be a random variable where 𝐸 𝑋 = 𝜇, Var 𝑋 = 𝜎$.

Interpret The probability that 𝑋 is further than 𝑘 from its mean is bounded
by its variance (and 𝑘).

Proof
1. 𝑋 − 𝜇 $ ≥ 0 (i.e, 𝑋 − 𝜇 " is a non-negative RV)

2. 𝑃 𝑋 − 𝜇 $ ≥ 𝑘$ ≤ # !%& !

'! = (!

'! (Markov’s Inequality with 𝑎 = 𝑘")

3. 𝑋 − 𝜇 $ ≥ 𝑘$ ⟺ 𝑋− 𝜇 ≥ 𝑘 (def. absolute value)
4. 𝑃 𝑋 − 𝜇 ≥ 𝑘 ≤ 𝜎$/𝑘$ (re-define event expressed in 2.)
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𝑃 𝑋 − 𝜇 ≥ 𝑘 ≤
𝜎#

𝑘#
for all 𝑘 > 0
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Bounding happiness
• Suppose you read aggregate survey results of Bhutanese happiness points (h.p.).
• You learn that the average happiness is 86.7 h.p. and variance is 405.62 (h.p.)2.

Let 𝑋 = the happiness of a Bhutanese person.

1. 𝑃 𝑋 ≥ 100

9

2. 𝑃 𝑋 − 86.7 ≥ 25
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Bounding happiness
• Suppose you read aggregate survey results of Bhutanese happiness points (h.p.).
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Let 𝑋 = the happiness of a Bhutanese person.

1. 𝑃 𝑋 ≥ 100
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Markov bound:

≤ 86.7%...

≤
86.7
100

= 0.867 ≤
405.62
625

≈ 0.6490

In reality (suppose 
you research more):

≤ 30.1%...

2. 𝑃 𝑋 − 86.7 ≥ 25

Both inequalities can give very loose bounds,
but they make no assumptions at all about form or distribution of 𝑋!

…of Bhutan has ≥100 h.p.

Chebyshev bound:

≤ 64.90%...

In reality (suppose 
you research more):

≤ 20.61%...

…of Bhutan has ≥ 111.7 or ≤ 61.7 h.p.
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Andrey Andreyevich Markov (1856–
1922) was a Russian mathematician.

Things named after him:
Markov’s Inequality, Markov Chains, Hidden 
Markov Models, Markov Decision Processes, 
Markov Blanket…
• Markov Chain is the basis for Google’s 

PageRank algorithm
• Also good for reinforcement learning (e.g., 

robots traveling worlds, simple games)

Pafnuty Lvovich Chebyshev (1821–
1894) was also a Russian mathematician.

• Chebyshev’s Inequality is named after him
(but actually formulated by colleague Irénée-
Jules Bienaymé)

• He was Markov’s doctoral advisor
(and sometimes credited with first deriving 
Markov’s inequality)

• There is a crater on the moon named in his 
honor
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Andrey Andreyevich Markov and Pafnuty Chebyshev

Andrei Markov, Russian-
Canadian pro ice hockey player

Vint Cerf, one of “the 
fathers of the Internet”



Jensen’s 
Inequality
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Jensen’s inequality
Jensen’s inequality:

If 𝑔 𝑥 is a convex function, then 𝐸 𝑔 𝑋 ≥ 𝑔 𝐸 𝑋 .

13

Johan Ludwig William
Valdemar Jensen

Danish mathematician
(1859–1925)

Dr. Eggman
from Sonic the 
Hedgehog?
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Jensen’s inequality
Jensen’s inequality:

If 𝑔 𝑥 is a convex function , then 𝐸 𝑔 𝑋 ≥ 𝑔 𝐸 𝑋 .

def convex function 𝑔 𝑥 : if 𝑔′′ 𝑥 ≥ 0 for all 𝑥.
def concave function 𝑔 𝑥 : if −𝑔 𝑥 is convex.

14

−3 3
𝑥

𝑓# 𝑥
1/6

Let 𝑋~Uni −3, 3 .
Define 𝑔 𝑋 = 𝑋$ + 2.

0
2
4
6
8
10
12

-3 -2 -1 0 1 2 3
𝑥

𝐸 𝑔 𝑋 = 5

𝑔 𝐸 𝑋 = 𝑔 0 = 2

𝑔 𝑥

(Convex = “bowl”)

convex
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Jensen’s quick check
Let 𝑋~Uniform for the domain of each below graph.
Compare 𝐸 𝑔 𝑋 and 𝑔 𝐸 𝑋 :      (>, <, =)

15

𝑔 𝑥 is convex,
∀𝑥 ∶ 𝑔!! " ≥ 0

𝐸 𝑔 𝑋 ≥ 𝑔 𝐸 𝑋
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𝑒; ln 𝑋 2𝑋 + 3
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𝑔 is both concave and convex only if it is linear.
𝐸 𝑔 𝑋 = 𝑔 𝐸 𝑋 only if 𝑔 𝑥 is a linear function. 

Jensen’s quick check
Let 𝑋~Uniform for the domain of each below graph.
Compare 𝐸 𝑔 𝑋 and 𝑔 𝐸 𝑋 :      (>, <, =)
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𝑔 𝑥 is convex,
∀𝑥 ∶ 𝑔!! " ≥ 0

𝐸 𝑔 𝑋 ≥ 𝑔 𝐸 𝑋
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𝐸 𝑒; > 𝑒< ; 𝐸 ln 𝑋 < ln 𝐸 𝑋 𝐸 2𝑋 + 3 = 2𝐸 𝑋 + 3
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Why Jensen’s is useful
Is Standard Error an unbiased estimator?

Jensen’s Inequality also used in:
• CS229, EM algorithm: How do we iteratively find the the maximum likelihood 

or MAP estimates without performing gradient ascent?
• CS228, KL divergence
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𝐸 𝑆$ = 𝜎$ 𝑆" is an unbiased estimate of 𝜎"

𝐸 𝑆$/𝑛 = 𝜎$/𝑛 Linearity of expectation

𝐸 𝑆$/𝑛 ? 𝜎$/𝑛<

0

1

2

0 1 2 3 4

𝑥

𝑥

𝑔 𝑥 is convex,
∀𝑥 ∶ 𝑔!! " ≥ 0

𝐸 𝑔 𝑋 ≥ 𝑔 𝐸 𝑋

Square root is 
concave

𝑆𝐸 =
𝑆$

𝑛

No; on average,
it underestimates.



Laws of Large 
Numbers

18

LIVE



Lisa Yan and Jerry Cain, CS109, 2020

As 𝑛 → ∞,
• The sample mean C𝑋 on average is the population mean 𝜇.
• Often C𝑋 will not be exactly 𝜇; it has a standard deviation of 𝜎/ 𝑛 from 𝜇.

In the limit: What the CLT tells us

19

C𝑋 =
1
𝑛
%
#$%

&

𝑋# ~𝒩(𝜇,
𝜎'

𝑛
)As 𝑛 → ∞,

Central Limit 
Theorem

𝐸 𝑋! = 𝜇, Var 𝑋! = 𝜎", where 𝑋! i.i.d.

Review

Can we write a probabilistic claim on how close !𝑋 is to 𝜇?
(yes, with the laws of large numbers!)
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Weak Law of Large Numbers

Interpret As our sample size grows to infinity, it is extremely unlikely
that C𝑋 deviates by ≥ 𝜀 from the population mean 𝜇.

Proof
1. 𝑃 L𝑋 − 𝐸 L𝑋 ≥ 𝜀 ≤ Var 1!

2! (Chebyshev’s Inequality)

2. 𝑃 L𝑋 − 𝜇 ≥ 𝜀 ≤ (!

32! (Sum of i.i.d. RVs: Var L𝑋 = 𝜎$/𝑛)

3. 0 ≤ 𝑃 L𝑋 − 𝜇 ≥ 𝜀 ≤ (!

32! (Probability is a number b/t 0 and 1)

4. lim
3→5

𝑃 L𝑋 − 𝜇 ≥ 𝜀 = 0 ( lim
3→5

𝜎$/ 𝑛𝜀$ = 0)
20

lim
$→&

𝑃 /𝑋 − 𝜇 ≥ 𝜀 ⟶ 0
𝐸 𝑋! = 𝜇, Var 𝑋! = 𝜎", where 𝑋! i.i.d.

for any 𝜀 ≥ 0
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Strong Law of Large Numbers

Interpret As our sample size grows to infinity, C𝑋 will approach the 
population mean 𝜇 with probability 1.

• “with probability 1”: All outcomes that aren’t in this event have probability 0.
Read more:

• Strong Law ⟹	Weak Law, but not vice versa
• Also implies that for any 𝜀 > 0, there are a finite number of values of 𝑛

such that Weak Law condition L𝑋 − 𝜇 ≥ 𝜀 holds
21

𝑃 lim
!→#

1
𝑛
*

$%&

!
𝑋$ = 𝜇 = 1

𝐸 𝑋! = 𝜇, Var 𝑋! = 𝜎", where 𝑋! i.i.d.

https://en.wikipedia.org/wiki/Convergence_of_random_variables
#Almost_sure_convergence

https://en.wikipedia.org/wiki/Convergence_of_random_variables
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1900

History of LLN and CLT
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Central Limit Theorem

1733: CLT for 𝑋~Ber 1/2
Abraham de Moivre

1823: CLT for Bin 𝑛, 𝑝
Pierre-Simon Laplace

1901: Proof of general CLT
Alexandr Lyapunov

1713: Weak LLN described 
by Jacob Bernoulli

1909: Émile Borel develops 
Strong LLN for Bernoulli

1928: Andrei Nikolaevich
Kolmogorov proves general 
Strong LLN

1835: Poisson calls it “La Loi
des Grands Nombres”
(French for “Law of Large Numbers”)

1700

1800

Law of Large Numbers
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Takeaways of LLN
1. Frequentist definition

of probability
• Define 𝑋6 as 1 if 𝐸 occurs on 𝑖-th trial (0 otherwise). 𝜇 = 𝐸 𝑋6 = 𝑃 𝐸
• By definition, 𝑋7 +⋯+ 𝑋3 = 𝑛 𝐸 (# of times 𝐸 observed), and

L𝑋 = 𝑛 𝐸 /𝑛 (fraction of times 𝐸 observed)

• By SLLN, 𝑃 lim
3→5

L𝑋 = 𝜇 = 1 ⟹ 𝑃 lim
3→5

3 #
3 = 𝑃 𝐸 = 1

2. Common misconception
(The Gambler’s Fallacy)

• LLN only guarantees expectation 𝜇 at infinity
• Consider being due for a heads after repeated coin flips

23

𝑃 𝐸 = lim
3→5

𝑛 𝐸
𝑛

For event 𝐸,

I’m due for a win…!

https://en.wikipedia.org/wiki/
Gambler%27s_fallacy

https://en.wikipedia.org/wiki/Gambler%27s_fallacy

