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Lisa Yan and Jerry Cain
CS 109

Section #9
November 17-18, 2020

Section 9: Quiz #3 Review

1. Continuous Joint Distributions (courtesy of Oishi Banerjee)

a. Let 𝑋 , 𝑌 , and 𝑍 be independent Normal variables with means of 𝜇𝑋 = 4, 𝜇𝑌 = 5, and
𝜇𝑍 = 6 and variances 𝜎2

𝑋 = 16, 𝜎2
𝑌 = 25, and 𝜎2

𝑍 = 36. If we assume 𝐴 = 𝑋 + 𝑌
and 𝐵 = 𝑌 + 𝑍 are each sums of independent Normal variables, then what is the joint
distribution of A and B? Restated, what is their Bivariate Normal distribution?

(𝐴, 𝐵) ∼ 𝑁 (𝜇, Σ), 𝜇 =

[
𝜇𝑋 + 𝜇𝑌
𝜇𝑌 + 𝜇𝑍

]
, Σ =

[
𝑉𝑎𝑟 (𝐴) 𝐶𝑜𝑣(𝐴, 𝐵)

𝐶𝑜𝑣(𝐴, 𝐵) 𝑉𝑎𝑟 (𝐵)

]
Now,𝑉𝑎𝑟 (𝐴) = 𝑉𝑎𝑟 (𝑋+𝑌 ), and because 𝑋 and𝑌 are independent,𝑉𝑎𝑟 (𝐴) = 𝑉𝑎𝑟 (𝑋+
𝑌 ) = 𝜎2

𝑋 +𝜎2
𝑌 . Similarly,𝑉𝑎𝑟 (𝐵) = 𝑉𝑎𝑟 (𝑌 +𝑍) = 𝜎2

𝑌 +𝜎2
𝑍 . Also,𝐶𝑜𝑣(𝐴, 𝐵) = 𝐶𝑜𝑣(𝑋+

𝑌,𝑌 + 𝑍), but because 𝑋 , 𝑌 , and 𝑍 are independent, 𝐶𝑜𝑣(𝐴, 𝐵) = 𝐶𝑜𝑣(𝑋 +𝑌,𝑌 + 𝑍) =
𝐶𝑜𝑣(𝑌,𝑌 ) = 𝜎2

𝑌 . Therefore,

𝜇 =

[
𝜇𝑋 + 𝜇𝑌
𝜇𝑌 + 𝜇𝑍

]
=

[
9
11

]
Σ =

[
𝜎2
𝑋 + 𝜎2

𝑌 𝜎2
𝑌

𝜎2
𝑌 𝜎2

𝑌 + 𝜎2
𝑍

]
=

[
41 25
25 61

]
b. Suppose hundreds of thousands (that is, a sufficiently large number) of student scores

on a 150-question exam are distributed according to the following random variable:

𝑅 =
50∑
𝑖=1

𝑀𝑖 + 0.5
100∑
𝑗=1

𝑊 𝑗 (1)

Each of the 𝑀𝑖 are independent and identically distributed (IID) Beta random variables—
yes, the questions are scored on a continuous scale from 0 to 1—and the𝑊 𝑗 are separate
IID Beta random variables, where all𝑊 𝑗 are independent of all 𝑀𝑖. The Beta parameters
are 𝛼𝑀 = 10, 𝛽𝑀 = 2, 𝛼𝑊 = 8, and 𝛽𝑊 = 4. If we sample 100 student scores 𝑅1, . . . , 𝑅𝑛

IID according to the distribution of 𝑅 above, what is the distribution of the sample mean
𝑅?

𝐸 [𝑀𝑖] = 𝛼𝑀
𝛼𝑀+𝛽𝑀 = 0.83333

𝐸 [𝑊𝑖] = 𝛼𝑊
𝛼𝑊 +𝛽𝑊 = 0.66667

𝑉𝑎𝑟 (𝑀𝑖) = 𝛼𝑀 𝛽𝑀
(𝛼𝑀+𝛽𝑀 )2 (𝛼𝑀+𝛽𝑀+1) = 0.01068

𝑉𝑎𝑟 (𝑊𝑖) = 𝛼𝑊 𝛽𝑊
(𝛼𝑊 +𝛽𝑊 )2 (𝛼𝑊 +𝛽𝑊 +1) = 0.01709
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We can compute 𝑅’s expectation using linearity of expectation. Because 𝑅 is a sum
of independent RVs, we can compute 𝑅’s variance by summing up the variance of the
independent 𝑀𝑖 and 𝑊𝑖’s as below:

𝐸 [𝑅] = 50 𝐸 [𝑀𝑖] + 0.5 · 100 𝐸 [𝑊𝑖] = 75
Var(𝑅) = 50 Var(𝑀𝑖) + 0.25 · 100 Var(𝑊𝑖) = 0.961

As an aside, 𝑅 can be approximated as 𝑅 ∼ N(75, 0.961), since the sums of both
question types 𝑀𝑖 and 𝑊𝑖 respectively approach Normal distributions according to the
Central Limit Theorem, and the sum of independent Normal distributions is itself a
Normal distribution.
The distribution of the sample mean 𝑅 is then given by:

𝑅 =
1

100

100∑
𝑖=1

𝑅𝑖 ∼ 𝑁 (75,
1

100
0.961)

∼ 𝑁 (75, 0.0096)

2. Bootstrapping and Null Hypotheses (courtesy of Oishi Banerjee)
While testing the efficacy of a new drug, Skylar Pharmaceuticals has collected 1000 data
samples. Most of the samples came from patients who were treated with the drug, but the
rest came from patients who received a placebo. Skylar observed that the sample mean blood
pressure in the treated group was 80, while the sample mean blood pressure in the placebo
group was 86. To demonstrate the difference is statistically significant, Skylar implemented
the following to produce a p-value.

Data scientists at Skylar wrote the following bootstrapping code to arrive at a p-value to
suggest the difference isn’t statistically significant. Unfortunately (or fortunately, depending
on your point of view), their code is not right.
import numpy as np

def resample(whole,num_samples):
return np.random.choice(whole, num_samples , replace=True)

# list_treat is an ordinary 1-d numpy array
# it contains all the diastolic blood pressures of
# each patient who was treated

# list_placebo is an ordinary 1-d numpy array
# it contains the diastolic blood pressures of each
# patient who received a placebo
def pvalue(list_treat , list_placebo):

# np.concatenate will make a 1000-element array #containing the
elements of both list_treat and list_placebo

whole = np.concatenate([list_treat ,list_placebo])
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threshold = np.mean(list_treat) - np.mean(list_placebo)
counter, num_trials = 0, 100000
for trial in range(num_trials):

sample_treat = resample(list_treat , 500)
sample_placebo = resample(list_placebo , 500)
mean_treat = np.mean(sample_treat)
mean_placebo = np.mean(sample_placebo)
new_diff = np.abs(mean_treat - mean_placebo)
if new_diff == threshold: counter += 1

return counter/num_trials

Point out the algorithmic errors. Be clear what Skylar should do instead, explaining why each
change you would make is necessary for correct bootstrapping.

• As written, the threshold will be -6, so new_diff can never be smaller than threshold!
Because were really only concerned with magnitudes, Skylar should replace threshold
with np.abs(threshold).

• To simulate the null hypothesis, we should sample from our new combined distribution.
As a result both calls to resample should pass in whole, not list_treat or list_placebo.

• Though were now sampling from our new combined distribution, we want to stay
true to the design of the original experiment in every other way. Therefore we should
make sure sample_treat has as many elements as list_treat and sample_placebo has as
many elements as list_placebo. The 500s should be replaced with len(list_treat) and
len(list_placebo) respectively.

• When bootstrapping, we count up how many times we see a result as dramatic or more
dramatic than ours under the null hypothesis. As a result, we should check if new_diff
is greater than or equal to threshold.

3. Naïve Bayes (courtesy of David Varodayan and Lisa)

Suppose we observe two discrete input variables 𝑋1 and
𝑋2 and want to predict a single binary output variable
𝑌 (which can have values 0 or 1). We know that the
functional forms for the input variables are 𝑋1 ∼ Poi(𝜆)
and 𝑋2 ∼ Ber(𝑝), but we are not given the values of the
parameters 𝜆 or 𝑝. We are, however, given a dataset of 9
training instances (shown at right.)

𝑋1 𝑋2 𝑌 𝑋1 𝑋2 𝑌

1 1 0 3 1 1
3 0 0 5 0 1
7 1 0 5 1 1
9 0 0 5 1 1

7 1 1

a. Use Maximum Likelihood Estimation to estimate the parameters 𝜆 and 𝑝 in the case
where 𝑌 = 0 as well as the case 𝑌 = 1. You should have four parameter estimates: 𝜆0
and 𝑝0 for when 𝑌 = 0, and 𝜆1 and 𝑝1 for when 𝑌 = 1.
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𝜆0 =
1
4
(1 + 3 + 7 + 9) = 20

4
= 5 𝑝0 =

1
4
(1 + 0 + 1 + 0) = 1

2

𝜆1 =
1
5
(3 + 5 + 5 + 5 + 7) = 25

5
= 5 𝑝1 =

1
5
(1 + 0 + 1 + 1 + 1) = 4

5

b. Use Maximum Likelihood Estimation to estimate the probability 𝑃(𝑌 = 1).

𝑃(𝑌 = 1) = 5/9.

c. You observe the following testing instance: (𝑋1, 𝑋2) = (2, 0). Using the Naïve Bayes
assumption, predict the output 𝑌 for the testing instance. For this problem, showing
how you computed your prediction is worth more points than the final answer.

We predict 𝑌 = 0 if the following Naïve Bayes inequality holds:

𝑃(𝑌 = 1)𝑃(𝑋1 = 2|𝑌 = 1)𝑃(𝑋2 = 0|𝑌 = 1) ?
< 𝑃(𝑌 = 0)𝑃(𝑋1 = 2|𝑌 = 0)𝑃(𝑋2 = 0|𝑌 = 0)

5
9

(
𝜆2

1
2!

𝑒−𝜆1

) (
1 − 4

5

)
?
<

4
9

(
𝜆2

0
2!

𝑒−𝜆0

) (
1 − 1

2

)
5
9

(
52

2!
𝑒−5

)
1
5

?
<

4
9

(
52

2!
𝑒−5

)
1
2

5
9
· 1

5
?
<

4
9
· 1

2
1
9
<

2
9

Since the last inequality is true, that means the first inequality was true, so we predict
𝑌 = 0.

4. Logistic regression (courtesy of David Varodayan)
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The two parts of this problem are unrelated.

a. Prediction. Suppose you have trained a logistic regression classifier that accepts as
input a data point (𝑥1, 𝑥2) and predicts a class label 𝑌 . The parameters of the model are
(𝜃0, 𝜃1, 𝜃2) = (2, 2,−1). On the axes, draw the decision boundary 𝜃𝑇x = 0 and clearly
mark which side of the boundary predicts 𝑌 = 0 and which side predicts 𝑌 = 1.

𝜃𝑇x can be expanded as 2+ 2𝑥1 − 𝑥2 = 0 because 𝑥0 = 1 by definition. The prediction is
1 when 𝜃𝑇x > 0. For example, the origin (𝑥1, 𝑥2) = (0, 0) yields 𝜃𝑇x = 2, which gives
us the prediction 𝑌 = 1.
See the graph above, to the right of the original.

b. Training. The logistic regression parameter update equation is

𝜃new
𝑗 = 𝜃old

𝑗 + 𝜂
𝑛∑
𝑖=1

[
𝑦 (𝑖) − 𝜎

(
𝜃old𝑇 x(𝑖)

)]
𝑥 (𝑖)𝑗

Your training set consists of two data points
(
𝑥 (1)1 , 𝑦 (1)

)
= (1, 1) and

(
𝑥 (2)1 , 𝑦 (2)

)
=

(−1, 0). Given
(
𝜃old

0 , 𝜃old
1

)
= (0, 0) and 𝜂 = 0.1, find

(
𝜃new

0 , 𝜃new
1

)
.

First notice that
(
𝜃old

0 , 𝜃old
1

)
= (0, 0) implies that 𝜎

(
𝜃old𝑇 x(𝑖)

)
= 𝜎(0) = 0.5. Therefore,

𝜃new
0 = 0 + 0.1 ([1 − 0.5] (1) + [0 − 0.5] (1)) since 𝑥 (𝑖)0 = 1 by definition

= 0 + 0.1(0.5 − 0.5) = 0
𝜃new

1 = 0 + 0.1 ([1 − 0.5] (1) + [0 − 0.5] (−1))
= 0 + 0.1(0.5 + 0.5) = 0.1


