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Section #6: Samples Solution

1 Warmups
1.1 Sums of Random Variables
For each 𝑋 and 𝑌 below, let 𝑋 and 𝑌 be independent.

1. Let 𝑋 ∼ N(𝜇1, 𝜎
2
1 ) and 𝑌 ∼ N(𝜇2, 𝜎

2
2 ). What is 𝜇 and 𝜎 for 𝑋 + 𝑌 ∼ N(𝜇, 𝜎)?

2. Let 𝑋 ∼ Uni(0, 1) and 𝑌 ∼ Uni(0, 1). What is the PDF for 𝑋 + 𝑌?

3. In general, two random variables 𝑋 and 𝑌 , what is the PDF 𝑓 of 𝑋 + 𝑌?

Solution

1. 𝜇 = 𝜇1 + 𝜇2 and 𝜎 = 𝜎2
1 + 𝜎2

2 . How convenient!

2. 𝑓𝑋+𝑌 (𝑎) =

𝑎 0 ≤ 𝑎 ≤ 1
2 − 𝑎 1 ≤ 𝑎 ≤ 2
0 otherwise

3. 𝑓𝑋+𝑌 (𝑎) =
∫ ∞
−∞ 𝑓𝑋 (𝑎 − 𝑦) 𝑓𝑦 (𝑦)𝑑𝑦

It is good to remember these equations, but perhaps another message from lecture that it is
difficult to sum random variables. The derivation for Uniform distributions is difficult. And
solving for the general random variables is even worse. But we can pick distributions, like
the Normal distribution, that are easy to use!

1.2 Sample and Population Mean
Computing the sample mean is similar to the population mean: sum all available points and divide
by the number of points. However, sample variance is slightly different from population variance.

1. Consider the equation for population variance, and an analogous equation for sample variance.

𝜎2 =
1
𝑁

𝑁∑
𝑖=1

(𝑥𝑖 − 𝜇)2 (1)

𝑆2
𝑏𝑖𝑎𝑠𝑒𝑑 =

1
𝑛

𝑛∑
𝑖=1

(𝑋𝑖 − �̄�)2 (2)

𝑆2
𝑏𝑖𝑎𝑠𝑒𝑑 is a random variable which estimates the constant 𝜎2. Is 𝐸 [𝑆2

𝑏𝑖𝑎𝑠𝑒𝑑] greater or less
than 𝜎2?
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2. Write the equation for 𝑆2
𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 (known simply as 𝑆2 in the slides). This is known as Bessel’s

correction.

Solution

1. 𝐸 [𝑆2
𝑏𝑖𝑎𝑠𝑒𝑑] < 𝜎2. The intuition is that the spread of a sample of points is generally smaller

than the spread of all the points considered together.

2. 𝑆2
𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 = 𝑆2 = 1

𝑛−1
∑𝑛

𝑖=1(𝑋𝑖 − �̄�)2

1.3 Sum of I.I.D Random Variables
What is the distribution (with name and parameter(s)) of the average of 𝑛 i.i.d. random variables,
𝑋1, ..., 𝑋𝑛, each with mean 𝜇 and variance 𝜎2?

Solution

According to the central limit theorem, this can be modeled as 𝑁 (𝜇, 𝜎2/𝑛).

2 Problems
2.1 Variance of Hemoglobin Levels
A medical researcher treats patients with dangerously low hemoglobin levels. She has formulated
two slightly different drugs and is now testing them on patients. First, she administered drug A to
one group of 50 patients and drug B to a separate group of 50 patients. Then, she measured all the
patients’ hemoglobin levels post-treatment. For simplicity, assume that all variation in the patient
outcomes is due to their different reactions to treatment.

The researcher notes that the sample mean is similar between the two groups: both have mean
hemoglobin levels around 10g/dL. However, drug B’s group has a sample variance that is 3
(g/dL)2 greater than drug A’s group. The researcher thinks that patients respond to drugs A and B
differently. Specifically, she wants to make the scientific claim that drug A’s patients will end up
with a significantly different spread of hemoglobin levels compared to drug B’s.

You are skeptical. It is possible that the two drugs have practically identical effects and that the
observed different in variance was a result of chance and a small sample size, i.e. the null hypothesis.
Calculate the probability of the null hypothesis using bootstrapping. Here is the data. Each number
is the level of an independently sampled patient:

Hemoglobin Levels of Drug A’s Group (𝑆2 = 6.0): 13, 12, 7, 16, 9, 11, 7, 10, 9, 8, 9, 7, 16, 7, 9,
8, 13, 10, 11, 9, 13, 13, 10, 10, 9, 7, 7, 6, 7, 8, 12, 13, 9, 6, 9, 11, 10, 8, 12, 10, 9, 10, 8, 14, 13, 13,
10, 11, 12, 9

Hemoglobin Levels of Drug B’s Group (𝑆2 = 9.1): 8, 8, 16, 16, 9, 13, 14, 13, 10, 12, 10, 6, 14, 8,
13, 14, 7, 13, 7, 8, 4, 11, 7, 12, 8, 9, 12, 8, 11, 10, 12, 6, 10, 15, 11, 12, 3, 8, 11, 10, 10, 8, 12, 8,
11, 6, 7, 10, 8, 5
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How would this calculation be different if you were interested in looking at the statistical significance
of the difference in sample mean? Or the 95th percentile?

Solution

def bootstrap(sample1, sample2):

# make the universal population

totalSample = copy.deepcopy(sample1)

totalSample.extend(sample2)

# Run a bootstrap experiment

countDiffGreaterThanObserved = 0

print ’starting bootstrap’

for i in range(50000):

# resample and recalculate the statistic

resample1 = resample(totalSample, len(sample1))

resample2 = resample(totalSample, len(sample2))

resampleStat1 = calcSampleVariance(resample1)

resampleStat2 = calcSampleVariance(resample2)

diff = abs(resampleStat2 - resampleStat1)

# count how many times the statistic is more extreme

if diff >= 3:

countDiffGreaterThanObserved += 1

# compute the p-value

p = float(countDiffGreaterThanObserved) / 50000

print ’p-value:’, p

For this data, the two-tailed (e.g. using absolute value) test returns a null hypothesis probability p
= 0.12. There is a pretty decent chance that the observed difference in sample variance was from
random chance – and it doesn’t fall under what scientists often call “statistically significant."
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2.2 Medicine Doses
Megha has a health condition that requires unpredictable amounts of medication. Every day, there
is a 20% chance that she feels perfectly fine and requires no medicine. Otherwise, she needs to take
a dose of medication. The necessary dose is equally likely to be any value in the continuous range
1 to 5 ounces. How much medicine she needs on any given day is independent of all other days.

Megha’s insurance will fully cover 90 ounces of medicine for each 30-day period. What is the
probability that 90 ounces will be enough for the next 30 days? Make your life easier by using
Central Limit Theorem.

Solution Let 𝑀 be the amount of medicine Megha will need in the next thirty days. Let 𝑀𝑖 be
the amount of medicine Megha needs on the 𝑖th day. 𝑀 is a sum of 𝑀1 through 𝑀30 and can be
modeled with the CLT.

To use the CLT, we need to first know the mean and variance of 𝑀𝑖. To do this, let 𝐷𝑖 be the event
that she needs to take a dose on the ith day. Note that 𝑀𝑖 |𝐷𝑖 ∼ 𝑈𝑛𝑖(1, 5) and 𝑀𝑖 |𝐷𝐶

𝑖 = 0. Using
the law of total expectation, we have:

𝐸 [𝑀𝑖] = 𝐸 [𝑀𝑖 |𝐷𝑖]𝑃(𝐷𝑖) + 𝐸 [𝑀𝑖 |𝐷𝐶
𝑖 ]𝑃(𝐷𝐶

𝑖 ) = 3 ∗ 0.8 + 0 ∗ 0.2 = 2.4

To find the variance of 𝑀𝑖, we need to know 𝐸 [𝑀2
𝑖 ]. We can use a similar approach as the previous

problem along with the law of the unconscious statistician:

𝐸 [𝑀2
𝑖 ] = 𝐸 [𝑀2

𝑖 |𝐷𝑖]𝑃(𝐷𝑖) + 𝐸 [𝑀2
𝑖 |𝐷𝐶

𝑖 ]𝑃(𝐷𝐶
𝑖 )

=
4
5

∫ 5

𝑚=1
𝑚2 𝑓𝑀 (𝑚)𝑑𝑚 + 0 ∗ .2

=
4
5

∫ 5

𝑚=1
𝑚2 1

4
𝑑𝑡 ≈ 8.267

We then have 𝑉𝑎𝑟 (𝑀𝑖) = 𝐸 [𝑀2
𝑖 ] − 𝐸 [𝑀𝑖]2 = 8.267 − 2.42 = 2.507. According to the CLT:

30∑
𝑖=1

𝑀𝑖 ≈ 𝑁 (30 ∗ 2.4, 30 ∗ 2.507) =⇒ 𝑀 ∼ 𝑁 (72, 75.21)𝑃 (𝑀 < 90) ≈ Φ

(
90 − 72
√

75.21

)
≈ 0.98
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