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Lisa Yan and Jerry Cain
CS109

Section #2
September 28-30, 2020

Section #2: Random Variables

Overview of Section Materials
The warmup questions provided will help students practice concepts introduced in lectures. The
section problems are meant to apply these concepts in more complex scenarios similar to what you
will see in problem sets and quizzes.

1 Warmups
1.1 Independence

1. Definitions: Cite Bayes’ Theorem.

2. True or False. Note that true means true for ALL cases.

(a) In general, 𝑃(𝐴, 𝐵 |𝐶) = 𝑃(𝐵 |𝐶)𝑃(𝐴|𝐵,𝐶)
(b) If 𝐴 and 𝐵 are independent, so are 𝐴 and 𝐵𝐶 .

1. Bayes’ Theorem: 𝑃(𝐸 |𝐹) = 𝑃(𝐹 |𝐸)𝑃(𝐸)
𝑃(𝐹)

(a) True
(b) True

1.2 Random Variables and Expectation
1. Definitions:

(a) If 𝑋 is a random variable, what is 𝐸 [𝑋]? What is 𝐸 [𝑔(𝑋)]?
(b) For random variables 𝑋1, . . . , 𝑋𝑛, what is 𝐸 [∑𝑛

𝑖=1 𝑋𝑖]?

2. True or False: For any random variable 𝑋 , 𝐸 [𝑋2] = 𝐸 [𝑋]2.

3. Short Answer: Let 𝑋 = the value on one roll of a 6 sided die. Recall that 𝐸 [𝑋] = 7/2. What
is Var(𝑋)?

1. Definitions:

(a) 𝐸 [𝑋] = ∑
𝑥 𝑥𝑝𝑋 (𝑥) and 𝐸 [𝑔(𝑋)] = ∑

𝑥 𝑔(𝑥)𝑝𝑋 (𝑥).
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(b) 𝐸 [∑𝑛
𝑖=1 𝑋𝑖] =

∑𝑛
𝑖=1 𝐸 [𝑋𝑖]

2. False

3. Remember that Var(𝑋) = 𝐸 [𝑋2] − 𝐸 [𝑋]2. 𝐸 [𝑋2] = (12) 1
6 + (22) 1

6 + (32) 1
6 + (42) 1

6 +
(52) 1

6 + (62) 1
6 = 91

6 . Thus, Var(𝑋) = 91
6 − ( 7

2 )2 = 35
12 .

2 Problems
2.1 Taking Expectation: Breaking Vegas

Preamble: When a random variable fits neatly into a family we’ve seen before (e.g. Binomial), we
get its expectation for free. When it does not, we have to use the definition of expectation.

Problem: If you bet on “Red" in Roulette, there is 𝑝 = 18/38 that you with win $Y and a (1 − 𝑝)
probability that you lose $Y. Consider this algorithm for a series of bets:

1. Let Y = $1.
2. Bet Y.
3. If you win, then stop.
4. If you lose, then set Y to be 2Y and goto step (2).

What are your expected winnings when you stop? It will help to recall that the sum of a geometric
series 𝑎0 + 𝑎1 + 𝑎2 + · · · = 1

1−𝑎 if 0 < 𝑎 < 1. Vegas breaks you: Why doesn’t everyone do this?

Let X be the number of dollars that your earn.
The possible values of x are from the outcomes of: winning on your first bet, winning on
your second bet, and so on.

𝐸 [𝑋] = 18
38

+ 20
38

18
38

(2 − 1) +
(20
38

)2 18
38

(4 − 2 − 1) + . . .

=
∞∑
𝑖=0

(20
38

) 𝑖 (18
38

) (
2𝑖 −

𝑖−1∑
𝑗=0

2 𝑗
)

=
(18
38

) ∞∑
𝑖=0

(20
38

) 𝑖
=
(18
38

) 1
1 − 20

38
= 1

Real games have maximum bet amounts. You have finite money and casinos can kick you
out. But, if you had no betting limits and infinite money, then go for it! (and tell me which
planet you are living on).
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2.2 Linearity of Expectation: Hat-Check
Preamble: Typically, it is easier to use linearity of expectation for sums of random variables, then
to manually compute the PMF and apply the definition.

Problem: 𝑛 people go to a party and drop off their hats to a hat-check person. When the party is
over, a different hat-check person is on duty, and returns the 𝑛 hats randomly back to each person.
Let 𝑋 be the random variable representing the number of people who get their own hat back.

a. For 𝑛 = 3, find 𝐸 [𝑋] by first computing the probability mass function 𝑝𝑋 , and then applying
the definition of expectation.

b. Find a general formula for 𝐸 [𝑋], for any positive integer 𝑛.

a. The number of people 𝑋 who could get their hat back is in {0, 1, 3} (why not 2?). One
can enumerate the possibilities:

123 → 3
132 → 1
213 → 1
231 → 0
312 → 0
321 → 1

Hence, 𝑝𝑋 (0) = 𝑃(𝑋 = 0) = 1/3, 𝑝𝑋 (1) = 𝑃(𝑋 = 1) = 1/2, and 𝑝𝑋 (3) = 𝑃(𝑋 =
3) = 1/6. We then have that

𝐸 [𝑋] =
∑
𝑥

𝑥𝑝𝑋 (𝑥) = 0 · (1/3) + 1 · (1/2) + 3 · (1/2) = 1.

b. For 𝑖 = 1, . . . , 𝑛, let 𝑋𝑖 be the indicator variable of whether person 𝑖 gets their hat
back. That is, 𝑋𝑖 = 1 if person 𝑖 gets their hat back, and 𝑋𝑖 = 0 otherwise. Then,
𝑋 =

∑𝑛
𝑖=1 𝑋𝑖. For a particular person 𝑖, the probability they get their hat back is exactly

1/𝑛 (why?), and so 𝐸 [𝑋𝑖] = 1 · (1/𝑛) + 0 · (1 − 1/𝑛) = 1/𝑛.
By linearity of expectation,

𝐸 [𝑋] = 𝐸

[
𝑛∑
𝑖=1

𝑋𝑖

]
=

𝑛∑
𝑖=1

𝐸 [𝑋𝑖] =
𝑛∑
𝑖=1

1
𝑛
= 𝑛 · (1/𝑛) = 1.

Now imagine finding the PMF for this random variable with 𝑛 people/hats. There
was no nice catch-all formula in part a) for 𝑛 = 3, and so it would be extremely
difficult/impossible to come up with one for general 𝑃(𝑋 = 𝑘). Even if you could,
evaluating the sum might be difficult. This is the power of linearity of expectation -
though we don’t know the PMF, we can still compute it easily by breaking it down into
smaller pieces. Notice that people getting their hat backs are not independent events
either!
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2.3 Binomial Distribution: Sending Bits to Space

Preamble: When sending binary data to satellites (or really over any noisy channel) the bits can be
flipped with high probabilities. In 1947 Richard Hamming developed a system to more reliably send
data. By using Error Correcting Hamming Codes, you can send a stream of 4 bits with 3 redundant
bits. If zero or one of the seven bits are corrupted, using error correcting codes, a receiver can
identify the original 4 bits.

Problem: Lets consider the case of sending a signal to a satellite where each bit is independently
flipped with probability 𝑝 = 0.1

a. If you send 4 bits, what is the probability that the correct message was received (i.e. none of
the bits are flipped).

b. If you send 4 bits, with 3 Hamming error correcting bits, what is the probability that a
correctable message was received?

c. Instead of using Hamming codes, you decide to send 100 copies of each of the four bits. If
for every single bit, more than 50 of the copies are not flipped, the signal will be correctable.
What is the probability that a correctable message was received?

Hamming codes are super interesting. It’s worth looking up if you haven’t seen them be-
fore! All these problems could be approached using a binomial distribution (or from first
principles).

a. Let Y be the number of bits corrupted. 𝑌 ∼ Bin(𝑛 = 4, 𝑝 = 0.1).

𝑃(𝑌 = 0) =
(
4
0

)
0.94 = 0.656

b. Let Z be the number of bits corrupted. 𝑍 ∼ Bin(𝑛 = 7, 𝑝 = 0.1). A correctable
message is received if 𝑍 equals 0 or 1:

𝑃(correctable) = 𝑃(𝑍 = 0) + 𝑃(𝑍 = 1)

=

(
7
0

)
(0.1)0(0.9)7 +

(
7
1

)
(0.1)1(0.9)6 = 0.850

That is a 30% improvement!

c. Let 𝑋𝑖 be the number of copies of bit 𝑖 which are not corrupted. We can represent each
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as a Binomial Random Variable: 𝑋𝑖 ∼ Bin(𝑛 = 100, 𝑝 = 0.9).

𝑃(correctable) =
4∏
𝑖=1

𝑃(𝑋𝑖 > 50)

=
4∏
𝑖=1

100∑
𝑗=51

𝑃(𝑋𝑖 = 𝑗)

=
4∏
𝑖=1

100∑
𝑗=51

(
100
𝑗

)
(0.9) 𝑗 (0.1)100− 𝑗

=
( 100∑
𝑗=51

(
100
𝑗

)
(0.9) 𝑗 (0.1)100− 𝑗

)4
> 0.999

But now you need to send 400 bits, instead of the 7 required by hamming codes :-).
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