1 Warmups

1.1 Joint Distributions

1. Given a Normal RV $X \sim N\left(\mu, \sigma^{2}\right)$, how can we compute $P(X \leq x)$ from the standard Normal distribution Z with CDF ϕ ?
2. What is a continuity correction and when should we use it?
3. If we have a joint PMF for discrete random variables $p_{X, Y}(x, y)$, how can we compute the marginal PMF $p_{X}(x)$?
4. First, we write $\phi((x-\mu) / \sigma)$. We then look up the value we've computed in the Standard Normal Table.
5. Continuity correction is used when a Normal distribution is used to approximate a Binomial. Since a Normal is continuous and Binomial is discrete, we have to use a continuity correction to discretize the Normal. The continuity correction makes it so that the normal variable is evaluated from + or -0.5 increments from the desired k value.
6. The marginal distribution is $p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$

1.2 Independent Random Variables

1. What distribution does the sum of two independent binomial RVs $X+Y$ have, where $X \sim$ $\operatorname{Bin}\left(n_{1}, p\right)$ and $Y \sim \operatorname{Bin}\left(n_{2}, p\right)$? Include the parameter(s) in your answer. Why is this the case?
2. What distribution does the is of two independent Poisson RVs $X+Y$ have, where $X \sim \operatorname{Poi}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poi}\left(\lambda_{2}\right)$? Include the parameter(s) in your answer.
3. If $\operatorname{Cov}(X, Y)=0$, are X and Y independent? Why or why not?
4. Binomial; $X+Y \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)$
5. Poisson; $X+Y \sim \operatorname{Poi}\left(\lambda_{1}+\lambda_{2}\right)$
6. Not necessarily. Suppose there are three outcomes for X : let X take on values in $\{-1,0,1\}$ with equal probability $1 / 3$. Let $Y=X^{2}$. Then, $E[X Y]=E\left[X^{3}\right]=E[X]=0$ (since $\left.X^{3}=X\right)$ and $E[X]=0$, so $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=0-0=0$ but X and Y are dependent since $P(Y=1)=2 / 3 \neq 1=P(Y=1 \mid X=1)$.

1.3 Joint Random Variables Statistics

1. True or False? The symbol Cov is covariance, and the symbol ρ is Pearson correlation.

$$
\begin{array}{c|c}
X \perp Y \Longrightarrow \operatorname{Cov}(X, Y)=0 & \operatorname{Var}(X+X)=2 \operatorname{Var}(X) \\
\hline \operatorname{Cov}(X, Y)=0 \Longrightarrow X \perp Y & X \sim \mathcal{N}(0,1) \wedge Y \sim \mathcal{N}(0,1) \Longrightarrow \rho(X, Y)=1 \\
\hline Y=X^{2} \Longrightarrow \rho(X, Y)=1 & Y=3 X \Longrightarrow \rho(X, Y)=3
\end{array}
$$

True or False?

True \quad False (..$=4 \operatorname{Var}(X)$)

False (antecedent necessary, not sufficient)	False (don't know how independent X \& Y are)

False $(Y=X \Longrightarrow \ldots) \quad$ False $(\ldots=1)$

2 Problems

2.1 Approximating Normal

Your website has 100 users and each day each user independently has a 20% chance of logging into your website. Use a normal approximation to estimate the probability that more than 21 users log in.

The number of users that \log in B is binomial: $B \sim \operatorname{Bin}(n=100, p=0.2)$. It can be approximated with a normal that matches the mean and variance. Let C be the normal that approximates B. We have $E[B]=n p=20$ and $\operatorname{Var}(B)=n p(1-p)=16$, so $C \sim N(\mu=$ $20, \sigma^{2}=16$). Note that because we are approximating a discrete value with a continuous random variable, we need to use the continuity correction:

$$
\begin{aligned}
P(B>21) & \approx P(C>21.5) \\
& =P\left(\frac{C-20}{\sqrt{16}}>\frac{21.5-20}{\sqrt{16}}\right) \\
& =P(Z>0.375) \\
& =1-P(Z<0.375) \\
& =1-\phi(0.375)=1-0.6462=0.3538
\end{aligned}
$$

2.2 Are we due for an earthquake?

After the class where we talked about the probability of Earthquakes at Stanford, a student asked a question: "Doesn't the probability of an earthquake happening change based on the fact that we haven't had one for a while?" Let's explore! Recall the USGS rate of earthquakes of magnitude 8+ is $\lambda=0.002$ earthquakes per year.
a. What is the probability of no $8+$ earthquakes in four years after the 1908 earthquake (recall that earthquakes are exponentially distributed)?

Let X be the time until an earthquake. $X \sim \operatorname{Exp}(\lambda=0.002)$.

$$
\begin{aligned}
P(X \geq 4) & =1-P(X<4) \\
& =1-F_{X}(4) \\
& =1-\left[1-e^{-0.002 \cdot 4}\right] \\
& =e^{-0.008} \approx 0.992
\end{aligned}
$$

b. What is the probability of no $8+$ earthquakes in the 113 years between the 1908 earthquake and four years from now?

$$
\begin{aligned}
P(X \geq 113) & =1-P(X<113) \\
& =1-F_{X}(113) \\
& =1-\left[1-e^{-0.002 \cdot 113}\right] \\
& =e^{-0.226} \approx 0.798
\end{aligned}
$$

c. What is the probability of no $8+$ earthquakes in the 113 years between the 1908 earthquake and four years from now given that there have been no earthquakes in the last 109 years?

$$
\begin{aligned}
P(X>113 \mid X>109) & =\frac{P(X>113, X>109)}{P(X>109)} \\
& =\frac{P(X>113)}{P(X>109)}=\frac{1-F_{X}(113)}{1-F_{X}(109)} \\
& =\frac{e^{-0.002 \cdot 113}}{e^{-0.002 \cdot 109}}=e^{-0.008} \approx 0.992
\end{aligned}
$$

d. Did you notice anything interesting? Would this work for any value of λ ?

It turns out that exponentials are what we call a "memoryless distribution." If X is an exponential random variable, it holds that $P(X>s+t \mid X>t)=P(X>s)$.

