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1 Warmups
1.1 Parameters and MLE
Suppose 𝑥1, . . . , 𝑥𝑛 are i.i.d. (independent and identically distributed) values sampled from some distribution with
density function 𝑓 (𝑥 |𝜃), where 𝜃 is unknown. Recall that the likelihood of the data is

𝐿 (𝜃) = 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛 |𝜃) =
𝑛∏
𝑖=1

𝑓 (𝑥𝑖 |𝜃)

Recall we solve an optimization problem to find 𝜃 which maximizes 𝐿 (𝜃), i.e., 𝜃 = arg max𝜃 𝐿 (𝜃).

1. Write an expression for the log-likelihood, 𝐿𝐿 (𝜃) = log 𝐿 (𝜃).

2. Why can we optimize 𝐿𝐿 (𝜃) rather than 𝐿 (𝜃)?

3. Why do we optimize 𝐿𝐿 (𝜃) rather than 𝐿 (𝜃)?

1. 𝐿𝐿 (𝜃) = ∑𝑛
𝑖=1 log 𝑓 (𝑥𝑖 |𝜃)

2. The logarithm (for bases > 1) is a monotonically increasing function. This means that if 𝑓 (𝑎) > 𝑓 (𝑏),
then log( 𝑓 (𝑎)) > log( 𝑓 (𝑏)), so the arg max function is preserved across a logarithmic transformation,
i.e., arg max 𝐿 (𝜃) = arg max 𝐿𝐿 (𝜃).

3. Logs turn products into sums, which makes taking the derivative for maximization or minimization
much simpler.

1.2 Beta
1. Suppose you have a coin where you have no prior belief on its true probability of heads 𝑝. How can you

model this belief as a Beta distribution?

2. Suppose you have a coin which you believe is fair, with “strength” 𝛼. That is, pretend you’ve seen 𝛼 heads
and 𝛼 tails. How can you model this belief as a Beta distribution?

3. Now suppose you take the coin from the previous part and flip it 10 times. You see 8 heads and 2 tails. How
can you model your posterior belief of the coin’s probability of heads?

1. Beta(1, 1) is a uniform prior, meaning that prior to seeing the experiment, all probabilities of heads are
equally likely.

2. Beta(𝛼 + 1, 𝛼 + 1). This is our prior belief about the distribution.

3. Beta(𝛼 + 9, 𝛼 + 3)



1.3 Maximum A Posteriori
1. Intuitively, what is MAP? What problem is it trying to solve? How does it differ from MLE?

2. Given a 6-sided die (possibly unfair), you roll the die 𝑁 times and observe the counts for each of the
6 outcomes as 𝑛1, ..., 𝑛6. What is the maximum a posteriori estimate of this distribution, using Laplace
smoothing? Recall that the die rolls themselves follow a multinomial distribution.

1. From the course notes: The paradigm of MAP is that we should choose the value for our parameters that
is the most likely given the data. At first blush this might seem the same as MLE; however, remember
that MLE chooses the value of parameters that makes the data most likely. One of the disadvantages
of MLE is that it best explains data we have seen and makes no attempt to generalize to unseen data. In
MAP, we incorporate prior belief about our parameters, and then we update our posterior belief of the
parameters based on the data we have seen.

2. Using a prior which represents one imagined observation of each outcome is called Laplace smoothing
and it guarantees that none of your probabilities are 0 or 1. The Laplace estimate for a Multinomial RV
is 𝑝𝑖 =

𝑛𝑖+1
𝑁+6 for 𝑖 = 1, ..., 6.

1.4 Naive Bayes
Recall the classification setting: we have data vectors of the form 𝑋 = (𝑋1, . . . , 𝑋𝑑) and we want to predict a label
𝑌 ∈ {0, 1}.

1. Recall in Naive Bayes, given a data point 𝑥, we compute 𝑃(𝑌 = 1|𝑋 = 𝑥) and predict 𝑌 = 1 provided this
quantity is ≥ 0.5, and otherwise we predict 𝑌 = 0. Decompose 𝑃(𝑌 = 1|𝑋 = 𝑥) into smaller terms, and state
where the Naive Bayes assumption is used.

2. Suppose we are given example vectors with labels provided. Give a formula to estimate (using maximum
likelihood) each quantity 𝑃(𝑋𝑖 = 𝑥𝑖 |𝑌 = 𝑦) above, for 𝑖 ∈ {1, . . . , 𝑑} and 𝑦 ∈ {0, 1}. You can assume there
is a function count which takes in any number of boolean conditions and returns a count over the data of
the number of examples in which they are true. For example, count(𝑋3 = 2, 𝑋5 = 7) returns the number of
examples where 𝑋3 = 2 and 𝑋5 = 7.

1.

𝑃(𝑌 = 1|𝑋 = 𝑥) = 𝑃(𝑌 = 1)𝑃(𝑋 = 𝑥 |𝑌 = 1)
𝑃(𝑌 = 1)𝑃(𝑋 = 𝑥 |𝑌 = 1) + 𝑃(𝑌 = 0)𝑃(𝑋 = 𝑥 |𝑌 = 0) (Bayes+LTP)

=
𝑃(𝑌 = 1)∏𝑑

𝑖=1 𝑃(𝑋𝑖 = 𝑥𝑖 |𝑌 = 1)
𝑃(𝑌 = 1)∏𝑑

𝑖=1 𝑃(𝑋𝑖 = 𝑥𝑖 |𝑌 = 1) + 𝑃(𝑌 = 0)∏𝑑
𝑖=1 𝑃(𝑋𝑖 = 𝑥𝑖 |𝑌 = 0)

(NB Assumption)

2. 𝑃(𝑋𝑖 = 𝑥𝑖 |𝑌 = 𝑦) = count(𝑋𝑖 = 𝑥𝑖, 𝑌 = 𝑦)
count(𝑌 = 𝑦)



1.5 Gradient Ascent and Linear Regression
Let 𝑓 : R𝑛 → R be a function which maps vectors 𝑥 ∈ R𝑛 to scalars 𝑓 (𝑥) ∈ R.

1. What is the gradient ascent update step, with learning rate 𝜂?

2. Intuitively, what problem is gradient ascent trying to solve numerically?

3. What are some tradeoffs between a high and low learning rate (𝜂)?

1. 𝑥 ← 𝑥 + 𝜂∇ 𝑓 (𝑥)

2. We are attempting to numerically find the value of 𝑥 that maximizes 𝑓 (𝑥) by incrementally taking small
steps in the direction of steepest ascent (according the the derivative).

3. A small learning rate might require more steps until convergence, while a large learning rate might
overshoot and miss the absolute maximum.

2 Problems
2.1 Multiclass Bayes
In this problem we are going to explore how to write Naive Bayes for multiple output classes. We want to predict
a single output variable Y which represents how a user feels about a book. Unlike in your homework, the output
variable Y can take on one of the four values in the set {Like,Love,Haha, Sad}. We will base our predictions off
of three binary feature variables 𝑋1, 𝑋2, and 𝑋3 which are indicators of the user’s taste. All values 𝑋𝑖 ∈ {0, 1}.

We have access to a dataset with 10,000 users. Each user in the dataset has a value for 𝑋1, 𝑋2, 𝑋3 and 𝑌 . You can
use a special query method count that returns the number of users in the dataset with the given equality constraints
(and only equality constraints). Here are some example usages of count:

count(𝑋1 = 1, 𝑌 = Haha) returns the number of users where 𝑋1 = 1 and 𝑌 = Haha.
count(𝑌 = Love) returns the number of users where 𝑌 = Love.
count(𝑋1 = 0, 𝑋3 = 0) returns the number of users where 𝑋1 = 0, and 𝑋3 = 0.

You are given a new user with 𝑋1 = 1, 𝑋2 = 1, 𝑋3 = 0. What is the best prediction for how the user will feel about
the book (𝑌 )? You may leave your answer in terms of an argmax function. You should explain how you would
calculate all probabilities used in your expression. Use Laplace estimation when calculating probabilities.

We can make the Naive Bayes assumption of independence and simplify argmax of 𝑃(𝑌 |X) to get an expression
for 𝑌 , the predicted output value, and evaluate it using the provided count function.

𝑌 = arg max
𝑦

𝑃(𝑋1 = 1, 𝑋2 = 1, 𝑋3 = 0|𝑌 = 𝑦)𝑃(𝑌 = 𝑦)
𝑃(𝑋1 = 1, 𝑋2 = 1, 𝑋3 = 0)

= arg max
𝑦

𝑃(𝑋1 = 1, 𝑋2 = 1, 𝑋3 = 0|𝑌 = 𝑦)𝑃(𝑌 = 𝑦)

= arg max
𝑦

𝑃(𝑋1 = 1|𝑌 = 𝑦)𝑃(𝑋2 = 1|𝑌 = 𝑦)𝑃(𝑋3 = 0|𝑌 = 𝑦)𝑃(𝑌 = 𝑦), where:



𝑃(𝑋1 = 1|𝑌 = 𝑦) = count(𝑋1 = 1, 𝑌 = 𝑦) + 1
count(𝑌 = 𝑦) + 2

𝑃(𝑋2 = 1|𝑌 = 𝑦) = count(𝑋2 = 1, 𝑌 = 𝑦) + 1
count(𝑌 = 𝑦) + 2

𝑃(𝑋3 = 1|𝑌 = 𝑦) = count(𝑋3 = 1, 𝑌 = 𝑦) + 1
count(𝑌 = 𝑦) + 2

𝑃(𝑋1 = 0|𝑌 = 𝑦) = count(𝑋1 = 0, 𝑌 = 𝑦) + 1
count(𝑌 = 𝑦) + 2

𝑃(𝑋2 = 0|𝑌 = 𝑦) = count(𝑋2 = 0, 𝑌 = 𝑦) + 1
count(𝑌 = 𝑦) + 2

𝑃(𝑋3 = 0|𝑌 = 𝑦) = count(𝑋3 = 0, 𝑌 = 𝑦) + 1
count(𝑌 = 𝑦) + 2

you don’t need to use MAP to estimate 𝑃(𝑌 ): 𝑃(𝑌 = 𝑦) = count(𝑌 = 𝑦)/10, 000
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