p_{1} mpy stats scipy stats p_{2} so rv_{1} 29: Simulating Probabilities

Lisa Yan and Jerry Cain November 18, 2020

Quick slide reference

- 3 Simulating Probabilities, Part 1: Inverse Transform
- 3 Simulating Probabilities, Part 2: Monte Carlo
- 14 Utility of Money

LIVE

LIVE

extra

random.random()

Since computers are deterministic, true randomness does not exist.

We settle for <u>pseudo-randomness</u>: A sequence that looks random but is actually deterministically generated.

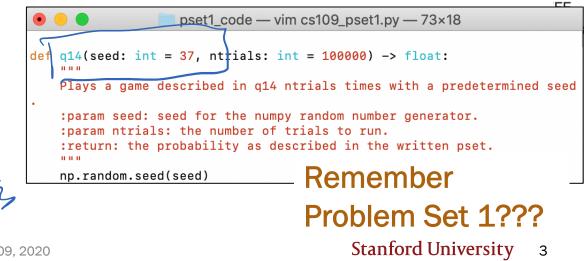
random.random(), np.random.random()

- returns a float uniformly in [0.0, 1.0) with the Mersenne Twister:
- 53-bit precision floating point, repeats after 2**19937-1 numbers
- Seed number: X_0 used to generate sequence $X_1, X_2, \dots, X_n, \dots$

Initialization [edit]

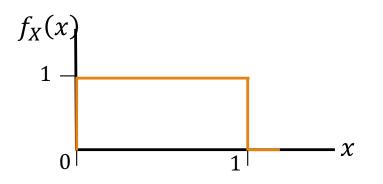
The state needed for a Mersenne Twister implementation is an array of *n* values of *w* bits each. To initialize the array, a *w*-bit seed value is used to supply x_0 through x_{n-1} by setting x_0 to the seed value and thereafter setting

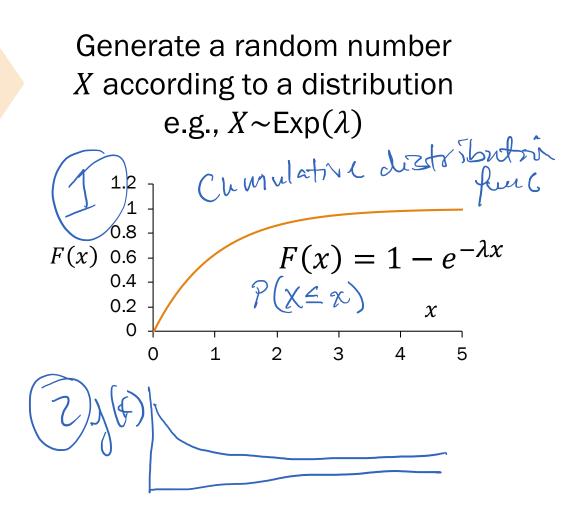
 $x_i = f \times (x_{i-1} \oplus (x_{i-1} >> (w{-}2))) + i$



From random. random() to everything else

random.random()
np.random.random()
Generate a random float
in interval [0.0, 1.0)
U~Uni(0,1)





LIVE

Inverse Transform Sampling

Inverse Transform Sampling

Given the ability to generate numbers $U \sim \text{Uni}(0,1)$, how do we generate another number according to a CDF F?

$$X = F^{-1}(U)$$

$$F(F^{-1}(a)) = F(b)$$

 $a = F(b)$

1`

$$\begin{array}{lll} \displaystyle \det & F^{-1} \text{ the inverse of CDF: } F^{-1}(a) = b \Leftrightarrow F(b) = a \\ \hline \text{Interpret} & 1. & \text{Generate } U \sim \text{Uni}(0,1) \\ & 2. & \text{Apply inverse } F^{-1} \text{ to get a RV } X. \\ & 3. & \text{Then } X \text{ will have CDF } F. \\ \hline \text{Proof:} & P(X \leq x) = P(F^{-1}(U) \leq x) & (\text{our definition of } X) \\ & \mathcal{C}(F(F^{-1}(U) \in F(X))) & (\forall x: 0 \leq F(x) \leq 1) \\ & \mathcal{C}(F(X)) & = P(U \leq F(x)) & (\forall x: 0 \leq F(x) \leq 1) \\ & \mathcal{C}(F(X)) & (\nabla F(U) \leq u) = u \text{ if } 0 \leq u \leq 1) \\ & \mathcal{C}(F(X)) & (\nabla F(U) \leq u) = u \text{ if } 0 \leq u \leq 1) \\ & \mathcal{C}(F(X)) & (\nabla F(U) \leq u) = u \text{ if } 0 \leq u \leq 1) \\ & \mathcal{C}(F(X)) & (\nabla F(U) \leq u) = u \text{ if } 0 \leq u \leq 1) \\ & \mathcal{C}(F(X)) & (\nabla F(U) \leq u) = u \text{ if } 0 \leq u \leq 1) \\ & \mathcal{C}(F(X)) & (\nabla F(U) \leq u) = u \text{ if } 0 \leq u \leq 1) \\ & \mathcal{C}(F(X)) & (\nabla F(U) \leq u) = u \text{ if } 0 \leq u \leq 1) \\ & \mathcal{C}(F(X)) & (\nabla F(U) \leq u) = u \text{ if } 0 \leq u \leq 1) \\ & \mathcal{C}(F(X)) & (\nabla F(U) \leq u) = u \text{ if } 0 \leq u \leq 1) \\ & \mathcal{C}(F(X)) & (\nabla F(X)) & (\nabla F(U) \leq u) = u \text{ if } 0 \leq u \leq 1) \\ & \mathcal{C}(F(X)) & (\nabla F(X)) & (\nabla F(U) \leq u) = u \text{ if } 0 \leq u \leq 1) \\ & \mathcal{C}(F(X)) & (\nabla F(U) \leq u) = u \text{ if } 0 \leq u \leq 1) \\ & \mathcal{C}(F(X)) & (\nabla F(U) \leq u) = u \text{ if } 0 \leq u \leq 1) \\ & \mathcal{C}(F(X)) & (\nabla F(X)) & (\nabla F(X) \leq u \leq 1) \\ & \mathcal{C}(F(X)) & (\nabla F(X)) & (\nabla F(X) \leq u \leq 1) \\ & \mathcal{C}(F(X)) & (\nabla F(X)) & (\nabla F(X)) & (\nabla F(X)) \\ & \mathcal{C}(F(X)) & (\nabla F(X)) & (\nabla F(X)) & (\nabla F(X)) \\ & \mathcal{C}(F(X)) & (\nabla F(X)) & (\nabla F(X)) & (\nabla F(X)) \\ & \mathcal{C}(F(X)) & (\nabla F(X)) & (\nabla F(X)) & (\nabla F(X)) \\ & \mathcal{C}(F(X)) & (\nabla F(X)) & (\nabla F(X)) & (\nabla F(X)) \\ & \mathcal{C}(F(X)) & (\nabla F(X)) & (\nabla F(X)) & (\nabla F(X)) \\ & \mathcal{C}(F(X)) & (\nabla F(X)) & (\nabla F(X)) & (\nabla F(X)) \\ & \mathcal{C}(F(X)) & (\nabla F(X)) & (\nabla F(X)) & (\nabla F(X)) \\ & \mathcal{C}(F(X)) & (\nabla F(X)) & (\nabla F(X)) & (\nabla F(X)) \\ & \mathcal{C}(F(X)) & (\nabla F(X)) & (\nabla F(X)) & (\nabla F(X)) & (\nabla F(X)) \\ & \mathcal{C}(F(X)) & (\nabla F(X)) & (\nabla F(X)) & (\nabla F(X)) \\ & \mathcal{C}(F(X)) & (\nabla F(X)) & (\nabla F(X)) & (\nabla F(X)) & (\nabla F(X)) \\ & \mathcal{C}(F(X)) & (\nabla F(X)) \\ & \mathcal{C}(F(X)) & (\nabla F(X)) & (\nabla F(X))$$

Inverse Transform Sampling (Continuous)

How do we generate the exponential distribution $X \sim \text{Exp}(\lambda)$? $f(x) = 1 - e^{-\lambda x} = u$ $1 - u = e^{-\lambda x}$

- CDF: $F(x) = 1 e^{-\lambda x}$ where $x \ge 0$
- Compute inverse: $F^{-1}(u) = -\frac{\log(1-u)}{2}$
- Note if $U \sim \text{Uni}(0,1)$, then $(1 U) \sim \text{Uni}(0,1)$
- Therefore:

$$F^{-1}(U) = -\frac{\log(U)}{\lambda}$$

Note: Closed-form inverse may not always exist

Check it out!!! (demo)

 $log(I-u) = -\lambda \chi$ $\chi = -\frac{log(I-u)}{\lambda}$

Inverse Transform Sampling (Discrete)

 $X \sim \text{Poi}(\lambda = 3)$ has CDF F(X = x) as shown:

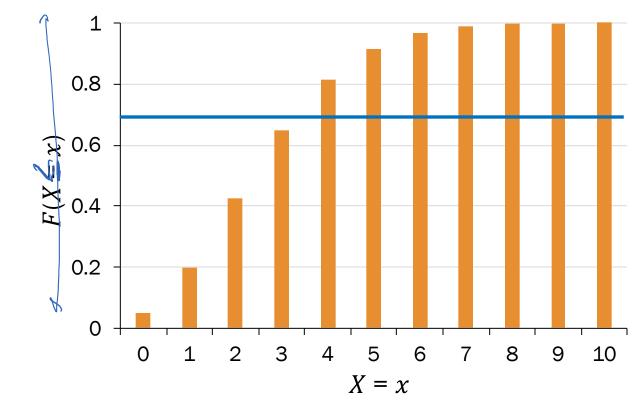
1. Generate $U \sim \text{Uni}(0,1)$

u = 0.7

2. As x increases, determine first $F(x) \ge U$

x = 4

3. Return this value of x



Check it out!!! (demo)

Inverse Transform Sampling of the Normal?

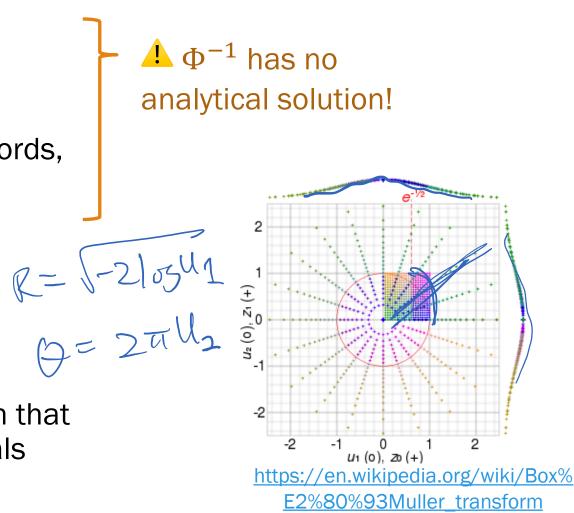
How do we generate $X \sim \mathcal{N}(0,1)$?

Inverse transform sampling:

- 1. Generate a random probability u from $U \sim \text{Unif}(0,1)$.
- 2. Find x such that $\Phi(x) = u$. In other words, compute $x = \Phi^{-1}(u)$.

Solution Box-Muller Transform

- Use two uniforms U_1 and U_2 to generate polar coordinates R and Θ for a circle inscribed in 2x2 square centered at (0,0)
- Can define X = R cos Ø, Y = R sin Ø such that X and Y are two independent unit Normals



Interlude for which is a set of the set of t

LIVE

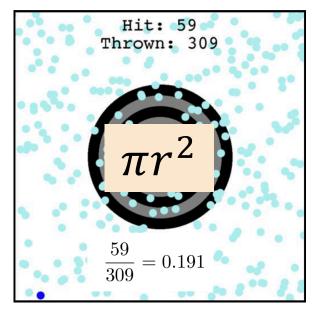
Monte Carlo Methods

Monte Carlo Integration

Monte Carlo methods: randomly sample repeatedly to obtain a numerical result

- Bootstrap
- Inference in Bayes Nets
- Definite integrals (Monte Carlo integration)

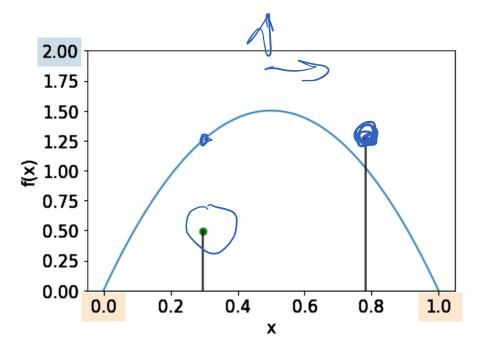
Named after area in Monaco known for its casinos



A Monte Carlo method: Rejection Filtering

Idea for X with PDF f(x):

- Throw dart at graph of PDF f(x)
- If dart under f(x): return x
- Otherwise, repeat throwing darts until one lands under f(x)



random value from distr of X
def random_x():
 while True:
 ^u = random.random() * HEIGHT
 ^x = random.random() * WIDTH
 if u <= f(x):
 return x
 But what if our PDF
 has infinite support?</pre>

Lisa would rename to Acceptance Filtering

Filtering with infinite support

Idea for X with PDF f(x) with support $-\infty < x < \infty$:

• Suppose we can simulate Y with PDF g(y) (where Y has same support as X)

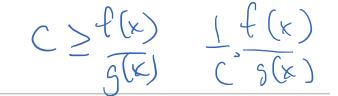
V

• If we can find a constant c such that $c \ge f(x)/g(x)$ for all x, then

```
def random_x():
    while True:
    u = random.random() # u ~ Uni(0, 1)
    x = generate_y() # random value Y = y
    if u <= f(x)/(c * g(x)):
        return x</pre>
```

- Number of iterations of loop~Geo(1/c)
- Proof of correctness in Ross textbook, 10.2.2

Generating Normal Random Variable



 $g(y) = e^{-y}$

 $0 \le y < \infty$

 $0 < x < \infty$

Goal: Simulate $Z \sim \mathcal{N}(0, 1)$. $\smile \oslash < \zeta \subset \bigtriangleup$

- Suppose we can simulate $Y \sim Exp(1)$ with the inverse transform.
- $f(x) = \frac{2}{\sqrt{2\pi}}e^{-x^2/2}$ Let's simulate X = |Z|, which has the same support as Y. PDF f:
- Determine constant $c \ge f(x)/g(x)$ for all $0 \le x < \infty$:

$\frac{f(x)}{g(x)} = \sqrt{\frac{2}{\pi}} \frac{e^{-(x^2 - 2x)/2}}{e^{-x^2/2}} = \sqrt{\frac{2}{\pi}} \frac{e^{-(x^2 - 2x + 1)/2 + 1/2}}{(complete the square)} = \sqrt{\frac{2e}{\pi}} \frac{e^{-(x-1)^2/2}}{(e^{1/2} = \sqrt{e})} \le \sqrt{\frac{2e}{\pi}} \frac{Let this}{be c}$ 2. Determine f(x)/(cg(x))

Generating Normal Random Variable

Goal: Simulate $Z \sim \mathcal{N}(0, 1)$.

- Suppose we can simulate $Y \sim \text{Exp}(1)$ with the inverse transform.
- Let's simulate X = |Z|, which has the same support as Y. PDF f: $f(x) = \frac{Z}{\sqrt{2\pi}}e^{-x^2/2}$
- 1. Determine constant $c \ge f(x)/g(x)$ for all $0 \le x < \infty$:

$$\frac{f(x)}{g(x)} = \sqrt{\frac{2}{\pi}} e^{-(x^2 - 2x)/2} = \sqrt{\frac{2}{\pi}} e^{-(x^2 - 2x + 1)/2 + 1/2} = \sqrt{\frac{2e}{\pi}} e^{-(x - 1)^2/2} \le \sqrt{\frac{2e}{\pi}} e^{-(x - 1)^2/2}$$

$$(\text{complete the square}) = \sqrt{\frac{2e}{\pi}} e^{-(x - 1)^2/2} = \sqrt{\frac{2e}{\pi}} e^{-(x - 1)^2/2}$$

$$e^{-(x - 1)^2/2} = \sqrt{\frac{2e}{\pi}} e^{-(x - 1)^2/2}$$

3. Implement code for |Z| and Z

 $g(y) = e^{-y}$

 $0 \le y < \infty$

 $0 < x < \infty$

Generating Normal Random Variable

Goal: Simulate $Z \sim \mathcal{N}(0, 1)$.

- Suppose we can simulate $Y \sim \text{Exp}(1)$ with the inverse transform.
- Let's simulate X = |Z|, which has the same support as Y. PDF f: $f(x) = \frac{2}{\sqrt{2\pi}}e^{-x^2/2}$

3. Implement code for
$$|Z|$$
 and Z .

$$\frac{f(x)}{c \cdot g(x)} = e^{-(x-1)^2/2}$$

$$c = \sqrt{2e/\pi} \approx 1.32$$
(from last two slides)

random value from distr of $|Z|$
def random_abs_z():
while True:
u = random.random() # u ~ Uni(0, 1)
inverse transform to get x ~ Exp(1)
x = -np.log(random.random())
if u <= np.exp(-(x - 1) ** 2 / 2):
return x

$$\frac{f(x)}{c \cdot g(x)} = e^{-(x-1)^2/2}$$

$$c = \sqrt{2e/\pi} \approx 1.32$$
(from last two slides)

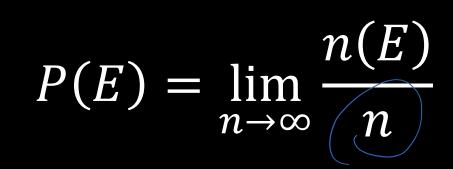
random value from distr of Z
def random_z():
abs_z = random_abs_z()
u = random.random()
if u < 0.5:
return abs_z
else:
return -abs_z
c

 $g(y) = e^{-y}$

 $0 \le y < \infty$

 $0 < x < \infty$

Black magic?

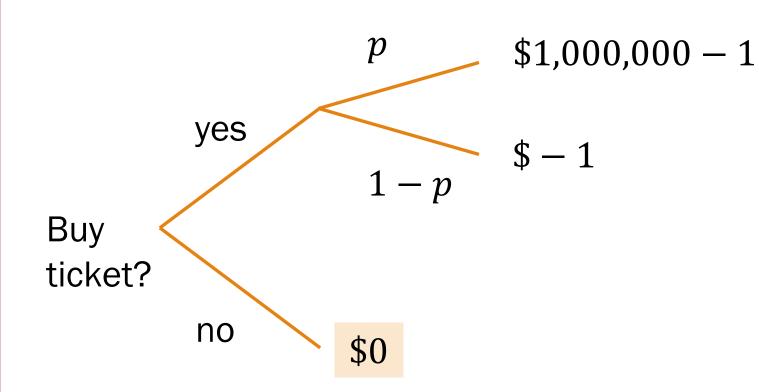


No—it's simulation!

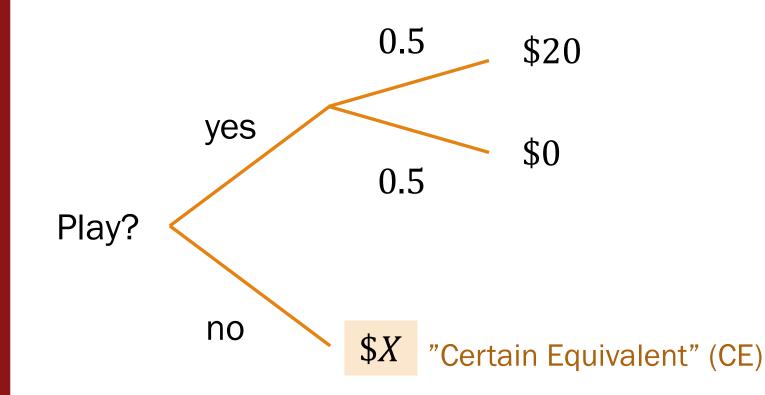
LIVE

Utility of Money

Recall the probability tree!



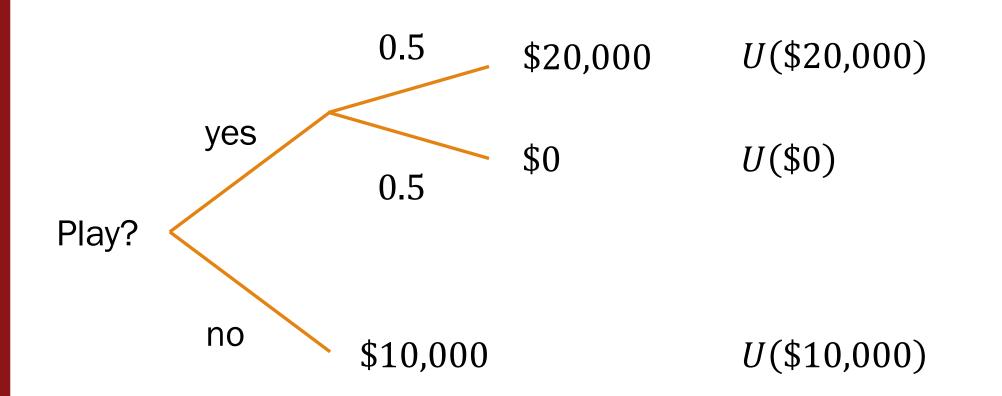
Let's play a game. What choice would you make?



For what value of X are you <u>indifferent</u> to playing? A. X = 3B. X = 7C. X = 9D. X = 10

<u>def</u> Certain equivalent: The value of the game to *you* (different for different people)

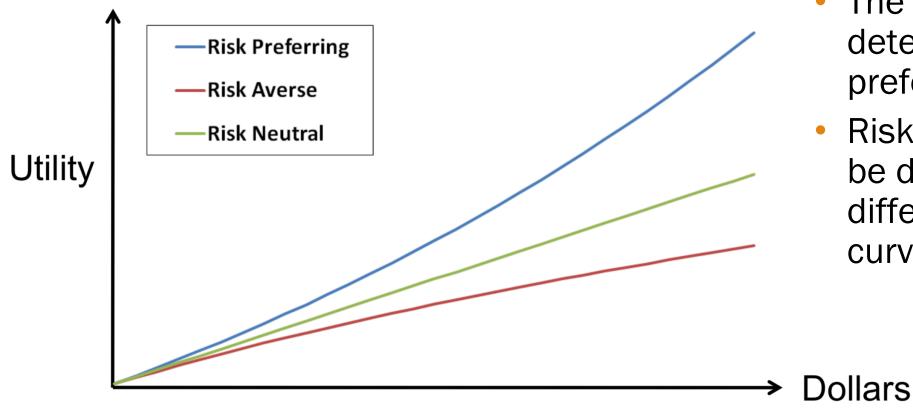
Utility



<u>def</u> Utility U(X) is the "value" you derive from X

• Can be monetary, but often includes intangibles like quality of life, life expectancy, personal beliefs, etc.

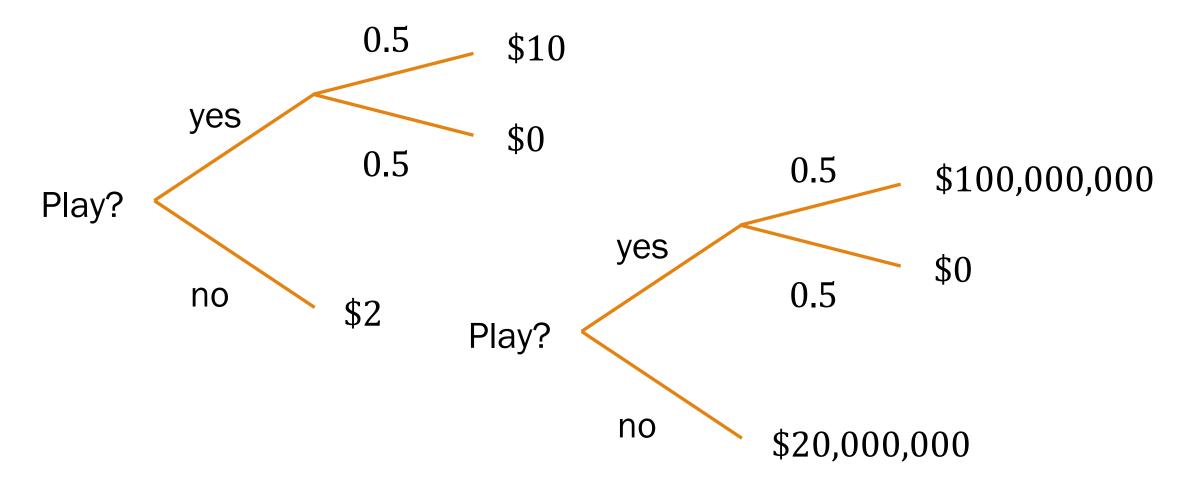
Utility curves



- The utility curve determines your "risk preference."
- Risk preference can be different in different parts of the curve

Non-linearity utility of money

Interestingly, these two choices are different for most people:



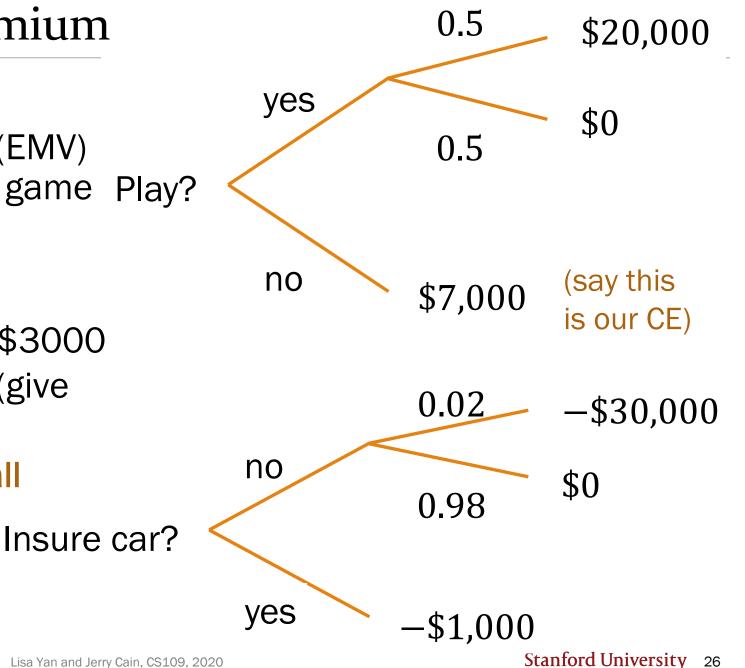
Insurance and risk premium

A slightly different game:

 Expected monetary value (EMV)
 = expected dollar value of game Play? (here, \$10,000)

Risk premium = EMV – CE = \$3000

- How much would you pay (give up) to avoid risk?
- This is what insurance is all about.

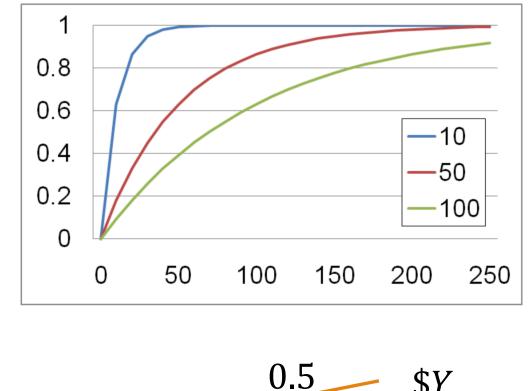


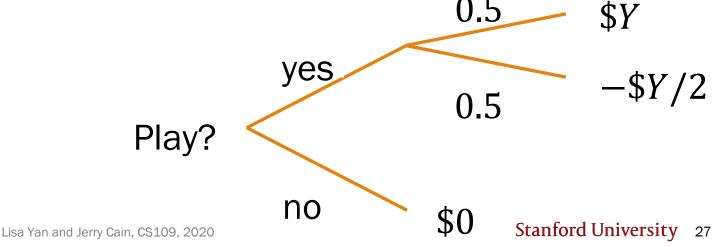
Exponential utility curves

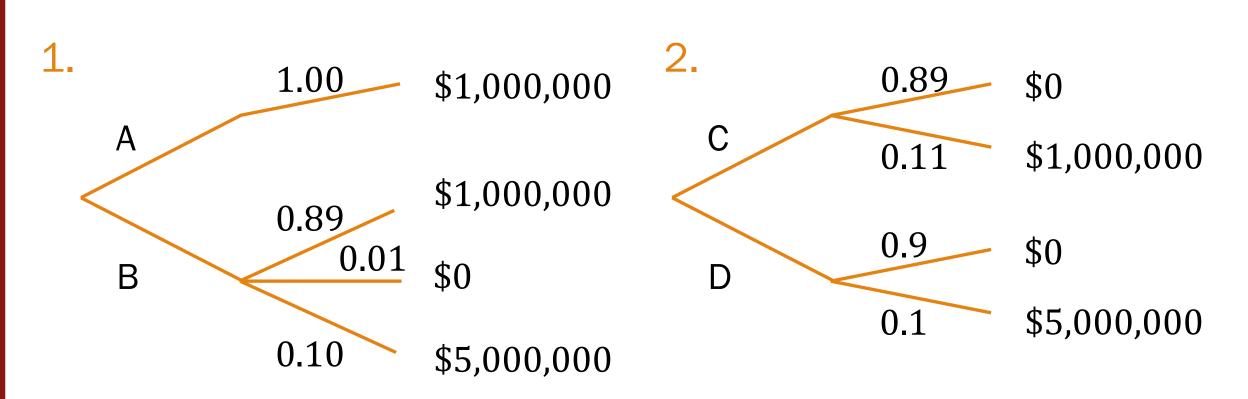
Many people have exponential utility curves:

$$U(x) = 1 - e^{-x/R}$$

- *R* is your "risk tolerance"
- Larger R = less risk aversion. Makes utility function more "linear"
- $R \approx$ highest value of Y for which you would play:







Which option would you choose in each case? How many of you chose A over B and D over C?

