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random. random( )

Since computers are deterministic, true randomness does not exist.

We settle for pseudo-randomness: A sequence that looks random
but is actually deterministically generated.

Initialization | edit]

The state needed for a Mersenne Twister implementation is an

random_ random( )’ np_ random_ random( ) array of n values of w bits each. To initialize the array, a w-bit

seed value|is used to supply X, through x,, _ 4 by setting x; to

¢ returns d ﬂoat UnifOFm|y in [OO, 10) the seed value and thereafter setting
with the Mersenne Twister: Xi= X (Xig ® (Xq >> (W=2))) +

* 53-bit precision floating point, oce T TP m————
repeats after 2**19937-1 numbers | e = o e e = e ren

Plays a game described in ql4 ntrials times with a predetermined seed

* Seed number: X, used 10 generate || o s sees rox tre vy sapon uswer genecscer
sequence X4, X,, ..., Xy, ...

:return: the probability as described in the written pset.
np.random.seed(seed) Remember |
Problem Set 177??
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From random. random() to everything else

random. random( )
np.random. random()

Generate a random float
in interval [0.0, 1.0)
U~Uni(0,1)

fx (x)

1

Lisa

Yan a

Generate a random number
X according to a distribution
e.g., X~Exp(A1)

Sovdus
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Inverse Transform Sampling

Given the ability to generate numbersU~Uni(0,1), how do we generate
another number according to a CDF F?

X =F1(U)
def F~ltheinverse of CDF: FY(a) =b © F(b) = a

Interpret Generate U~Uni(0,1)
Apply inverse F~1 to get a RV X.
Then X will have CDF F.

Proof: PX<x)=P(F 1) <x) (our definition of X)

= P(U < F(x)) (Vx: 0 < F(x) < 1)
= F(x) (COFP(U<u)=uif0<u<1)
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Inverse Transform Sampling (Continuous)

How do we generate the exponential distribution X~Exp(41)?
CDF: F(x) =1 — e where x > 0

Compute inverse: loo(1 —
F—l (U) — _ Og( A u)

Note if U~Uni(0,1), then (1 — U)~Uni(0,1)
Therefore:

log(U)
A

Note: Closed-form inverse may not always exist

F~H(U) = -

Check it out!!! (demo)
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Inverse Transform Sampling (Discrete)

X~Poi(A1 = 3) has CDF F(X = x) as shown:

1 —

1. Generate U~Uni(0,1) 08 -
u=20.7 < 06 -
Il
2. As x increases, determine first §o.4 |
F(x)>U
0.2 -
x =4 I
o+2 . B =2 & B B B 8 8B B,
o 1 2 3 4 5 6 7 8 9 10
X=x

3. Return this value of x

Check it out!!! (demo)
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Inverse Transtorm Sampling of the Normal?

How do we generate X~N'(0,1)?

Inverse transform sampling:
Generate a random probability
u from U~Unif(0,1).

Find x such that ®(x) = u. In other words,
compute x = d~1(w).

Solution Box-Muller Transform

Use two uniforms U; and U, to generate
polar coordinates R and ® for a circle
inscribed in 2x2 square centered at (0,0)

Can define X = Rcos®,Y = R sin ® such that
X and Y are two independent unit Normals
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L ®~ 1 hasno
analytical solution!

-2 -1 0
u (0), 2 (+)

https://en.wikipedia.org/wiki/Box%

E2%80%93Muller_transform
Stanford University
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Interlude for
jokes/announcements




Monte Carlo
Methods




Monte Carlo Integration

Monte Carlo methods: randomly sample
repeatedly to obtain a numerical result

* Bootstrap
* Inference in Bayes Nets
* Definite integrals (Monte Carlo integration)

Hit: 59
Thrown: 309

29
— =0.191
309 0-19
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known for its casinos
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A Monte Carlo method: Rejection Filtering

Lisa would rename to
Acceptance Filtering

Idea for X with PDF f(x):
» Throw dart at graph of PDF f(x)

* If dart under f(x): return x
 Otherwise, repeat throwing darts until one lands under f(x)

2.00

175 # random value from distr of X

Lso. def ():
1.25 ' while True:
Z 1.00 u random. random() x HEIGHT

0.75 1

e X random. random() * WIDTH
0.25 | if u <= f(x): Q
000 0 02 04 o6 08 10 return X .

' ' Tox ' ' But what if our PDF

has infinite support?
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Filtering with infinite support

Idea for X with PDF f(x) with support —co < x < o0:
Suppose we can simulate Y with PDF g(y) (where Y has same support as X)
If we can find a constant ¢ such that ¢ > f(x)/g(x) for all x, then

def ():
while True:

u = random.random() # u ~ Uni(@, 1)
X = generate_y() # random value Y =y
if u <= f(x)/(c * g(x)):

return X

Number of iterations of loop~Geo(1/c)
Proof of correctness in Ross textbook, 10.2.2
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Generating Normal Random Variable

Goal: Simulate Z~N'(0, 1).
Suppose we can simulate Y~Exp(1) with the inverse transform.

Let’s simulate X = |Z|, which has the same support as Y. PDF f:

Determine constantc = f(x)/g(x) forall 0 < x < oo;

f(x) _ Ee—(xz—Zx)/Z _ Ee—(x2—2x+1)/2 +1/2 _ 2_88—(x—1)2/2
g(x) T T T

(eM? = e)

(complete the square)
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g(y) =e™?
0<y<omw

2
_ = =x?%)2
f(x) me

0<x<o

2e Let this
< -_
— T be ¢

Stanford University 15



Generating Normal Random Variable

Goal: Simulate Z~N(0, 1). 90@3;;:
Suppose we can simulate Y~Exp(1) with the inverse transform. -

Let's simulate X = |Z], which has the same supportas Y. PDF f: f(x) = %e—xz/z
T

0<x<o

Determine f(x)/(c : g(x))

e_(x_l)z/z
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Generating Normal Random Variable

Goal: Simulate Z~N(0, 1). 90@3;;:
* Suppose we can simulate Y~Exp(1) with the inverse transform. - ,
* Let’'s simulate X = |Z|, which has the same supportas Y. PDF f: f(x) = Fe-xz/z
I3
0<x<o
3. Implement code for |Z| and Z. f(x) _ D22
C - g(x) cC = 28/7‘[ = 132
(from last two slides)
# random value from distr of |Z| # random value from distr of Z
def (): def ():
while True: abs_z = random_abs_z()
u = random.random() # u ~ Uni(@, 1) u = random.random()
# inverse transform to get x ~ Exp(1) if u < 0.5:
X = —-np.log(random.random()) return abs_z
if u <= np.exp(=(x = 1) *x 2 / 2): else:
return x return —abs_z
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Black magic?




No—it’s simulation!




Utility of
Money




Recall the probability tree!

p $1,000,000 — 1
es
Y §— 1
1-p
Buy
ticket?
no $0

/A -
L)
s
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Let’s play a game. What choice would you make?

0.5 $20
yes
$0 For what value of $X are
0.5 o
Play? you indifferent to
' playing?
X =3
no —
$X rCertain Equivalent” (CE) X =7
X =9
X =10

def Certain equivalent: The value of the game P
to you (different for different people) K‘?J
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Utility

0.5 $20.000 U($20,000)

yes

0.5 $0 U($0)

Play?

no $10,000 U($10,000)

def Utility U(X) is the “value” you derive from X
Can be monetary, but often includes intangibles like quality of life,
life expectancy, personal beliefs, etc.
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Utility curves

Utility

——Risk Preferring

——Risk Averse

Risk Neutral

* The utility curve
determines your “risk
preference.”

* Risk preference can
be different in
different parts of the
curve

> Dollars
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Non-linearity utility of money

Interestingly, these two choices are different for most people:

0.5 $10
e . S0
Play? 0 0.5 $100,000,000
yes
0
no $2 0.5 5
Play?

no $20.000,000

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVCI‘Sity 25



Insurance and risk premium 0.5

A slightly different game: yes

* Expected monetary value (EMV) 0.5
= expected dollar value of game Play?

(here, $10,000)

no $7,000
Risk premium = EMV - CE = $3000
* How much would you pay (give 0.02
up) to avoid risk? '
* This is what insurance is all no
about. 0.98

Insure car?

$20,000

$0

(say this
is our CE)

—$30,000
$0

yes —$1,000
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Exponential utility curves

Many people have exponential
utility curves:

U(x) =1—e ¥R

* R is your “risk tolerance”

* Larger R = less risk aversion.
Makes utility function more
“linear”

* R = highest value of Y for
which you would play:

1 S
0.8
0.6
0.4 -1
—50
0.2 100
0
0 50 100 150 200 250
0.5 $Y
YES —$Y /2
0.5 SY/
Play?
no $O Stanford University 27
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How rational are you?

1.

1.00 $1,000,000 $0
$1,000,000
$1,000,000
0
0.01 50 $
$5,000,000
$5,000,000

Which option would you choose in each case? —
How many of you chose A over B and D over C? 2/
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How rational are you?

1. 2.
1.00 $1,000,000 0.89 — $0
$1,000,000
$1,000,000
0
0.01 ¢, $
0.1 $5,000,000
0.10 $5,000,000
Choice A preferred: Choice D preferred:
1.00 U(1,000,000) > 0.89U(0) +0.11 U(1,000,000) <
0.89 U(1,000,000) + 0.01 U(0) 0.90 U(0) +0.10 U(5,000,000)
+0.10 U(5,000,000)

Lisa Yan and Jerry Cain, CS109, 2020 Stanford Ul‘liVCI‘Sity 29




How rational are you?

Choice D preferred:

1.00 U(1,000,000) <
0.89 U(1,000,000) +
0.01U(0) +
0.10 U(5,000,000)

Contradiction??? | from both sides

Choice D preferred:

add 0.11 U(1,000,000) <
0.89 U(1,000,000) 0.01 U(0)
to both sides +0.10 U(5,000,000)

subtract 0.89 U(0)

Choice A preferred:

1.00 U(1,000,000) >
0.89 U(1,000,000) + 0.01 U(0)
+0.10 U(5,000,000)

Choice D preferred:
0.89U(0) +0.11 U(1,000,000) <
0.90 U(0) +0.10 U(5,000,000)
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How rational are you?
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