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Lisa Yan and Jerry Cain
CS 109

Problem Set #4
October 16, 2020

Problem Set #4
Due: 1:00pm on Monday, October 26

With problems by Mehran Sahami and Chris Piech

• Submit on Gradescope by 1:00pm Pacific on Monday, October 26th, for a small, "on-time" bonus.

• All students have a pre-approved extension, or "grace period" that extends until Wednesday
1:00pm Pacific, when they can submit with no penalty. The grace period expires on 1:00
Pacific on Wednesday, October 28th, after which we cannot accept further late submissions.

• Collaboration policy: You are encouraged to discuss problem-solving strategies with each other
as well as the course staff, but you must write up your own solutions and submit individual work.
Please cite any collaboration at the top of your submission.

• Tagging written problems: When you submit your written PDF on Gradescope you must tag
your PDF, meaning that you must assign pages of your PDF as answers to particular questions so
that we can properly grade your submission. For problem sets, we are deducting 2 points for any
submissions that do not have all questions tagged.

• For each problem, briefly explain/justify how you obtained your answer. Brief explanations
of your answer are necessary to get full credit for a problem even if you have the correct numerical
answer. The explanations help us determine your understanding of the problem whether or not
you got the correct answer. Moreover, in the event of an incorrect answer, we can still try to give
you partial credit based on the explanation you provide. It is fine for your answers to include
summations, products, factorials, exponentials, or combinations; you don’t need to calculate those
all out to get a single numeric answer.

• If you handwrite your solutions, you are responsible for making sure that you can produce clearly
legible scans of them for submission. You may also use any word processing software you like
for writing up your solutions. On the CS109 webpage we provide a template file and tutorial for
the LATEX system, if you’d like to use it.

Written Problems
Submit your solutions to these written problems as a single pdf file on Gradescope.

1. Say that of all the students who will attend Stanford, each will buy at most one laptop
computer when they first arrive at school. 40% of students will purchase a PC, 30% will
purchase a Mac, 10% will purchase a Linux machine and the remaining 20% will not buy
any laptop at all. If 15 students are asked which, if any, laptop they purchased, what is the
probability that exactly 6 students will have purchased a PC, 4 will have purchased a Mac, 2
will have purchased a Linux machine, and the remaining 3 students will have not purchased
any laptop?

Continued on next page. . .
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2. Users independently sign up for two online social networking sites, Lookbook and Quickgram.
On average, 7.5 users sign up for Lookbook each minute, while on average 5.5 users sign up
for Quickgram each minute. The number of users signing up for Lookbook and for Quickgram
each minute are independent. A new user is defined as a new account, i.e., the same person
signing up for both social networking sites will count as two new users.

a. What is the probability that more than 10 new users will sign up for the Lookbook
social networking site in the next minute?

b. What is the probability that more than 13 new users will sign up for the Quickgram
social networking site in the next 2 minutes?

c. What is the probability that the company will get a combined total of more than 40 new
users across both websites in the next 2 minutes?

3. You go on a camping trip with two friends who each have a mobile phone. Since you are
out in the wilderness, mobile phone reception isn’t very good. One friend’s phone will
independently drop calls with 20% probability. Your other friend’s phone will independently
drop calls with 30% probability. Say you need to make 6 phone calls, so you randomly choose
one of the two phones and you will use that same phone to make all your calls (but you don’t
know which has a 20% versus 30% chance of dropping calls). Of the first 3 (out of 6) calls
you make, one of them is dropped. What is the conditional expected number of dropped calls
in the 6 total calls you make (conditioned on having already had one of the first three calls
dropped)?

4. Our ability to fight contagious diseases depends on our ability to model them. One person
is exposed to llama-flu. The method below models the number of individuals who will get
infected.

from scipy import stats
"""
Return number of people infected by one individual.
"""
def num_infected():
# most people are immune to llama flu.
# stats.bernoulli(p).rvs() returns 1 w.p. p (0 otherwise)
immune = stats.bernoulli(p = 0.99).rvs()
if immune: return 0

# people who are not immune spread the disease far by
# making contact with k people (up to 100).
spread = 0
# returns random # of successes in n trials w.p. p of success
k = stats.binom(n = 100, p = 0.25).rvs()
for i in range(k):
spread += num_infected()

# total infections will include this individual
return spread + 1

What is the expected return value of numInfected()?
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5. Choose a number 𝑋 at random from the set of numbers {1, 2, 3, 4, 5}. Now choose a number
at random from the subset no larger than 𝑋 , that is from {1, . . . , 𝑋}. Let 𝑌 denote the second
number chosen.

a. Determine the joint probability mass function of 𝑋 and 𝑌 .
b. Determine the conditional mass function of 𝑋 given 𝑌 = 𝑖. Do this for 𝑖 = 1, 2, 3, 4, 5.
c. Are 𝑋 and 𝑌 independent? Justify your answer.

6. Let 𝑋1, 𝑋2, . . . be a series of independent random variables which all have the same mean 𝜇
and the same variance 𝜎2. Let 𝑌𝑛 = 𝑋𝑛 + 𝑋𝑛+1. For 𝑗 = 0, 1, and 2, determine Cov(𝑌𝑛, 𝑌𝑛+ 𝑗 ).
Note that you may have different cases for your answer depending on the value of 𝑗 .

Coding Problems
Download the starter code and implement the functions as described. You MUST use the starter
code. Do not add import statements to the starter code. When you are ready to submit, upload only
and webmd.py and federalist.py directly to Gradescope under “PSet4 - Coding” (not a zip file).
Do not modify the file name or any function names. Do not submit any other files, such as util.py
or probabilities.py; if you submit extra files, they’ll simply be ignored during grading.

The Gradescope autograder will report your problem score; there are no hidden tests. You can submit
an unlimited number of times. We will only use the score from your most recent submission. No
partial credit will be given if you do not pass the autograder.

7. We are writing a WebMD program that is slightly larger than the one we worked through in
class. In this program we predict whether a user has a flu (𝐹 = 1) or cold (𝐶 = 1) based on
knowing any subset of 5 potential binary symptoms (e.g., headache, sniffles, fatigue, cough,
fever) and a subset of binary risk factors (exposure, stress).

The file probabilities.py implements the below functions. You should not modify these
functions as we may use different probabilities when grading.
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• The functions probStress() and probExposure() return the prior probabilities for
stress and exposure, respectively.

• The functions probCold(s, e) and probFlu(s, e) return the probability that a
patient has a cold or flu, given the state of the risk factors stress (s) and exposure (e).

• The function probSymptom(i, f, c) returns the probability that the ith symptom
(𝑋𝑖) takes on value 1, given the state of cold (c) and flu (f): 𝑃(𝑋𝑖 = 1|𝐹 = 𝑓 , 𝐶 = 𝑐),
for 𝑖 = 1, . . . , 5.

We would like to write code that computes the probability 𝑃(Flu = 1|Exposure = 1, 𝑋2 = 1):
the probability of flu conditioned on observing that the patient has had exposure to a sick
friend and that they are experiencing Symptom 2 (sniffles):
Implement the function inferProbFlu() in webmd.py that computes the probability
𝑃(Flu = 1|Exposure = 1, 𝑋2 = 1) using Rejection Sampling. This function takes one
parameter ntrials, which is the number of observations to generate:

def inferProbFlu(ntrials=1000000) # 𝑃(Flu = 1 | Exposure = 1 and 𝑋2 = 1)

The Federalist Papers
The Federalist Papers is a body of essays written between 1787 and 1788 by Alexander Hamilton,
James Madison, and John Jay under the collective pseudonym “Publius.” Suppose that James
Madison and Alexander Hamilton both claim to have written Federalist Paper No. 53 (we do not
consider John Jay as a possible author in this problem). Over the next few problems, we will tackle
the problem of deciding who wrote this paper probabilistically, given the contents of the document
and historical evidence of the two authors’ penmanship. It’s a big task, but you all are ready :-)

Chapter 1: Mathematical Model
Before we get to the code, we need to first understand the model, which we discuss in Lecture Notes
11 as follows: Let there be 𝑛 total words in the unknown document. There are 𝑚 unique words in the
document, where 𝑐𝑖 is the number of times word 𝑖 appears, and

∑𝑚
𝑖=1 𝑐𝑖 = 𝑛. If Hamilton wrote the

document, then each of the 𝑛 words has probability 𝑝𝑖 of being unique word 𝑖, where 𝑖 = 1, . . . , 𝑚.
If Madison wrote the document, then each of the 𝑛 words has probability 𝑞𝑖 of being unique word 𝑖.

8. [Written] We set up the problem as comparing the probabilities that each author wrote the
document: If the probability that Hamilton is the author (given the document’s contents)
is greater than the probability that Madison is the author (given the document’s contents),
then we predict that Hamilton is the author (Equation (1) in Lecture Notes 11, Section 3).
Otherwise, we predict Madison.
We make two assumptions: first, prior to knowing the document’s contents, Hamilton and
Madison are equally likely to be the author; second, given the author, the document’s contents
can be modeled using a Multinomial random variable, where the probability of producing
word 𝑖 is known (𝑝𝑖 for Hamilton, 𝑞𝑖 for Madison). Use Bayes’ Theorem to show that Equation
(1) is equivalent to the below expression (Equation (2) in Lecture Notes 11):
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∏𝑚
𝑖=1 𝑝

𝑐𝑖
𝑖∏𝑚

𝑖=1 𝑞
𝑐𝑖
𝑖

> 1

If the above inequality holds, then we predict Hamilton as the author. Otherwise, we predict
Madison. (Lecture Notes 11: http://web.stanford.edu/class/cs109/lectureNotes/LN11_
joint_rvs.pdf)

Chapter 2: Data processing
It’s time to code! While the Gradescope autograder tests each function you write, we urge you to
develop incrementally and test locally. We suggest that you verify that you pass all Gradescope
tests on previous parts before moving to next parts, though it may help to read ahead.

To run and test your code locally, run python3 federalist.py (if OS X; if Windows, run python
federalist.py) in your Python environment. This will run the mainmethod, which runs each of
the functions you are asked to write. We won’t be grading anything in main, but the provided code
shows how the functions might be used; you can modify main as you like.

9. We collect each author’s word frequency data from existing documents, which involves
recording word counts (which we’ve implemented for you) and computing word probabilities
(your task).
In util.py, the provided function make_word_count_map takes a word list (i.e., a Python
list of strings) and returns a dictionary with key:value pairs (word: number of times the key
appeared in the word list). Do not modify this function. For example:

>>> word_list = ['you', 'are', 'a', 'friend', 'and', 'a', 'role', 'model']
>>> word_counts = make_word_count_map(word_list))
>>> print(word_counts)
{'you': 1, 'are': 1, 'a': 2, 'friend': 1, 'and': 1, 'role': 1, 'model': 1}

a. [Coding] In federalist.py, implement the function make_word_prob_map, which
takes a word list and returns a dictionary with key:value pairs (word: probability that this
word appears in the word list). Approximate the probability as the frequency of the word
in the word list, i.e. the probability that the word is drawn if all words in the word list
are equally likely. (Hint: It might be useful to use the provided make_word_count_map
function.)

b. [Written] The provided functionget_probability inutil.py takes two parameters—
a map of word probabilities (i.e., the return value of make_word_prob_map) and a
single word—and returns the probability of the word word appearing. Notice that it
returns a small EPSILON value if the word does not exist in the word_map dictionary.
Why is this EPSILON term necessary? Briefly explain in 1-3 sentences. (Do not modify
this function; just read the implementation.)

http://web.stanford.edu/class/cs109/lectureNotes/LN11_joint_rvs.pdf
http://web.stanford.edu/class/cs109/lectureNotes/LN11_joint_rvs.pdf
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Chapter 3: A Small Lesson in Underflow
A good practice in engineering is to first test our implementation on a small task before running
it on the final task. The next part of this problem will show that while our prediction model is
mathematically correct, it is numerically unstable and will not work on large documents.

We aren’t using unknown.txt in this chapter—we’re testing our model on a smaller file. All the
information you need for this part is in the data table below, but if you’re interested, the smaller file
is also included in the starter code as underflow.txt.

10. [Written] Before writing code, you’ll test the theory out by hand. Try to compute the ratio
(∏𝑚

𝑖=1 𝑝
𝑐𝑖
𝑖 )/(

∏𝑚
𝑖=1 𝑞

𝑐𝑖
𝑖 ) for a smaller document whose 𝑝𝑖, 𝑞𝑖 and 𝑐𝑖 values are provided in the

table below (taken from hamilton.txt, madison.txt, and underflow.txt, respectively).
You may assume that the below words are the only words that appear in this smaller document.

𝑖 word 𝑝𝑖 𝑞𝑖 𝑐𝑖
1 "the" 0.08 0.094 193
2 "of" 0.059 0.056 128
3 "to" 0.037 0.031 73
4 "and" 0.032 0.031 62

Feel free to use a calculator, Python, WolframAlpha, or whatever computing tool you like.
What you will most likely encounter is an issue related to arithmetic underflow: The small-
est representable number in Python is approximately 5 × 10−324, beyond which Python
rounds down to zero (Wikipedia link for those interested: https://en.wikipedia.org/wiki/
Double-precision_floating-point_format)

Using the information above, briefly explain why arithmetic underflow will occur in this
(very plausible) situation. We aren’t grading code for this question, so please include your
work (e.g., reasoning, numeric justification, or code screenshot) only on the PDF that you
upload to Gradescope.

11. [Written] The ratio of probabilities we used above leads to arithmetic underflow. In practice,
we can use the properties of logarithms to produce numerically stable results.
Use the properties of logarithms to show that the inequality in Problem 8 is equivalent to the
below expression (Equation (3) on Lecture Notes 11). If the below inequality holds, then we
predict Hamilton as the author (otherwise, we predict Madison):

𝑚∑
𝑖=1

𝑐𝑖 log 𝑝𝑖 −
𝑚∑
𝑖=1

𝑐𝑖 log 𝑞𝑖 > 0

Chapter 4: The Final Stretch
It’s time to bring all of our insights together to design a computationally tractable text analyzer!

12. [Coding] Let’s use the log expression you derived in Problem 11 to determine the author of
unknown.txt.

https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
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a. In federalist.py, implement calculate_doc_log_prob. This function takes two
parameters:

• a word probability map (i.e. the return value from make_word_prob_map) for a
known author, either Madison or Hamilton, and

• a map of word counts (i.e. the return value from make_word_count_map) for a
mystery document whose author we’re trying to predict.

This function should return
∑𝑚

𝑖=1 𝑐𝑖 log 𝑓𝑖, where 𝑓𝑖 is the probability of word 𝑖, drawn
from the first parameter to the function. This quantity is one of the terms in the expression
you derived in Problem 11. (In practice, 𝑓𝑖 will be either 𝑝𝑖 or 𝑞𝑖, depending on the
arguments that are passed to the function.)
While you could theoretically use any log function, the Gradescope autograder expects
that you will use the natural logarithm function in NumPy, which we’ve already imported
for you (e.g., log(10) will return approximately 2.302).
If you’re having trouble with this function, we recommend tracing out the logic on
Problem 10’s small example.

b. In federalist.py, implement determine_author, which takes four parameters and
is called from the main function as below:

• word_list1: a list of words that appear in hamilton.txt
• author1: the string "Alexander Hamilton"
• word_list2: a list of words that appear in madison.txt
• author2: the string "James Madison"
• unknown_word_list: a list of words that appear in unknown.txt

This function should return your prediction of the author: eitherauthor1, i.e.,"Alexander
Hamilton", or author2, i.e., "James Madison". (Hint: you’ll want to use both the
provided functions in util.py and the functions you wrote in previous parts.)

You’ve just written a program that predicts the author of an unknown document. Give yourself a
pat on the back! Exciting!


