
29: Simulating
Probabilities
Lisa Yan and Jerry Cain
November 18, 2020

1

Lisa Yan and Jerry Cain, CS109, 2020

Quick slide reference

2

3 Simulating Probabilities, Part 1: Inverse Transform LIVE

3 Simulating Probabilities, Part 2: Monte Carlo LIVE

14 Utility of Money extra

Lisa Yan and Jerry Cain, CS109, 2020

random.random()
Since computers are deterministic, true randomness does not exist.
We settle for pseudo-randomness: A sequence that looks random
but is actually deterministically generated.

random.random(), np.random.random()
• returns a float uniformly in [0.0, 1.0)

with the Mersenne Twister:
• 53-bit precision floating point,

repeats after 2**19937-1 numbers
• Seed number: 𝑋! used to generate

sequence 𝑋", 𝑋#, … , 𝑋$, …

3

Remember
Problem Set 1???

Lisa Yan and Jerry Cain, CS109, 2020

0
0.2
0.4
0.6
0.8
1
1.2

0 1 2 3 4 5

From random.random() to everything else

4

random.random()
np.random.random()
Generate a random float

in interval [0.0, 1.0)
𝑈~Uni 0,1

Generate a random number
𝑋 according to a distribution

e.g., 𝑋~Exp 𝜆

𝐹 𝑥

𝑥

0 1 !

"! !
1 𝐹 𝑥 = 1 − 𝑒#$%

Inverse
Transform
Sampling

5

LIVE

Lisa Yan and Jerry Cain, CS109, 2020

Inverse Transform Sampling
Given the ability to generate numbers𝑈~Uni 0,1 , how do we generate
another number according to a CDF 𝐹?

def 𝐹#& the inverse of CDF: 𝐹#& 𝑎 = 𝑏 ⇔ 𝐹 𝑏 = 𝑎
Interpret

6

𝑋 = 𝐹!" 𝑈

Proof: 𝑃 𝑋 ≤ 𝑥 = 𝑃 𝐹%" 𝑈 ≤ 𝑥

= 𝑃 𝑈 ≤ 𝐹 𝑥
= 𝐹 𝑥

(∀𝑥: 0 ≤ 𝐹 𝑥 ≤ 1)
(CDF 𝑃 𝑈 ≤ 𝑢 = 𝑢 if 0 ≤ 𝑢 ≤ 1)

(our definition of 𝑋)

1. Generate 𝑈~Uni 0,1
2. Apply inverse 𝐹#& to get a RV 𝑋.
3. Then 𝑋 will have CDF 𝐹.

Lisa Yan and Jerry Cain, CS109, 2020

Inverse Transform Sampling (Continuous)
How do we generate the exponential distribution 𝑋~Exp 𝜆 ?
• CDF: 𝐹 𝑥 = 1 − 𝑒%&' where 𝑥 ≥ 0
• Compute inverse:

• Note if 𝑈~Uni 0,1 , then 1 − 𝑈 ~Uni 0,1
• Therefore:

• Note: Closed-form inverse may not always exist

7

𝐹#& 𝑢 = −
log 1 − 𝑢

𝜆

𝐹#& 𝑈 = −
log 𝑈
𝜆

Check it out!!! (demo)

Lisa Yan and Jerry Cain, CS109, 2020

Inverse Transform Sampling (Discrete)
𝑋~Poi 𝜆 = 3 has CDF 𝐹 𝑋 = 𝑥 as shown:

1. Generate 𝑈~Uni 0,1

2. As 𝑥 increases, determine first
𝐹 𝑥 ≥ 𝑈

3. Return this value of 𝑥

8

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

!(
"

=
#)

" = #

𝑢 = 0.7

𝑥 = 4

Check it out!!! (demo)

Lisa Yan and Jerry Cain, CS109, 2020

Inverse Transform Sampling of the Normal?
How do we generate 𝑋~𝒩 0,1 ?
Inverse transform sampling:

1. Generate a random probability
𝑢 from 𝑈~Unif 0,1 .

2. Find 𝑥 such that Φ 𝑥 = 𝑢. In other words,
compute 𝑥 = Φ#& 𝑢 .

Solution Box-Muller Transform
• Use two uniforms 𝑈& and 𝑈' to generate

polar coordinates 𝑅 and Θ for a circle
inscribed in 2x2 square centered at (0,0)

• Can define 𝑋 = 𝑅 cosΘ , 𝑌 = 𝑅 sinΘ such that
𝑋 and 𝑌 are two independent unit Normals

9

https://en.wikipedia.org/wiki/Box%
E2%80%93Muller_transform

⚠ Φ#& has no
analytical solution!

https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform

Interlude for
jokes/announcements

10

Monte Carlo
Methods

11

LIVE

Lisa Yan and Jerry Cain, CS109, 2020

Monte Carlo Integration
Monte Carlo methods: randomly sample
repeatedly to obtain a numerical result
• Bootstrap
• Inference in Bayes Nets
• Definite integrals (Monte Carlo integration)

12

𝜋𝑟!

Named after area in Monaco
known for its casinos

Lisa Yan and Jerry Cain, CS109, 2020

A Monte Carlo method: Rejection Filtering
Idea for 𝑋 with PDF 𝑓 𝑥 :
• Throw dart at graph of PDF 𝑓 𝑥
• If dart under 𝑓 𝑥 : return 𝑥
• Otherwise, repeat throwing darts until one lands under 𝑓 𝑥

13

Lisa would rename to
Acceptance Filtering

random value from distr of X
def random_x():

while True:
u = random.random() * HEIGHT
x = random.random() * WIDTH
if u <= f(x):

return x
But what if our PDF
has infinite support?

Lisa Yan and Jerry Cain, CS109, 2020

Filtering with infinite support
Idea for 𝑋 with PDF 𝑓 𝑥 with support −∞ < 𝑥 < ∞:
• Suppose we can simulate 𝑌 with PDF 𝑔 𝑦 (where 𝑌 has same support as 𝑋)
• If we can find a constant 𝑐 such that 𝑐 ≥ 𝑓 𝑥 /𝑔 𝑥 for all 𝑥, then

• Number of iterations of loop~Geo 1/𝑐
• Proof of correctness in Ross textbook, 10.2.2

14

def random_x():
while True:

u = random.random() # u ~ Uni(0, 1)
x = generate_y() # random value Y = y
if u <= f(x)/(c * g(x)):

return x

Lisa Yan and Jerry Cain, CS109, 2020

Goal: Simulate 𝑍~𝒩 0, 1 .
• Suppose we can simulate 𝑌~Exp 1 with the inverse transform.
• Let’s simulate 𝑋 = 𝑍 , which has the same support as 𝑌. PDF 𝑓:

1. Determine constant 𝑐 ≥ 𝑓 𝑥 /𝑔 𝑥 for all 0 ≤ 𝑥 < ∞:

2. Determine 𝑓 𝑥 / 𝑐𝑔 𝑥

3. Implement code for |𝑍| and 𝑍

Generating Normal Random Variable

15

𝑓 𝑥 =
2
2𝜋

𝑒!"!/$

0 ≤ 𝑥 < ∞

𝑔 𝑦 = 𝑒!%
0 ≤ 𝑦 < ∞

𝑓 𝑥
𝑔 𝑥

=
2
𝜋
𝑒! "!!$" /$ =

2
𝜋
𝑒! "!!$"&' /$ & '/$

(complete the square)

=
2𝑒
𝜋
𝑒! "!' !/$ ≤

2𝑒
𝜋

(𝑒"/$ = 𝑒)

Let this
be 𝑐

Lisa Yan and Jerry Cain, CS109, 2020

Goal: Simulate 𝑍~𝒩 0, 1 .
• Suppose we can simulate 𝑌~Exp 1 with the inverse transform.
• Let’s simulate 𝑋 = 𝑍 , which has the same support as 𝑌. PDF 𝑓:

1. Determine constant 𝑐 ≥ 𝑓 𝑥 /𝑔 𝑥 for all 0 ≤ 𝑥 < ∞:

2. Determine 𝑓 𝑥 / 𝑐 ⋅ 𝑔 𝑥

3. Implement code for |𝑍| and 𝑍

Generating Normal Random Variable

16

𝑓 𝑥
𝑔 𝑥

=
2
𝜋
𝑒! "!!$" /$ =

2
𝜋
𝑒! "!!$"&' /$ & '/$

(complete the square)

=
2𝑒
𝜋
𝑒! "!' !/$ ≤

2𝑒
𝜋

(𝑒"/$ = 𝑒)

Let this
be 𝑐

𝑒% '%" !/#

𝑓 𝑥 =
2
2𝜋

𝑒!"!/$

0 ≤ 𝑥 < ∞

𝑔 𝑦 = 𝑒!%
0 ≤ 𝑦 < ∞

Lisa Yan and Jerry Cain, CS109, 2020

Goal: Simulate 𝑍~𝒩 0, 1 .
• Suppose we can simulate 𝑌~Exp 1 with the inverse transform.
• Let’s simulate 𝑋 = 𝑍 , which has the same support as 𝑌. PDF 𝑓:

3. Implement code for |𝑍| and 𝑍.

Generating Normal Random Variable

17

𝑓 𝑥
𝑐 ⋅ 𝑔 𝑥 = 𝑒! "!' !/$

𝑓 𝑥 =
2
2𝜋

𝑒!"!/$

0 ≤ 𝑥 < ∞

𝑔 𝑦 = 𝑒!%
0 ≤ 𝑦 < ∞

(from last two slides)

𝑐 = 2𝑒/𝜋 ≈ 1.32

random value from distr of |Z|
def random_abs_z():
while True:
u = random.random() # u ~ Uni(0, 1)
inverse transform to get x ~ Exp(1)
x = -np.log(random.random())
if u <= np.exp(-(x – 1) ** 2 / 2):
return x

random value from distr of Z
def random_z():
abs_z = random_abs_z()
u = random.random()
if u < 0.5:
return abs_z

else:
return –abs_z

Black magic?

18

No—it’s simulation!

19

𝑃 𝐸 = lim
!→#

𝑛 𝐸
𝑛

Utility of
Money

20

LIVE

Lisa Yan and Jerry Cain, CS109, 2020

Recall the probability tree!

21

Buy
ticket?

yes

no

1 − 𝑝

𝑝 $1,000,000 − 1

$ − 1

$0

🤔

Lisa Yan and Jerry Cain, CS109, 2020

Let’s play a game. What choice would you make?

22

Play?

yes

no

0.5

0.5 $20

$0

$𝑋

For what value of $𝑋 are
you indifferent to
playing?
A. 𝑋 = 3
B. 𝑋 = 7
C. 𝑋 = 9
D. 𝑋 = 10

”Certain Equivalent” (CE)

def Certain equivalent: The value of the game
to you (different for different people) 🤔

Lisa Yan and Jerry Cain, CS109, 2020

Utility

23

Play?

yes

no

0.5

0.5 $20,000

$0

$10,000

def Utility 𝑈 𝑋 is the “value” you derive from 𝑋
• Can be monetary, but often includes intangibles like quality of life,

life expectancy, personal beliefs, etc.

𝑈 $20,000

𝑈 $0

𝑈 $10,000

Lisa Yan and Jerry Cain, CS109, 2020

Utility curves

24

• The utility curve
determines your “risk
preference.”

• Risk preference can
be different in
different parts of the
curve

Lisa Yan and Jerry Cain, CS109, 2020

Non-linearity utility of money
Interestingly, these two choices are different for most people:

25

Play?

yes

no

0.5

0.5 $10

$0

$2 Play?

yes

no

0.5

0.5 $100,000,000

$0

$20,000,000

Lisa Yan and Jerry Cain, CS109, 2020

Insurance and risk premium
A slightly different game:
• Expected monetary value (EMV)

= expected dollar value of game
(here, $10,000)

Risk premium = EMV – CE = $3000
• How much would you pay (give

up) to avoid risk?
• This is what insurance is all

about.

26

(say this
is our CE)

Play?

yes

no

0.5

0.5 $20,000

$0

$7,000

Insure car?

no

yes

0.98

0.02 −$30,000

$0

−$1,000

Lisa Yan and Jerry Cain, CS109, 2020

Exponential utility curves
Many people have exponential
utility curves:

𝑈 𝑥 = 1 − 𝑒"#/%

• 𝑅 is your “risk tolerance”
• Larger 𝑅 = less risk aversion.

Makes utility function more
“linear”

• 𝑅 ≈ highest value of 𝑌 for
which you would play:

27

Play?

yes

no

0.5

0.5 $𝑌

−$𝑌/2

$0

Lisa Yan and Jerry Cain, CS109, 2020

How rational are you?

Which option would you choose in each case?
How many of you chose A over B and D over C?

28

🤔

C

D

0.11

0.89 $0

$1,000,000

0.1

0.9 $0

$5,000,000

1. 2.

A

B

1.00 $1,000,000

$1,000,000

0.01
0.89

$0

$5,000,0000.10

Lisa Yan and Jerry Cain, CS109, 2020

How rational are you?

29

A

B

1.00 $1,000,000

$1,000,000

0.01
0.89

$0

$5,000,0000.10

C

D

0.11

0.89 $0

$1,000,000

0.1

0.9 $0

$5,000,000

1. 2.

Choice A preferred:
1.00 𝑈 1,000,000 >

0.89 𝑈 1,000,000 + 0.01 𝑈 0
+0.10 𝑈 5,000,000

Choice D preferred:
0.89 𝑈 0 + 0.11 𝑈 1,000,000 <

0.90 𝑈 0 +0.10 𝑈 5,000,000

Lisa Yan and Jerry Cain, CS109, 2020

How rational are you?

30

Choice A preferred:
1.00 𝑈 1,000,000 >

0.89 𝑈 1,000,000 + 0.01 𝑈 0
+0.10 𝑈 5,000,000

Choice D preferred:
0.89 𝑈 0 + 0.11 𝑈 1,000,000 <

0.90 𝑈 0 +0.10 𝑈 5,000,000

Choice D preferred:
0.11 𝑈 1,000,000 <

0.01 𝑈 0
+0.10 𝑈 5,000,000

subtract 0.89 𝑈 0
from both sides

Choice D preferred:
1.00 𝑈 1,000,000 <

0.89 𝑈 1,000,000 +
0.01 𝑈 0 +
0.10 𝑈 5,000,000

add
0.89 𝑈 1,000,000

to both sides

Contradiction??? ⚠

Lisa Yan and Jerry Cain, CS109, 2020

How rational are you?

31

Choice A preferred:
1.00 𝑈 1,000,000 >

0.89 𝑈 1,000,000 + 0.01 𝑈 0
+0.10 𝑈 5,000,000

Choice D preferred:
0.89 𝑈 0 + 0.11 𝑈 1,000,000 <

0.90 𝑈 0 +0.10 𝑈 5,000,000

Choice D preferred:
0.11 𝑈 1,000,000 <

0.01 𝑈 0
+0.10 𝑈 5,000,000

subtract 0.89 𝑈 0
from both sides

Choice D preferred:
1.00 𝑈 1,000,000 <

0.89 𝑈 1,000,000 +
0.01 𝑈 0 +
0.10 𝑈 5,000,000

add
0.89 𝑈 1,000,000

to both sides

Contradiction???

You are inconsistent with utility theory (Allais Paradox)!

⚠ Human behavior is not always axiomatically consistent ⚠

