
Are you a robot?

R. Miles McCain

March 19th, 2021

Poor robots. All around the internet are little ‘CAPTCHA’ checkboxes
designed to keep them out. That terrible tickmark—“I am not a robot”—has
caused many a positronic tear. Well, it’s time someone thought about the
robots. For my CS109 challenge, I created a dedicated website for robots and
harnessed the power of probability to keep humans out.

You can explore the website at https://robots.rmrm.io; you can also watch a
video demo at https://www.youtube.com/watch?v=RpeREEV6rNA. The source
code is available at https://github.com/milesmcc/random-game. I suggest us-
ing the website at least once before reading this write-up.

Detecting Humans

Humans are quite bad at producing random numbers, and we can use this fact
to our advantage.1 If we ask them to produce a random stream of numbers
(by pressing the digit keys on their keyboard), perhaps they’ll reveal themselves
by producing values that deviate from the expected distribution. Take that,
humans!

Of course, this approach makes several assumptions. For example, while
humans’ relative inability to produce properly-distributed random numbers is
well-documented, having a keyboard in front of them may (or may not) help
them do a better job. Beyond this high-level assumption, however, we will try
to assume as little as possible about human behavior in constructing our model.

There are two clear ways we can identify humans through their ‘random’
values: by looking at the frequencies of the selected digits,2 and by looking at
the distances between the digits as they are selected.3

1Throughout this write-up, I’ll be referring to randomness. I don’t mean randomness in
the formal sense (e.g., background radiation); instead I use a more colloquial definition. For
our purposes, JavaScript’s pseudo-random number generator is genuinely random.

2Here, we assume that humans’ distributions will probably deviate from a perfect uniform
random variable.

3Here, we assume that the ‘jumps’ that humans make between the numbers they select
does not match the expected distribution for ‘truly’ random numbers. For example, perhaps
humans are unlikely to select two of the same number in a row.

1

https://robots.rmrm.io
https://www.youtube.com/watch?v=RpeREEV6rNA
https://github.com/milesmcc/random-game

Primitive Frequency Analysis

When asked to produce random uniform digits, humans rarely produce an even
distribution. Instead, they tend to bias towards particular values (e.g., 7) and
away from others (e.g., 5).4 We can assess the probability of any particular
frequency breakdown using a multinomial distribution where the probability of
any particular digit is equally likely. The expected outcome, then, is the a uni-
form distribution, and the probability of n uniform random variables producing
N0 0’s, N1 1’s, etc. is: (

n!

N0, N1, ...N9

)(
1

10

)n

This probability is not particularly useful on its own, however. With only
ten samples, the highest possible probability is 10! ∗ 0.110. Instead, we are more
interested in this probability in relation to others. Ideally, we could somehow
employ it in computing P (robot | observed). While on its face this resembles a
straightforward application of Bayes’ rule, problems quickly arise:

P (robot | observed) =
P (observed | robot) ∗ P (robot)

P (observed)

What is P (robot)? I don’t know — and I have no experimental data from
which I could estimate. A similar issue exists for P (observed): we know the
probability of observing the sample data conditioned on uniformity, but we
have no insight into the unconditioned case.

At a glance, this conundrum looks like a great place for bootstrapping some
kind of p-value using the methods we have seen in class. Unfortunately, our
in-class approaches are not much help here: they consider the sample mean
and other simple attributes of a distribution (e.g., variance), while we are more
broadly interested in goodness of fit. A human might successfully produce num-
bers that average to 4.5 — the expected value of our uniform distribution — but
that does not mean that the distribution of those numbers is uniform. Instead,
we need a true goodness of fit test.

Assessing Goodness of Fit

For the challenge, I explored and experimented with two different goodness of
fit tests: the Kolmogorov-Smirnov test and the Andersen-Darling test. The
Kolmogorov-Smirnov (K-S) test captures the largest deviation of the observed
distribution’s CDF from the expected distribution’s CDF; the higher the value,
the more confident we can be that the observed distribution isn’t drawn from a

4See Jokar E, Mikaili M. Assessment of human random number generation for biometric ver-
ification. J Med Signals Sens. 2012 Apr;2(2):82-7. PMID: 23626943; PMCID: PMC3632045.
Human random number generation is so non-random that it can even be used for biometrics!

2

Figure 1: A visualization of the Kolmogorov-Smirnov test statistic, taken from
its Wikipedia article). The theorized CDF is shown in red, while the observed
CDF is shown in blue. The maxiumum difference between the theorized CDF
and the observed CDF is indicated with an arrow; this distance is the K-S
statistic.

uniform random variable. Wikipedia defines the K-S statistic as follows, where
F (x) is the theorized CDF, and Fn(x) is the observed CDF:5

Dn = sup
x
|Fn(x)− F (x)|

Figure 1 illustrates the K-S test statistic by plotting the expected CDF
against the observed one and indicating the maximum deviation.

The Andersen-Darling test is similar, except that it doesn’t only consider the
maximum value. Instead, it is defined as follows, where F (x) is the theorized
cumulative distribution function (CDF), and Fn(x) is the observed CDF (be-
cause I’m ignoring the weight parameter, this is equivalent to the Cramér–von
Mises statistic):

A2 = n

∫ ∞
−∞

(Fn(x)− F (x))2

F (x) (1− F (x))
dF (x)

The Anderson-Darling test is especially notable for its ability to capture
deviating ‘tails’. Because our sample size is quite small and we are assessing fit
to the uniform distribution, however, I think these normally-valuable properties
of the Anderson-Darling test are less relevant to our context. Instead, we’ll opt
for the simpler—albeit less powerful—K-S test.

5A word of warning: I recognize there is an incredible probabilistic world inside the K-S
test and the accompanying Kolmogorov distribution. In this challenge, I barely scratch the
surface.

3

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

Kolmogorov-Smirnov in Practice

Typically, when using the K-S test with a continuous theorized CDF, you can
compare results against already-published critical values: values of Dn (the K-S
test result) that indicate a certain confidence in the distribution’s fit. Unfor-
tunately, our theorized distribution is a discrete uniform distribution; there are
only ten digits, and therefore only ten possible values. Fortunately, we can
determine an appropriate K-S test statistic threshold through simulations.6

We will determine our thresholds by generating thousands of sample obser-
vations by sampling the true distribution and calculating the K-S test statistic
for each.7 The p-value parameter captures the probability that the generated
threshold will falsely filter out observations that were drawn from the theo-
rized distribution. For example, using a p-value of 0.2 to calculate the thresh-
old (roughly) means that we will erroneously exclude 20% of observations that
are drawn from the uniform distribution — but this trade-off between false-
negatives and false-positives is necessary, and 0.2 is where we draw the line on
the website.8

/∗ Function : ksStatTheshold
∗ −−−−−−−−−−−−−−−−−−−−−−−−
∗ Calcu la te the K−S s t a t i s t i c va lue that ,
∗ i f used as a th re sho ld f o r
∗ determining f i t , would only exc lude t rue
∗ f i t s with p r o b a b i l i t y ‘ pVal ‘ .
∗/

func t i on ksStatTheshold (pVal , n , sampleFunc , cd f) {
const N TRIALS = 10000;

// Run many s imu la t i on s
l e t r e s u l t s = [] ;
f o r (l e t i = 0 ; i < N TRIALS ; i++) {

l e t sample = Array . from ({ l ength : n} , sampleFunc) ;
l e t ksStat = kolmogorovSmirnov (sample , cd f) ;
r e s u l t s . push (ksStat) ;

}

// Find the K−S t e s t va lue that would only exc lude
// ‘ pVal ‘ o f r e s u l t s .
r e s u l t s . s o r t ((a , b) => a − b) ;
r e turn r e s u l t s [Math . f l o o r ((1 − pVal) ∗ r e s u l t s . l ength)] ;

}

Using the power of simulation, we now have a probabilistically-sound way

6I believe we could derive these exactly, but that would be a challenge problem in itself!
7Note that the full source code is available on GitHub; this particular function is at

https://github.com/milesmcc/random-game/blob/main/src/utils.js
8I realize that this is quite a high threshold, but it is the trade-off I’m willing to make to

exclude humans more successfully.

4

https://github.com/milesmcc/random-game/blob/main/src/utils.js

to evaluate the raw digit frequency distributions! Interestingly, I believe the
function defined above is actually the (simulated) CDF of the Kolgomorov
distribution—a beautiful distribution that captures the probability of a ran-
dom sample having a particular K-S test value.9 While a detailed explanation
of the Kolmogorov distribution is beyond the scope of this project, it is too cool
not to mention!

Distances Between Numbers

Another way we can potentially detect humanity is by assessing the distances
between numbers. If the human enters a 1 and then a 6, the distance is 5; if
they enter a 5 and then another 5, the distance is 0. The distances between
humans’ inputs might not distribute the same way that ‘truly’ random digits
would. For example, humans might avoid entering the same number twice —
or at least they might do it at a statistically improbable rate.

We can assess adherence to the expected distribution the same way we did
for the raw distribution. We just have one challenge: we need to figure out the
expected distribution of the distances!

We can think of distance as a random variable D that is the absolute value
of the difference between two discrete uniform random variables, U1 ∼ Uni(0, 9)
and U2 ∼ Uni(0, 9):

D = |U2 − U1|

Unlike the expected distribution of the raw numbers (which was uniform),
this distribution is less obvious. We can derive the probability mass function
and use that to derive a cumulative distribution function, which we can then
hand to our Kolmogorov-Smirnov function:

P (D = x) = P (|U2 − U1| = x)

First let’s solve the non-absolute form; that is, instead of looking for the
probability of particular distances, we instead look for the probability of par-
ticular differences. The maximum possible difference is 9 (U1 = 0, U2 = 9), and
the minimum possible difference is -9 (U1 = 9, U2 = 0). We can use this PMF
later on to calculate the ‘original’ PMF.

Pdiff(x) = P (U2 − U1 = x) =

9∑
n=0

P (U2 = n) ∗ P (U1 = n− x)

Because U1 and U2 are discrete uniform random variables (with a range of
0 and 9, inclusive), their PMF is:

9I was amazed to learn how this distribution does not depend on the theorized distribution
for the random samples!

5

Figure 2: The empirical distance PMF, obtained through simulations.

P (U = x) =


0 x < 0
1
10 0 ≤ x ≤ 9

0 9 < x

We now have everything we need to calculate the full PMF of D:

P (D = x) =


0 x < 0

P (D1 = D2) = 1
10 0 = x

Pdiff(x) + Pdiff(−x) 0 < x ≤ 9

0 9 < x

Figure 3 plots this theorized PMF, revealing the original empirical PMF
from above.

Figure 3: The theorized PMF of the distance distribution.

Wonderful! We now have the PMF of our distance distribution. Because

6

this is a discrete distribution, the CDF—we’ll call it F (x)—is as simple as a
sum:

F (x) =

x∑
n=0

P (D = x)

We can now use the same technique as before to calculate our K-S test
threshold.

The Website Itself

When visitors navigate to the Robot Club website, a friendly but firm robot
bouncer greets them (see Fig. 4). To continue, the visitor must enter 50 digits
using their keypad.10 If the K-S test statistic for both the raw digit frequencies
and the digit distances is below the threshold values, they are allowed entry.

Of course, the best way to experience the website is by visiting it yourself.
Still, here are a few key highlights of the website. Note that I took these
screenshots after an earnest effort to produce genuinely random numbers!

Figure 4: The Robot Club’s bouncer, well known for its entropy evaluation
skills. The robot graphic itself was made by Jessica Biggs on CodePen.

.

10I’ll admit it: choosing 50 was somewhat arbitrary. It seemed to be a good balance between
respecting the visitor’s time and collecting enough data for a meaningful analysis.

7

https://codepen.io/bigglesrocks/pen/LoBsD

Figure 5: The bouncer blocking me from the club; after all, I’m human!
.

Figure 6: The website’s breakdown of my digits’ frequencies compared to the
expected values.

.

8

Figure 7: The website’s visualization of the distribution of simulated true K-S
test values for the frequency distribution, annotated with the maximum thresh-
old and my score.

.

Figure 8: The website’s breakdown of my digits’ distances compared to the
expected values.

.

9

Figure 9: The website’s visualization of the distribution of simulated true K-S
test values for the distance distribution, annotated with the maximum threshold
and my score. Here, I was below the maxiumum threshold!

.

10

On Thresholds and Error Rates

The website denies entry to the club if the K-S test statistic for either dis-
tribution is more extreme than 80% of the simulated samples (which were, in
fact, drawn genuinely randomly). 80% is quite a low threshold for exclusion;
assuming that the K-S test statistics for raw frequencies and distances are in-
dependent, then the club would exclude robots with probability 1− 0.82 = 0.36
— an absolutely unacceptable false-negative rate. Still, in my experience (and
in testing the website on friends) it does relatively well detecting humans: when
I try to fool it, I get through about half the time. (A robot, meanwhile, makes
it through around 64% of the time.) And none of my friends have gotten in on
their first try.

While I wish I could compute the exact probability of the website letting a
human in, doing so would require collecting loads of experimental data. I do
think this could make for a great Mechanical Turk study, but that would require
money and a more robust survey instrument — two things I don’t currently have
and am not in a position to make. For now, my crude ‘anecdata’ will have to
do.

The Future of the Robot Club

While the Robot Club’s entry assessment makes for a fun and educational prob-
abilistic analysis, it is not as effective as it could be. With a false negative rate
of 36%, more than a third of robots are denied entry! Furthermore, some simple
digit patterns—such as 0, 9, 1, 8, 2, 7...—reliably ‘fool’ the bouncer into think-
ing the visitor is a robot. A more accurate way to assess signals of humanity
in digits might be to train some kind of neural network on large samples of
randomly-produced and human-produced digits. Neural networks, after all, are
essentially pattern recognition machines.11 This would require human training
data, however, which I don’t have.

I also want to acknowledge the irony in assessing randomness by looking at
predictability. While this of course makes sense after taking CS109—it’s the law
of large numbers, after all—it is a bit counter-intuitive on its face.

Still, even with all these caveats, the Robot Club’s assessment system makes
for a fun and educational probabilistic analysis. I certainly learned a lot. I hope
you enjoyed your visit to the Robot Club — if you were able to get in, that is!

11I know this is reductive. But as far as I can tell from class, it’s true!

11

