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Section #7 Solutions
Based on the work of many CS109 staffs

1 Warmups
1.1 Parameters and MLE
Suppose 𝑥1, . . . , 𝑥𝑛 are i.i.d. (independent and identically distributed) values sampled from some
distribution with density function 𝑓 (𝑥 |𝜃), where 𝜃 is unknown. Recall that the likelihood of the
data is

𝐿 (𝜃) = 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛 |𝜃) =
𝑛∏
𝑖=1

𝑓 (𝑥𝑖 |𝜃)

Recall we solve an optimization problem to find 𝜃 which maximizes 𝐿 (𝜃), i.e., 𝜃 = arg max𝜃 𝐿 (𝜃).

1. Write an expression for the log-likelihood, 𝐿𝐿 (𝜃) = log 𝐿 (𝜃).

2. Why can we optimize 𝐿𝐿 (𝜃) rather than 𝐿 (𝜃)?

3. Why do we optimize 𝐿𝐿 (𝜃) rather than 𝐿 (𝜃)?

1. 𝐿𝐿 (𝜃) = ∑𝑛
𝑖=1 log 𝑓 (𝑥𝑖 |𝜃)

2. The logarithm (for bases > 1) is a monotonically increasing function. This means that if
𝑓 (𝑎) > 𝑓 (𝑏), then log( 𝑓 (𝑎)) > log( 𝑓 (𝑏)), so the arg max function is preserved across a
logarithmic transformation, i.e., arg max 𝐿 (𝜃) = arg max 𝐿𝐿 (𝜃).

3. Logs turn products into sums, which makes taking the derivative for maximization or
minimization much simpler.

1.2 Beta
1. Suppose you have a coin where you have no prior belief on its true probability of heads 𝑝.

How can you model this belief as a Beta distribution?

2. Suppose you have a coin which you believe is fair, with “strength” 𝛼. That is, pretend you’ve
seen 𝛼 heads and 𝛼 tails. How can you model this belief as a Beta distribution?

3. Now suppose you take the coin from the previous part and flip it 10 times. You see 8 heads
and 2 tails. How can you model your posterior belief of the coin’s probability of heads?
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1. Beta(1, 1) is a uniform prior, meaning that prior to seeing the experiment, all probabilities
of heads are equally likely.

2. Beta(𝛼 + 1, 𝛼 + 1). This is our prior belief about the distribution.

3. Beta(𝛼 + 9, 𝛼 + 3)

1.3 Maximum A Posteriori
1. Intuitively, what is MAP? What problem is it trying to solve? How does it differ from MLE?

2. Given a 6-sided die (possibly unfair), you roll the die 𝑁 times and observe the counts
for each of the 6 outcomes as 𝑛1, ..., 𝑛6. What is the maximum a posteriori estimate of
this distribution, using Laplace smoothing? Recall that the die rolls themselves follow a
multinomial distribution.

1. From the course notes: The paradigm of MAP is that we should choose the value for our
parameters that is the most likely given the data. At first blush this might seem the same
as MLE; however, remember that MLE chooses the value of parameters that makes the
data most likely. One of the disadvantages of MLE is that it best explains data we have
seen and makes no attempt to generalize to unseen data. In MAP, we incorporate prior
belief about our parameters, and then we update our posterior belief of the parameters
based on the data we have seen.

2. Using a prior which represents one imagined observation of each outcome is called
Laplace smoothing and it guarantees that none of your probabilities are 0 or 1. The
Laplace estimate for a Multinomial RV is 𝑝𝑖 =

𝑛𝑖+1
𝑁+6 for 𝑖 = 1, ..., 6.

2 The Honor Code
We have decided that automated tools should be used to identify if two submissions are suspiciously
similar. (N.B. these tools are never used as a basis for community standards cases — those always
require professional human opinion.) However, automated tools are never perfect. As active CS109
students, we would like to explore the chance of a false positive in automated tools. For this task,
we will consider Breakout, a CS106A assignment where students implement Breakout.

This problem combines our knowledge of Beta, the Central Limit Theorem, and Maximum Likeli-
hood Estimation. Exciting!
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2.1 Beta Sum
What is the distribution of the sum of 100 i.i.d. Betas? Let 𝑋 be the sum

𝑋 =
100∑
𝑖=1

𝑋𝑖 where each 𝑋𝑖 ∼ Beta(𝑎 = 3, 𝑏 = 4)

Note the variance of a Beta:

Var(𝑋𝑖) =
𝑎𝑏

(𝑎 + 𝑏)2(𝑎 + 𝑏 + 1)
where 𝑋𝑖 ∼ Beta(𝑎, 𝑏)

By the Central Limit Theorem, the sum of equally weighted IID random variables will be
Normally distributed. We calculate the expectation and variance of 𝑋𝑖 using the beta formulas:

𝐸 (𝑋𝑖) =
𝑎

𝑎 + 𝑏
Expectation of a Beta

=
3
7
≈ 0.43

Var(𝑋𝑖) =
𝑎𝑏

(𝑎 + 𝑏)2(𝑎 + 𝑏 + 1)
Variance of a Beta

=
3 · 4

(3 + 4)2(3 + 4 + 1)

=
12

49 · 8
≈ 0.03

𝑋 ∼ 𝑁 (𝜇 = 𝑛 · 𝐸 [𝑋𝑖], 𝜎2 = 𝑛 · Var(𝑋𝑖))
∼ 𝑁 (𝜇 = 43, 𝜎2 = 3)

2.2 Single Match
Say there are 1000 decision points when writing Breakout. Assume: Each decision point is binary.
Each student makes all 1000 decisions. For each decision there is a probability 𝑝 that a student takes
the more popular choice. What is the probability distribution for the number of matching decisions
(we are going to refer to this as the “score”)? If possible, could you approximate this probability?

Let 𝐴𝑖 be the event that decision point 𝑖 is matched. We note that a match occurs when both
students make the more popular choice or when both students make the less popular choice.
𝑃(𝐴𝑖) = 𝑃(Both more popular) + 𝑃(Both less popular) = 𝑝2 + (1 − 𝑝)2.

Let 𝑀 be a random variable for the number of matches. It is easy to see that each of the 1000
decisions is an independent Bernoulli experiment with probability of success 𝑝′ = 𝑝2+ (1− 𝑝)2.
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Therefore 𝑀 ∼ 𝐵𝑖𝑛(1000, 𝑝′).

We can use a Normal distribution to approximate a binomial. We approximate 𝑀 ∼
𝐵𝑖𝑛(1000, 𝑝′) with Normal random variable 𝑌 ∼ 𝑁 (1000𝑝′, 1000𝑝′(1 − 𝑝′)).

2.3 Maximum Match
When we look at two assignments, the probability of a false match is exceedingly small. What
would the max similarity score look like when we compare one student to 5000 historical breakout
submissions? Let 𝑋𝑖 be the similarity score between a student who worked on their own and student
𝑖. Let 𝑌 be the highest match score between the student and all other submissions:

𝑌 = max
𝑖

𝑋𝑖

The Central Limit Theorem tells us about the distribution of the sum of IID random variables. A
more obscure theorem, the Fisher-Tippett-Gnedenko theorem, tells us about the max of IID random
variables. It says that the max of IID exponential or normal random variables will be a “Gumbel”
random variable.

𝑌 ∼ Gumbel(𝜇, 𝛽) The max of IID vars

𝑓 (𝑌 = 𝑘) = 1
𝛽
𝑒−(𝑧+𝑒

−𝑧) where 𝑧 =
𝑘 − 𝜇

𝛽
The Gumbel PDF

You are given data of 1300 students’ max scores from three quarters (we believe they all worked
independently): 𝑦 (1) . . . 𝑦 (1300) . Set up (but do not solve) simultaneous equations we could solve to
find the values of 𝜇 and 𝛽.

For this problem, we use Maximum Likelihood Estimator (MLE) to estimate the parameters
𝜃 = (𝜇, 𝛽).
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𝐿 (𝜃) =
𝑛∏
𝑖=1

𝑓 (𝑌 (𝑖) = 𝑦 (𝑖) | 𝜃)

𝐿𝐿 (𝜃) = log
𝑛∏
𝑖=1

𝑓 (𝑌 (𝑖) = 𝑦 (𝑖) | 𝜃)

=
𝑛∑
𝑖=1

log 𝑓 (𝑌 (𝑖) = 𝑦 (𝑖) | 𝜃)

=
𝑛∑
𝑖=1

log
1
𝛽
𝑒−(𝑧𝑖+𝑒

−𝑧𝑖 ) where 𝑧𝑖 =
𝑦 (𝑖) − 𝜇

𝛽

=
𝑛∑
𝑖=1

log
1
𝛽
+

𝑛∑
𝑖=1

−(𝑧𝑖 + 𝑒−𝑧𝑖 )

= −𝑛 log(𝛽) +
𝑛∑
𝑖=1

−(𝑧𝑖 + 𝑒−𝑧𝑖 )

Now we must choose the values of 𝜃 = (𝜇, 𝛽) that maximize our log-likelihood function. First,
we need to find the first derivative of the log-likelihood function with respect to our parameters.

𝜕𝐿𝐿 (𝜃)
𝜕𝜇

=
𝜕

𝜕𝜇

[
− 𝑛 log(𝛽) +

𝑛∑
𝑖=1

−(𝑧𝑖 + 𝑒−𝑧𝑖 )
]

=
𝑛∑
𝑖=1

𝜕

𝜕𝜇

[
− (𝑧𝑖 + 𝑒−𝑧𝑖 )

]
=

𝑛∑
𝑖=1

𝜕

𝜕𝑧𝑖

[
− (𝑧𝑖 + 𝑒−𝑧𝑖 )

] 𝜕𝑧𝑖
𝜕𝜇

By the Chain Rule

=
𝑛∑
𝑖=1

[
− 1 + 𝑒−𝑧𝑖

] [
− 1

𝛽

]
=

1
𝛽

𝑛∑
𝑖=1

1 − 𝑒−𝑧𝑖
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𝜕𝐿𝐿 (𝜃)
𝜕𝛽

=
𝜕

𝜕𝛽

[
− 𝑛 log(𝛽) +

𝑛∑
𝑖=1

−(𝑧𝑖 + 𝑒−𝑧𝑖 )
]

= −𝑛

𝛽
+

𝑛∑
𝑖=1

𝜕

𝜕𝛽

[
− (𝑧𝑖 + 𝑒−𝑧𝑖 )

]
= −𝑛

𝛽
+

𝑛∑
𝑖=1

𝜕

𝜕𝑧𝑖

[
− (𝑧𝑖 + 𝑒−𝑧𝑖 )

] 𝜕𝑧𝑖
𝜕𝛽

By the Chain Rule

= −𝑛

𝛽
+

𝑛∑
𝑖=1

[
− 1 + 𝑒−𝑧𝑖

] [ 𝜇 − 𝑦 (𝑖)

𝛽2

]
Where the last term equals

𝜕𝑧𝑖
𝜕𝛽

We want to find a simultaneous solution for both, but this is algebraically not possible. We will
instead use an approximate method (gradient ascent) to solve for these, which will be taught
next week.
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