Lisa Yan and Jerry Cain Problem Set #6
CS109 November 6, 2020

Problem Set #6
Due: 1:00pm on Monday, November 16th

With problems by Mehran Sahami, Chris Piech, Tim Gianitsos, Alex Tsun and Anand Shankar

* Submit on Gradescope by 1:00pm Pacific on Monday, November 16th, for a small, "on-time" bonus.

» All students have a pre-approved extension, or "grace period" that extends until Wednesday 1:00pm
Pacific, when they can submit with no penalty. The grace period expires on 1:00 Pacific on
Wednesday, November 18th, after which we cannot accept further late submissions.

* Collaboration policy: You are encouraged to discuss problem-solving strategies with each other
as well as the course staff, but you must write up your own solutions and submit individual work.
Please cite any collaboration at the top of your submission.

» Tagging written problems: When you submit your written PDF on Gradescope you must tag your
PDF, meaning that you must assign pages of your PDF as answers to particular questions so that we
can properly grade your submission. For problem sets, we are deducting 2 points for any submissions
that do not have all questions tagged.

Written Problems

1. Consider the Exponential distribution. It is your friend . . . really. Specifically, consider a sample
of L.LID. exponential random variables Xi, X», ..., X;, where each X; ~ Exp(1). Derive the
maximum likelihood estimate for the parameter A in the Exponential distribution.

2. You are designing a randomized algorithm that delivers one of two new drugs to patients who
come to your clinic—each patient can only receive one of the drugs. Initially you know nothing
about the effectiveness of the two drugs. You are simultaneously trying to learn which drug is
the best and, at the same time, cure the maximum number of people. To do so we will use the
Thompson Sampling Algorithm.

Thompson Sampling Algorithm: For each drug we maintain a Beta distribution to
represent the drug’s probability of being successful. Initially we assume that drug i has a
probability of success: 6; ~ Beta(1, 1).

When choosing which drug to give to the next patient we sample a value from each Beta
and select the drug with the largest sampled value. We administer the drug, observe if the
patient was cured, and update the Beta that represents our belief about the probability of
the drug being successful. Repeat for the next patient.




a. Say you try the first drug on 7 patients. It cures 5 patients and has no effect on 2. What is
your belief about the drug’s probability of success, 8;? Your answer should be a Beta.

Method Description

Returns a real number value in the range [0, 1] with probability

v defined by a PDF of a Beta with parameters a and b.

sampleBeta(a, b)

Gives drug i to the next patient. Returns True if the drug was
R = giveDrug(i) successful in curing the patient or False if it was not. Throws an
errorifi ¢ {1,2}.

I = argmax(list) Returns the index of the largest value in the list.

b. Write pseudocode to administer either of the two drugs to 100 patients using Thomp-
son’s Sampling Algorithm. Use functions from the table above. Your code should execute
giveDrug 100 times.

c. After running Thompson Sampling Algorithm 100 times, you end up with the following Beta
distributions:

0, ~ Beta(11,11),

0, ~ Beta(76,6).
For each drug, what is your maximum a posteriori (MAP) estimate of the probability of the
drug’s success?

3. Say you have a set of binary input features/variables X, X», ..., X}, that can be used to make a
prediction about a discrete binary output variable Y (i.e., each of the X; as well as Y can only take
on the values O or 1). Say that the first k input variables Xi, X, ..., X are actually all identical
copies of each other, so that when one has the value O or 1, they all do. Explain informally, but
precisely, why this may be problematic for the model learned by the Naive Bayes classifier.

Coding Problems

Programming Problems

For the following problems, you will be implementing two learning algorithms: the Naive Bayes
classifier and Logistic Regression. You must use the starter code provided in naive_bayes.py,
logistic_regression.py, and questions.py.

Submission

Submit only the files naive_bayes.py, logistic_regression.py, and questions.py to
Gradescope under “PSet 6 - Coding”. Do not submit any other files. We will only grade your work
in the three aforementioned files.




Implementation details

* You will be given starter code with clearly marked indicators on where you should write your
code. Do NOT modify any code outside these markers.

* You do not need to handle any of the data loading; the data will be loaded for you into numpy
arrays and passed to the functions (see the starter code for more details).

* You can write your algorithms to only deal with binary train/test features/labels. Your code
should, however, be general enough to work for any positive number of input features or data

instances i.e. the matrix dimensions can change, but the contents of every matrix cell can only
be O or 1.

Datasets

You will be running your learning algorithms on four datasets (each of which has a respective training
data file and testing data file). See the respective README files for more details.

Simple (simple-train.txt, simple-test.txt)

This is a simple dataset provided primarily to help you determine that your code is working correctly.
There are two input features, and the output class value is determined by the value of the first feature
(i.e., y = x1). The training dataset and testing dataset are identical, each containing four data vectors.
Both your Naive Bayes classifier and Logistic Regression implementations should be able to classify
all instances in the simple testing dataset with 100% accuracy after training on the simple training set.

Heart tomography diagnosis (heart-train.txt, heart-test.txt)

This dataset contains data related to diagnosing heart abnormalities based on tomography (X-ray)
information. Each input vector represents data extracted from the X-ray of one patient’s heart. There
are 22 binary input features. The output class value represents the diagnosis of the patient’s heart
(normal or abnormal, encoded in binary). The training dataset contains 80 data vectors, and the testing
dataset contains 187 data vectors.

(Thanks to Lukasz Kurgan and Krzysztof Cios for providing this data to the UC Irvine Machine Learning Repository.)

Genetic ancestry (ancestry-train.txt, ancestry-test.txt)

This dataset contains DNA nucleotide readings from 467 individuals. Each input vector represents
locations in the human genome and whether the individual’s nucleotide at given locations matches the
human reference genome. The output class value represents the super population of the user.

(Thanks to Jim Notwell and Gill Bejerano for providing this dataset.)

Netflix dataset (netflix-train.txt, netflix-test.txt)

This dataset contains real user ratings from Netflix. Each input vector represents ratings by a single
user for the 30 most commonly rated movies (1 = rating of 5). The output class value represents
whether the user rated the target movie (Love Actually) as a 5.

(Thanks to Reed Hastings for providing this dataset, with processing by Chris Piech.)



Training and testing your machine learning models

You will implement two machine learning models. To evaluate their correctness, we have exposed a
few correct answers as a sanity check, which you can run on your own computer by following the
instructions in the README file. Ensure that you have the correct version of Python as listed in the
README file.

We do not provide the correct answers for the remainder of the tests, but you can verify if your answer
is correct by submitting to Gradescope and running the autograder. You may submit on Gradescope
as many times as you like, and we’ll only grade your last submission. That being said, we recommend
running and debugging your code locally most of the time and only submitting to Gradescope once
you’re ready to see if your answers are correct. We advise against solely running your code in
Gradescope.

You do not need to provide any arguments to any of the functions, as this is done for you in the starter
code. Lastly, note that you must read the instructions in the comments in the starter code and abide by
them to receive full credit.

4. [Coding] Implement a Naive Bayes classifier. Detailed instructions are provided in the comments
of the starter code file, naive_bayes.py and the README file.

a. Implement the function fit in naive_bayes.py.

b. Implement the function predict in naive_bayes.py.

5. [Coding] Once you have implemented your Naive Bayes classifier, it’s time to analyze! Imple-
ment the functions prefixed with question_nb in questions.py. Refer to the README file
for how to run this file, and carefully read the instructions in the comments in the starter code.

6. [Coding] Implement a Logistic Regression classifier. Specifically, you should implement the
gradient ascent algorithm described in class. Detailed instructions are provided in the comments
of the starter code and in the README file.

a. Implement the function fit in logistic_regression.py.

b. Implement the function predict in logistic_regression.py.

7. [Coding] Once you have implemented your Logistic Regression classifier, it’s time to analyze! In
particular, precision and recall are two measures of performance that are often more informative
than simple classification accuracy, which you will explore below.

Implement the functions prefixed with question_1lrin questions.py. Refer to the README
file for how to run this file, and carefully read the instructions in the comments in the starter
code.



