N @7 :

AGK T —
\ \ N

OO D 22 L LSPTYHOR?

: DES

GRE3J (ECMA)///

o\ MRH1 X2 ‘
DAK1P>

D
K

&

S BRo RS 8
( ; )
AN eP (T AusclfATST
&5 BTN\ P~ YliL11
NN NN TGS \[HOR?)
; )\ SV SSE2)/ ‘ PEP4
MS1)) WA N & AN
PRYUINIRL X W ISENYIR K eaot > L Trres
K NCNA AN T(TsL
N |} NN SOLALINGTL/
‘ D AN A § ) o T
2 Wi b iy B DDR2) | K
‘ VNSO A , (ALD2
, W, \ AR PGM
f \\ Usv1
HHF2 K PAT™ Shrose i UGP1
) N ——
HR1), R0y ( (GLK1)
A , AR TFS1 \ N/
W/ fxer i AN/ PRC1
0X5 HBT1Y? N\ (
| ,v / - ,-\_‘RME‘I GDBI'\
1 4 v / \\ '~“‘\ GPG1 v (GL
Ls1)2 R~ N SN (o)
et/ PRB1 o\ 8252\ YCRITIW  —
VP1 VAN BAKIS
Risyp ) & gl
Z
YNTHY ™ vl 159
’// I~ R e > %
: 4 SYM1‘_,7—-“’ { SPB1 SPI1 D%“"GPHH
1 Qm el
Y(R09 , YY . SED1
‘ ESF1
) (::) @ MP4 .Y
op7) 7= @ 08P ‘

_ (nand 7N NN

CS109:

(PBIZ) ™\
\—~ (uTPY)

/ 2N
AAD14

famsy (jum2)RTSY) |

ECH
) N\
(TP29
7777_/

= ===
g, (VHR1)

Statis

LK (Grog) [

] \ \ I~ P s N\
i ~....Rando
S N PNC1 { N e PO ‘ -~
O vkwosge  vigratdw | C
% 2) W NS—" "\ JOTSE
QA | =@ w\ RN
br

N (RMT2-RRPEN T8

va EMP1
) \/H
sYm)

v
AN

/fxapﬂ I\,/,! N

o T LY
‘]\ﬁ§mqs ”
1)/ / M, (PRBWV “ ;S:\

 fwp1/
9

\/

1

(SYM1 f foi

" o SPB
NaMI— ——

DDDDD S \

R056

)
/l Loth
A

e

ik
-

u@gﬂ&dn

Aol 55
/ Jod ) RN
A X TFS1 >

3 N

el SPI Jmr”

“ N
| |/ (6LK1)

Jl
Y(RITIN  —

’ N /N S
¥'CY\vkLosge y
- ~— v“/"f'\
\_/ >~ (PBI2

“=(GPH1) ~—
(Iep1)] \_/

fhaka

A (AK1S

R315W




Where are we now? A roadmap of CSio9

Today: Statistics of Next Week: Modeling
multiple RVs! with Bayesian Networks

Var(X +Y)
E[X +Y]
Cov(X,Y)

p(X,Y)

Friday:
Conditional distributions

pxy (x]y)
E[X|Y]

WOow —/E ?SU m

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 2



Expectation of
Common RVs




Linearity of Expectation is useful

Expectation is a linear mathematical operation. If X = Y/-, X; :

E[X] = E ZXi — iE[Xi]
] =1

Even if you don’t know the distribution of X (e.g., because the joint
distribution of (X4, ..., X;,) is unknown), you can still compute
expectation of X!!

Most common use cases:

Problem-solving key: § $ « E[X;] easy to calculate
Define X; such that zxi * Or sum of dependent RVs

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University



Don'’t we already know linearity of expectation?

Expectation is a linear mathematical operation. If X = Z?=1Xi ,
n n

> x| =) Elx)

i=1 i=1

We covered this back in Lecture 6 (when we first learned expectation)!
Proved binomial: sum of 1s or Os
Hat check (section): sum of 1s or Os
We ignored (in)dependence of events.

E[X]=E

Why are we learning this again? exclamation poin jackpot
Well, now we can prove it! “
We can now ignore any random variables dependencies! 5l L

Our approach is still the same!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 5



Proof of expectation of a sum of RVs EIX+Y] = EIX] + E[Y]

E[X+Y] EZ(X + V)pxy (X, y) ;(E)T(U% =X+Y

zzxpxy(x ) +22ypxy(x y)
= z xz pxy(x,y) + z }’2 Pxy(x,y)
X y y X

= Z xpy(x) + z ypy (y) Marginal PMFs for X and Y
y

X

= Linearity of summations (and integrals, btw)

= E[X] + E[Y]

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University e



Expectations of common RVs: Binomial

X~BIin (Tl, p) E[X] = np #.of successFS in n independent trials
with probability of success p

Recall: Bin(1, p) = Ber(p)

n
X = le
=1

Let X; = ith trial is heads

X;~Ber(p),E[X;]=p E[X]=E

=§:E[Xi] =Zn:29=np

=1 =1

n
2.
i=1

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 7



Expectations of common RVs: Negative Binomial

Y ~NesBin(r Elvy]=Z # of independent trials with probability
eg ( ¢ p) [ ] p of success p until r successes
Recall: NegBin(1, p) = Geo(p)

How should we define Y;?

?
Y = E Y;
i—1 How many terms are in our summation?

2~
&

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University s



Expectations of common RVs: Negative Binomial

Y~|\|egB|n (7‘, p) E[Y] = - # of mdependenjc trials with probability
p of success p until r successes

Recall: NegBin(1, p) = Geo(p)

?
Y=ZYi
=1

Let Y; = # trials to get ith success (after
(i — 1)th success)

Yi~Geo(p), E[Y:] =

<
<

o |-

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University o



Coupon
Collecting
Problems




Linearity of Expectation is useful

Expectation is a linear mathematical operation. If X = Y/-, X; :

E[X] = E ZXi — iE[Xi]
] =1

Even if you don’t know the distribution of X (e.g., because the joint
distribution of (X4, ..., X;,) is unknown), you can still compute
expectation of the sum!

Most common use cases:

Problem-solving key: § « E[X;] easy to calculate
Define X; such that zxi $ * Orsum of dependent RVs

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 11



Coupon collecting problems: Server requests

The coupon collector’s problem in probability theory: Servers

You buy boxes of cereal. requests
There are k different types of coupons ke servers
For each box you buy, you "collect" request to
a coupon of type i. Servert
How many coupons do you expect What is the expected number of
after buying n boxes of cereal? utilized servers after n requests?
=
~~—" \ h"‘A -n
- iﬂ“

—,
amazon *  B52% of Amazon profits
- ™ ** more profitable than Amazon’s
Web SerVICeS North America commerce operations
source
Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 12


http://www.zdnet.com/article/amazons-finds-its-profit-horse-in-aws-why-its-so-disruptive-to-its-old-guard/

Computer cluster utilization

Consider a computer cluster with k servers. We send n requests.
* Requests independently go to server i with probability p;
* Let X = # servers that receive = 1 request.

What is E[X]?

2y
S

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 13



Computer cluster utilization

Consider a computer cluster with k servers. We send n requests.
Requests independently go to server i with probability p;
Let X = # servers that receive = 1 request.

What is E[X]?

Define additional Solve.
random variables.
Let: A; = event that server i ElX;]=P(A4D=1-(1—-p)"
receives = 1 request

X; = indicator for 4; E[X]|=E

ixi = iE[Xi] = i(l - (1-p)")
i=1 i=1 i=1
k

P(4;) =1 — P(no requests to i) K k
=1—(1—pi)n 221—2(1—pi)n:k_2(1_pi)n
t=1 i=1

=1
Note: Ai are dependent! Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 14



Coupon collecting problems: Hash tables

The coupon collector’s problem in probability theory: Hash Tables
You buy boxes of cereal. strings
There are k different types of coupons k buckets

hashed to

For each box you buy, you “collect”

a coupon of type i. bucket ¢
How many boxes do you expect What is the expected number of
to buy until you have one of strings to hash until each bucket

each coupon? has > 1 string?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 15



Let’s take a 90-second break to take in a
lemon poppy seed muffin and some English
breakfast tea.

Once we’ve nourished and hydrated, we’ll
come back and take on this next problem
about hash tables.




Hash Tables g

Consider a hash table with k buckets.
» Strings are equally likely to get hashed into any bucket (independently).
* Let Y = # strings to hash until each bucket = 1 string.

What is E[Y]?

1. Define additional
random variables.  How should we define Y; such that Y = 2 Y; ?
i

by
&

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 17




Hash Tables g

Consider a hash table with k buckets.
Strings are equally likely to get hashed into any bucket (independently).
Let Y = # strings to hash until each bucket = 1 string.

What is E[Y]?

Define additional  Let: Y; = # of trials to get success after i-th success
random variables. Success: hash string to previously empty bucket

If i non-empty buckets: P(success) = k—l

ro=m =) (7

. ki 1k
Equivalently, Y;~Geo (p = —) ElY;] = I;_ p—

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 18




Hash Tables g

Consider a hash table with k buckets.
Strings are equally likely to get hashed into any bucket (independently).
Let Y = # strings to hash until each bucket = 1 string.

What is E[Y]?

SOlve Y = YO + Yl + -+ Yk—l
E[Y] = E[Yo] + E[Y1] + -+ + E[Y}—4]
k k k k 1

1
:E+k_1+k_2++I:k E+m++1 ZO(klng)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 19




Covariance




Statistics of sums of RVs

For any random variables X and Y,

ElX+Y]|=E[X] + E|Y]

Var(X +Y) = ?

But first...
a new statistic!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 21



Spot the difference

Compare/contrast the following two distributions: ASSUWGI_?(” lpoints are
equally likely.

1
PX=xY=y)=—

y . y ‘
4 ’.f o.:.'o o 4 . .\‘ ..‘4- *
g ine 303 ey
b ° .':f.’?o.~0:o‘ e* . .?t.." ¢
% ‘2o oy l.‘.. o o
) gL e
cn® oA % ?‘;:::t < .o. Y E o*
L X4 ..:‘.(!"' e N .."" 23 LIRS
et eed 0 8 * 3% o,
O “ L Y x 0 .... ‘ x
0 2 - 6 0 2 - 6

Both distributions have the same E[X], E[Y], Var(X), and Var(Y)

Difference: how the two variables vary with each other.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 22



Covariance

The covariance of two variables X and Y is:

Cov(X,Y) =E[(X —E|[X]D(Y — E|Y])]
= E|XY] — E|X]E[Y]

Proof of second part:
Cov(X,Y) = E[(X - E[XD(Y — E[Y])]
= E|XY — XE[Y] E[X]Y + E[X]E[Y]]

= E[XY] - E[XE[Y]] - E[EX]Y] + E[ELX]ELY]] el
= E[XY] - E[X]E[Y] — E[X]E[Y] + E[X]E[Y] (EL2), EIY)are
= E[XY] — E[X]E[Y]

in CS109, Winter 2021 Stanford University 23



Covariance

The covariance of two variables X and Y is:

Cov(X,Y) =E[(X —E|[X]D(Y — E|Y])]
= E|XY] — E|X]E[Y]

Covariance measures how one random variable varies with a second.
Outside temperature and utility bills have a negative covariance.
Handedness and musical ability have near covariance.
Product demand and price have a positive covariance.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 24



Covarying humans

Cov(X,Y) = E[(X — E[XD(Y — E[Y])]
= E[XY] — E[X]E[Y]

Weight (kg) | Height (in) W-H
64 57 3648
71 59 4189
53 49 2597
67 62 4154
55 51 2805
58 50 2900
77 55 4235
57 48 2736
56 42 2352
51 42 2142
76 61 4636
68 57 3876

E[W] E[H] E[WH]

= 62.75 =52.75

What is the covariance of weight W and
height H?

Cov(W,H) = E[WH] — E[W]E[H]

= 3355.83 — (62.75)(52.75)
(positive) = 45.77

45 55 65 75 85
Weight W (kilograms)

Covariance > O: one variable T, other variable T

= 3 35598{& Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 25



Feel the covariance

Cov(X,Y) = E[(X — E[XD(Y — E[Y])]
= E[XY] — E[X]E[Y]

Is the covariance positive, negative, or zero?

E[X] 2 o E[X]
> > e
I . I .
ol IS N E[y] ™ by,
. Ne o ' DY LN
o o7
X=x X =x

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Stanford University 26



. Cov(X,¥) = E[(X — E[XD(Y — E[YD]
Feel the covariance _ E[XY] — E[XIE[Y]

Is the covariance positive, negative, or zero?

EXI| e 2. cor | EIX)
B N Be
I I P
> oAt E[y] ™ |
AY ‘.\.;,?
X=x X=x
positive negative Zero

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 27



Properties of Covariance

Properties:
Cov(X,Y) = Cov(Y, X)
Var(X) = E[X?] — (E[X])? = Cov(X, X)

Covariance of sums = sum of all pairwise covariances
COV(Xl + Xz, Yl + Yz) - COV(Xl, Yl) + COV(Xz, Yl) + COV(Xl, Yz) + COV(Xz, Yz)

Covariance is non-linear: Cov(aX + b,Y) = aCov(X,Y)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 28



13d_variance_sum

Variance of
sums of RVs




Statistics of sums of RVs

For any random variables X and Y,
EIX+Y]|=E|X]|+E|Y]
Var(X +Y) = Var(X) + 2 - Cov(X,Y) + Var(Y)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 30



Variance of general sum of RVs

For any random variables X and Y,

Var(X+Y) =Var(X) + 2 -Cov(X,Y) + Var(Y)

Proof:
Var(X+Y) =Cov(X+Y,X+Y) Var(X) = Cov(X, X)
covariance of
= Cov(X, X) + Cov(X,Y)+ Cov(Y,X)+ Cov(Y,Y) all pairs
=Var(X) + 2 - Cov(X,Y) + Var(Y) Symmetry of covariance +

Cov(X,X) = Var(X)

Var(iz:Xi) ZVar(X)+ZZ z Cov (X;, X;)

=1 j=i+1

More generally:

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 31



Statistics of sums of RVs

For independent X and Y,
E|XY]| = E|X|E|Y]

Var(X +Y) = Var(X)+ Var(Y)

in CS109, Winter 2021 Stanford University 32



Variance of sum of independent RVs

For independent X and Y,

Var(X +Y) = Var(X)+ Var(Y)

Proof:
Cov(X,Y) = E[XY] — E[X]E[Y] def. of covariance
= E[X]E[Y] — E|X]E[Y] X and Y are independent
=0
NOT bidirectional:
Var(X +Y) =Var(X) + 2 - Cov(X,Y) + Var(Y) Cov(X,Y) = 0 does NOT

= Var(X)+ Var(Y) imply independence of X
and Y!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 33



Proving Variance of the Binomial

X~Bin(n,p) var(X) = np(1 —p)

To simplify the algebra a bit,letg =1 —p,sop+g=1.

So:
n " B
E (XZ) = Z K (k)PkG" K Definition of Binomial Distribution: p + g = 1
k=0
S n—1 n n—1
= Z k"( )qunik Factors of Binomial Coefficient: k( ) = n( )
k=0 k-1 k k—1
- -1
=np Z k(: _ 1)1”““1("‘”—““[J Change of limit: term is zero when k — 1 = 0
k=1
< m
=np u+l)( .)p’q’"” putting j=k—l,m=n—1
j=o J
= np Z .i<"")P'q"'-’ + Z (”.‘)P’qm_’ splitting sum up into two
j=o \J j=o\J
< m—1 - < [m - (m m—1
= np Z m\ . P+ Z )P Factors of Binomial Coefficient: j{ ) =m| |
o \i-l j=o \J J =1
¢ (m-1) (m=1)-(j=1) ¢ (m m-j - .
=np| (n—1)p Z -1 P + Z j r'q Change of limit: term is zero when j — 1 = 0
i=1 ji=0
=np((n=Dp+ 9" + @+ 9") Binomial Theorem
=np((n=Dp+1) asp+g=1
=n*p* +np(1 -p) by algebra
Let’s instead prove this using
Then:

() = £ () - €007 independence and variance!

=np(l1-p)+ n:p2 - (np)2 Expectation of Binomial Distribution: E (X) = np

= np(1-p) prOOfWiki.Org

as required.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 34



Proving Variance of the Binomial

X~Bin(n,p) var(X) = np(1 —p)

n
Let X = z X; Var(X) = Var(Z Xl->
i=1 =1
n Xj are independent,
Let X; = ith trial is heads = Z Var(X;) therefore variance of sum
X;~Ber(p) = = sum of variance

Var(X;) = p(1—p) n
— z p(1—p) Variance of Bernoulli
X; are independent t=1

by definition
(by ) =np(1 —p)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 35




Zero covariance does not imply independence

Let X take on values {—1,0,1}
with equal probability 1/3.

1 ifX =20

Define Y =
| {O otherwise

What is the joint PMF of X and Y?

N

tt

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 36
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Zero covariance does not imply independence

Let X take on values {—1,0,1} 1 Eg[x] = E[Y] =
with equal probability 1/3.
Define Y = {é t:X = 0
otherwise o E[XY] =
1 0 1
| 3. Cov(X,Y) =
. 0 |13 0 1/3|2/3 Marginal
PMF of
0 1/3 0 [1/3 vy ()
1/3 1/3 1/3 4. Are X and Y independent?
Marginal PMF D>
of X, px (x) ‘

S

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 37



Zero covariance does not imply independence

Let X take on values {—1,0,1}
with equal probability 1/3.
1 ifX=0

Define Y =
| {0 otherwise

-1 0] 1
O | 1/3 1/3
O 1/3 O
1/3 1/3 1/3

Marginal PMF
of X, px(x)

Marginal
PMF of

Y, py (¥)

2/3
1/3

Lisa Yan, Chris Piech, Mehran

E[X] = E[Y] =
() +0()+1(z)=0 o5 +1(3)=1s3
E[XY] = (—1.0)(%)+(o-1)(§)+(1 0)( )
— 0

Cov(X,Y) = E[XY] — E[X]E[Y]
=0-0(1/3) =0

does not imply
independence!

Are X and Y independent? 3¢
PY=0X=1)=1
+ P(Y=0)=2/3

Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 3s



Correlation




Covarying humans

Cov(X,Y) = E[(X — E[XD(Y — E[Y])]
= E[XY] — E[X]E[Y]

What is the covariance of
weight W and height H?

Cov(W,H) = E[WH] — E[W]E[H]

= 3355.83 — (62.75)(52.75)

= 45.77 (positive)

What about weight (Ib) and
height (cm)?

Cov(2.20W, 2.54H)

= E[2.20W - 2.54H] — E[2.20W]E[2.54H] = .o,
= 18752.38 — (138.05)(133.99)

= 255.06 (positive)
| Covariance depends
on units!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

__70 -

)

O

S

260 1

T 50 -

<

o

£ 40 : . , ,

45 55 65 75 85
Weight W (kilograms)

180 -

§ 160 1 . .
L 4
T 140 - ¢ @ .
ey TS *
2120 1 * e
L L
100 120 140 160 180
Weight W (Ib)

Sign of covariance (+/-) more
meaningful than magnitude

Stanford University 4o



Correlation

The correlation of two variables X and Y is:

Cov(X,Y) 2 var
p(X, Y) — JXZ;V (X),
Ox Oy Y

Note: —1 < p(X,Y) <1

Correlation measures the linear relationship between X and Y:

p(X,Y)=1 = Y = aX + b,where a = oy /oy
p(X,Y)=—-1 =Y =aX+ b,wherea = —oy/oy
p(X,Y)=0 = “uncorrelated” (absence of linear relationship)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 41



: A p(X,Y) =1

Correlation reps 5 p(XY) = —1
C. p(X,Y) =0

What is the correlation coefficient p(X,Y)? D. Other

1.
4 \\\ 2- i /’

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 42



Correlation reps

What is the correlation coefficient p(X,Y)?

6
1.
.
4

B.p(X,Y) =-1
Y=—aX+0b
a>0
C.p(X,Y)=0

“uncorrelated”

2.

A p(X,Y) =1
B, p(X,Y) =-1
C. pX,Y)=0
D. Other
A pX,Y) =1
Y=aX+0b
a>0
C.p(X,Y)=0
Y = X?

X and Y can be nonlinearly related even if p(X,Y) = 0.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Stanford University 43




Throwback to CS103: Conditional statements

Statement P — Q: Independence - No correlation
Contrapositive =Q — —P: Correlation > Dependence & (logically
equivalent)
Inverse =P — —0Q: Dependence - Correlation X (not aiways)
Y = X2
p(X,Y)=0
Converse ) — P: No correlation = Independence X (not always)
Slide 45

"Correlation does not imply causation”

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 44



Spurious Correlations

p(X,Y) is used a lot to statistically quantify the relationship b/t X and Y.

Correlation:
0.947091

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Spurious correlations

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 45
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Spurious Correlations

p(X,Y) is used a lot to statistically quantify the relationship b/t X and Y.

Correlation: Per capita cheese consumption

correlates with

0.947091 Number of people who died by becoming tangled in their bedsheets

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
33lbs 800 deaths
o w
2 a
= w
2 3
g 31.5lbs 600 deaths B
o Y
v 5
& 30lbs 400 deaths gz
w
28.5lbs 200 deaths
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-8~ Bedsheet tanglings —#- Cheese consumed SDU rious correlations
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Divorce vs. Margarine

Divorce rate

Per capita

consumption of

in Maine per L 3
1,000 people Correlation: 99%
5.25 10
5.00
8
475
4.50 N\ y |-
4.25 \ ~
4.00
2
3.75
3.50 0
2000 01 02 TOgIWeLgEeeneSes08 Y 07 0 08 .09

Source: US Census, USDA, tylervigen.com

margarine (Ibs)

SPL

http://www.bbc.com/news/magazine-27537142

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021
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Arcade revenue vs. CS PhDs

Correlation:
0.947091

$2 billion
$1.75 billion

$1.5 billion

Arcade revenue

$1.25 billion

$1 billion

2000

2000

Total revenue generated by arcades
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Expectation of product of independent RVs

It X'and Y are E[XY] = E[X]E[Y]
ndependent,then — glg(X)h(Y)] = E[g(X)]E[R(Y)]
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Variance of Sums of Variables
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. Symmetry of covariance
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