

Where are we now? A roadmap of CS109

Last week: Joint distributions

 $p_{X,Y}(x, y)$

Today: Statistics of multiple RVs! $Var(X + Y)$ $E[X+Y]$ $Cov(X, Y)$ $\rho(X,Y)$

Next Week: Modeling with Bayesian Networks

Friday: Conditional distributions $p_{X|Y}(x|y)$ $E[X|Y]$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Expectation of Common RVs

3

Linearity of Expectation is useful

Expectation is a linear mathematical operation. If $X = \sum_{i=1}^{n} X_i$:

$$
E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]
$$

- Even if you don't know the distribution of X (e.g., because the joint distribution of $(X_1, ..., X_n)$ is unknown), you can still compute expectation of $X!!$
- Problem-solving key: Define X_i such that

$$
X = \sum_{i=1}^{n} X_i
$$

Most common use cases:

• $E[X_i]$ easy to calculate

Or sum of dependent RVs

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Don't we already know linearity of expectation?

Expectation is a linear mathematical operation. If $X = \sum_{i=1}^{n} X_i$: $E[X] = E \mid \sum$ $i=1$ \overline{n} $X_i \Big| = \Big| \Big\}$ $i=1$ \overline{n} $E[X_i]$

We covered this back in Lecture 6 (when we first learned expectation)!

- Proved binomial: sum of 1s or 0s
- Hat check (section): sum of 1s or 0s
- We ignored (in)dependence of **events**.

Why are we learning this again?

- Well, now we can prove it!
- We can now ignore any random variables dependencies!
- Our approach is still the same!

exclamation point jackpot

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Proof of expectation of a sum of RVs
\n
$$
E[X+Y] = \sum_{x} \sum_{y} (x+y)p_{X,Y}(x,y)
$$
\n
$$
= \sum_{x} \sum_{y} xp_{X,Y}(x,y) + \sum_{x} \sum_{y} yp_{X,Y}(x,y)
$$
\n
$$
= \sum_{x} x \sum_{y} p_{X,Y}(x,y) + \sum_{y} y \sum_{x} p_{X,Y}(x,y)
$$
\n
$$
= \sum_{x} x \sum_{y} p_{X,Y}(x,y) + \sum_{y} y \sum_{x} p_{X,Y}(x,y)
$$
\n
$$
= \sum_{x} x p_{X}(x) + \sum_{y} yp_{Y}(y)
$$
\n
$$
= E[X] + E[Y]
$$
\n
$$
= E[X] + E[Y]
$$
\nUsing real PMFs for X and Y

Expectations of common RVs: Binomial

 $X \sim Bin(n, p)$ $E[X] = np$ # of successes in *n* independent trials with probability of success p

Recall: $\text{Bin}(1, p) = \text{Ber}(p)$

$$
X = \sum_{i=1}^{n} X_i
$$

 $E[X] = E\left[\sum_{i=1}^{N}$ $i = 1$ \overline{n} $X_i \Big| = \sum$ $i = 1$ \overline{n} $E[X_i] = \sum$ $i = 1$ \overline{n} $p = np$ Let $X_i = i$ th trial is heads X_i ~Ber (p) , $E[X_i] = p$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Expectations of common RVs: Negative Binomial

$$
Y \sim \text{NegBin}(r, p) \quad E[Y] = \frac{r}{p}
$$

of independent trials with probability of success p until r successes

Recall: NegBin $(1, p)$ = Geo (p)

$$
Y = \sum_{i=1}^{?} Y_i
$$

1. How should we define Y_i ?

2. How many terms are in our summation?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Expectations of common RVs: Negative Binomial

$$
Y \sim \text{NegBin}(r, p) \quad E[Y] = \frac{r}{p}
$$

Recall: NegBin $(1, p)$ = Geo (p)

$$
Y = \sum_{i=1}^{?} Y_i
$$

Let $Y_i = #$ trials to get *i*th success (after $(i - 1)$ th success) $Y_i \sim \text{Geo}(p)$, $E[Y_i] = \frac{1}{n}$ \overline{p} $E[Y] = E\Big|\sum$ $i = 1$ \boldsymbol{r} Y_i = \sum $i = 1$ \boldsymbol{r} $E[Y_i] = \sum$ $i = 1$ \boldsymbol{r} 1 \overline{p} = \boldsymbol{r} \overline{p}

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Stanford University 9

of independent trials with probability

of success p until r successes

Coupon Collecting Problems

Linearity of Expectation is useful

Expectation is a linear mathematical operation. If $X = \sum_{i=1}^{n} X_i$:

$$
E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]
$$

- Even if you *don't know* the distribution of X (e.g., because the joint distribution of $(X_1, ..., X_n)$ is unknown), you can still compute *expectation* of the sum!
- Problem-solving key: Define X_i such that

$$
X = \sum_{i=1}^{n} X_i
$$

Most common use cases:

• $E[X_i]$ easy to calculate

• Or sum of dependent RVs

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Coupon collecting problems: Server requests

The coupon collector's problem in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons
- For each box you buy, you "collect" a coupon of type i .
- 1. How many coupons do you expect after buying n boxes of cereal?

requests k servers Servers request to server i

What is the expected number of utilized servers after n requests?

52% of Amazon profits

** more profitable than Amazon's North America commerce operations

[sourc](http://www.zdnet.com/article/amazons-finds-its-profit-horse-in-aws-why-its-so-disruptive-to-its-old-guard/)e

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

nazon

web services[™]

Computer cluster utilization

$$
E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]
$$

Consider a computer cluster with k servers. We send n requests.

- Requests independently go to server *i* with probability p_i
- Let $X = #$ servers that receive ≥ 1 request.

What is $E[X]$?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Computer cluster utilization

$$
E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]
$$

Consider a computer cluster with k servers. We send n requests.

- Requests independently go to server *i* with probability p_i
- Let $X = #$ servers that receive ≥ 1 request.

What is $E[X]$?

1. Define additional random variables.

2. Solve.

Let:
$$
A_i
$$
 = event that server *i* $E[X_i] = P(A_i)$
receives ≥ 1 request X_i = indicator for A_i $E[X] = E\left[\sum_{i=1}^{k} A_i\right]$

$$
P(A_i) = 1 - P(\text{no requests to } i)
$$

= 1 - (1 - p_i)ⁿ

$$
\begin{aligned}\n\text{every } i & E[X_i] = P(A_i) = 1 - (1 - p_i)^n \\
\text{request} \\
A_i & E[X] = E\left[\sum_{i=1}^k X_i\right] = \sum_{i=1}^k E[X_i] = \sum_{i=1}^k (1 - (1 - p_i)^n) \\
\text{quests to } i & \text{if } i = 1\n\end{aligned}
$$

Note: A_i are dependent!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Coupon collecting problems: Hash tables

The coupon collector's problem in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons
- For each box you buy, you "collect" a coupon of type i .
- 1. How many coupons do you expect after buying n boxes of cereal?
- 2. How many boxes do you expect to buy until you have one of each coupon?

What is the expected number of utilized servers after n requests?

What is the expected number of strings to hash until each bucket has ≥ 1 string?

Hash Over Hashing

Let's take a 90-second break to take in a lemon poppy seed muffin and some English breakfast tea.

Once we've nourished and hydrated, we'll come back and take on this next problem about hash tables.

Hash Tables

$$
E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]
$$

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let $Y = #$ strings to hash until each bucket ≥ 1 string.

What is $E[Y]$?

1. Define additional random variables.

How should we define
$$
Y_i
$$
 such that $Y = \sum Y_i$?

2. Solve.

 \mathbf{i}

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Hash Tables

$$
E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]
$$

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let $Y = #$ strings to hash until each bucket ≥ 1 string.

What is $E[Y]$?

1. Define additional random variables.

Let: $Y_i = #$ of trials to get success after *i*-th success

• Success: hash string to previously empty bucket

• If *i* non-empty buckets:
$$
P(\text{success}) = \frac{k-i}{k}
$$

2. Solve.

$$
P(Y_i = n) = \left(\frac{i}{k}\right)^{n-1} \left(\frac{k-i}{k}\right)
$$

Equivalently,
$$
Y_i \sim \text{Geo}\left(p = \frac{k-i}{k}\right)
$$
 $E[Y_i] = \frac{1}{p} = \frac{k}{k-i}$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Hash Tables

$$
E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]
$$

Consider a hash table with k buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let $Y = #$ strings to hash until each bucket ≥ 1 string.

What is $E[Y]$?

1. Define additional Let: $Y_i = #$ of trials to get success after *i*-th success random variables. $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 1 \overline{k}

$$
Y_i \sim \text{Geo}\left(p = \frac{K - l}{k}\right), \qquad E[Y_i] = \frac{1}{p} = \frac{K}{k - i}
$$

2. Solve.
$$
Y = Y_0 + Y_1 + \dots + Y_{k-1}
$$

\n
$$
E[Y] = E[Y_0] + E[Y_1] + \dots + E[Y_{k-1}]
$$
\n
$$
= \frac{k}{k} + \frac{k}{k-1} + \frac{k}{k-2} + \dots + \frac{k}{1} = k \left[\frac{1}{k} + \frac{1}{k-1} + \dots + 1 \right] = O(k \log k)
$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Covariance

Statistics of sums of RVs

For any random variables X and Y ,

$$
E[X + Y] = E[X] + E[Y]
$$

$$
Var(X + Y) = ?
$$

But first… a new statistic!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Spot the difference

Both distributions have the same $E[X], E[Y], Var(X)$, and Var(Y)

Difference: how the two variables vary with *each other*.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Covariance

The covariance of two variables X and Y is:

$$
Cov(X, Y) = E[(X - E[X])(Y - E[Y])]
$$

$$
= E[XY] - E[X]E[Y]
$$

Proof of second part:

$$
Cov(X, Y) = E[(X - E[X])(Y - E[Y])]
$$

= $E[XY - XE[Y] - E[X]Y + E[X]E[Y]]$
= $E[XY] - E[XE[Y]] - E[E[X]Y] + E[E[X]E[Y]]$
= $E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y]$
= $E[XY] - E[X]E[Y]$

(linearity of expectation) $(E[X], E[Y]$ are scalars)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Covariance

The covariance of two variables X and Y is:

$$
Cov(X, Y) = E[(X - E[X])(Y - E[Y])]
$$

=
$$
E[XY] - E[X]E[Y]
$$

Covariance measures how one random variable varies with a second.

- Outside temperature and utility bills have a negative covariance.
- Handedness and musical ability have near zero covariance.
- Product demand and price have a positive covariance.

Covarying humans

Feel the covariance

 $Cov(X, Y) = E[(X - E[X])(Y - E[Y])]$ $= E[XY] - E[X]E[Y]$

Is the covariance positive, negative, or zero?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Feel the covariance

 $Cov(X, Y) = E[(X - E[X])(Y - E[Y])]$ $= E[XY] - E[X]E[Y]$

Is the covariance positive, negative, or zero?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Properties of Covariance

The covariance of two variables X and Y is:

$$
Cov(X, Y) = E[(X - E[X])(Y - E[Y])]
$$

$$
= E[XY] - E[X]E[Y]
$$

Properties:

- 1. $Cov(X, Y) = Cov(Y, X)$
- 2. $Var(X) = E[X^2] (E[X])^2 = Cov(X, X)$
- 3. Covariance of sums = sum of all pairwise covariances $Cov(X_1 + X_2, Y_1 + Y_2) = Cov(X_1, Y_1) + Cov(X_2, Y_1) + Cov(X_1, Y_2) + Cov(X_2, Y_2)$ (proof left to you)
- 4. Covariance is non-linear: $Cov(aX + b, Y) = aCov(X, Y)$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

13d_variance_sum

Variance of sums of RVs

Statistics of sums of RVs

For any random variables X and Y ,

$$
E[X + Y] = E[X] + E[Y]
$$

$$
Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)
$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Variance of general sum of RVs

For any random variables X and Y ,

$$
\text{Var}(X + Y) = \text{Var}(X) + 2 \cdot \text{Cov}(X, Y) + \text{Var}(Y)
$$

Proof:

$$
Var(X + Y) = Cov(X + Y, X + Y)
$$

\n
$$
= Cov(X, X) + Cov(X, Y) + Cov(Y, X) + Cov(Y, Y)
$$

\n
$$
= Var(X) + 2 \cdot Cov(X, Y) + Var(Y)
$$

\n
$$
= Var(X) + 2 \cdot Cov(X, Y) + Var(Y)
$$

\n
$$
Cov(X, X) = Var(X)
$$

\n
$$
Cov(X, X) = Var(X)
$$

More generally:

$$
\text{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \text{Var}(X_i) + 2\sum_{i=1}^{n} \sum_{j=i+1}^{n} \text{Cov}\left(X_i, X_j\right) \text{ (proof in extra slides)}
$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Statistics of sums of RVs

For any random variables X and Y ,

$$
E[X + Y] = E[X] + E[Y]
$$

$$
Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)
$$

For independent X and Y , $E[XY] = E[X]E[Y]$

(Lemma: proof in extra slides)

$$
\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)
$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Variance of sum of independent RVs

For independent X and Y ,

$$
\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)
$$

Proof:

1. $Cov(X, Y) = E[XY] - E[X]E[Y]$ $= E[X]E[Y] - E[X]E[Y]$ $= 0$

def. of covariance

 X and Y are independent

```
2. Var(X + Y) = Var(X) + 2 \cdot Cov(X, Y) + Var(Y)= Var(X) + Var(Y)
```
Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

NOT bidirectional: $Cov(X, Y) = 0$ does NOT imply independence of X and $Y!$

Proving Variance of the Binomial

 $X \sim Bin(n, p)$ Var $(X) = np(1-p)$

Factors of Binomial Coefficient: $k\binom{n}{k} = n\binom{n-1}{k-1}$

Change of limit: term is zero when $k-1=0$

Definition of Binomial Distribution: $p + q = 1$

putting $j = k - 1, m = n - 1$

splitting sum up into two

Factors of Binomial Coefficient: $j\binom{m}{i} = m\binom{m-1}{i-1}$

Change of limit: term is zero when $j - 1 = 0$

Binomial Theorem

as $p + q = 1$ by algebra

Let's instead prove this using independence and variance!

Then

as required

 $var(X) = E(X^2) - (E(X))^2$

 $= np(1-p)$

 $= np(1-p) + n^2 p^2 - (np)^2$ Expectation of Binomial Distribution: E (X) = np

proofwiki.org

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Proving Variance of the Binomial

 $X \sim Bin(n, p)$ Var $(X) = np(1-p)$

Let
$$
X = \sum_{i=1}^{n} X_i
$$

 $\boldsymbol{\eta}$

Let $X_i = i$ th trial is heads $X_i \sim Ber(p)$ $Var(X_i) = p(1-p)$

> X_i are independent (by definition)

$$
X = \sum_{i=1}^{n} X_i
$$

\nwith trial is heads
\n
$$
X_i \sim \text{Ber}(p)
$$

 X_i are independent, therefore variance of sum = sum of variance

Variance of Bernoulli

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

 $= np(1-p)$

Zero covariance does **not** imply independence

Let X take on values $\{-1,0,1\}$ with equal probability 1/3. Define $Y = \{$ 1 if $X = 0$ 0 otherwise

What is the joint PMF of X and Y ?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Zero covariance does not imply independence

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Zero covariance does not imply independence

Let X take on values $\{-1,0,1\}$ with equal probability 1/3. Define $Y = \{$ 1 if $X = 0$ 0 otherwise -1 0 1 $0 \mid 1/3 \mid 0 \mid 1/3 \mid 2/3$ $1 \mid 0 \mid 1/3 \mid 0 \mid 1/3 \mid$ 1/3 1/3 1/3 \boldsymbol{X} ≻ Marginal PMF of X, $p_X(x)$ Marginal PMF of $Y, p_{V}(y)$ 1. $E[X] = E[Y] =$ 3. Cov $(X, Y) = E[XY] - E[X]E[Y]$ 4. Are X and Y independent? \blacktriangleright −1 1 $\frac{1}{3}$ + 0 1 $\frac{1}{3}$ + 1 1 3 $= 0$ 0 2 $\frac{1}{3}$ + 1 1 3 $= 1/3$ 2. $E[XY] = (-1.0$ 1 $\frac{1}{3}$ + $(0 \cdot 1)$ 1 $\frac{1}{3}$ + $(1 \cdot 0)$ 1 3 $= 0$ $= 0 - 0(1/3) = 0$
 $\bigwedge_{\text{independence}}^{\text{does not imply}}$ $P(Y = 0 | X = 1) = 1$ \neq $P(Y = 0) = 2/3$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Correlation

Covarying humans

Stanford University 40

 $Cov(X, Y) = E[(X - E[X])(Y - E[Y])]$

 $= E[XY] - E[X]E[Y]$

Correlation

The correlation of two variables X and Y is:

$$
\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y} \qquad \qquad \sigma_Y^2 = \text{Var}(X),
$$

$$
\sigma_Y^2 = \text{Var}(Y)
$$

- Note: $-1 \leq \rho(X, Y) \leq 1$
- Correlation measures the linear relationship between X and Y :

$$
\rho(X, Y) = 1 \implies Y = aX + b, \text{where } a = \sigma_Y/\sigma_X
$$

\n
$$
\rho(X, Y) = -1 \implies Y = aX + b, \text{where } a = -\sigma_Y/\sigma_X
$$

\n
$$
\rho(X, Y) = 0 \implies \text{"uncorrelated" (absence of linear relationship)}
$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Correlation reps

What is the correlation coefficient $\rho(X, Y)$?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Throwback to CS103: Conditional statements

"Correlation does not imply causation"

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Spurious Correlations

 $\rho(X, Y)$ is used a lot to statistically quantify the relationship b/t X and Y.

Correlation: 0.947091

Spurious Correlations

 $\rho(X, Y)$ is used a lot to statistically quantify the relationship b/t X and Y.

Divorce vs. Margarine

[http://www.bbc.com/news/magazine-2753714](http://www.bbc.com/news/magazine-27537142)2

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Arcade revenue vs. CS PhDs

[Spurious correlation](https://www.tylervigen.com/spurious-correlations)s

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Stanford University 48

Extras

Expectation of product of independent RVs

If X and Y are
\nindependent, then
\n
$$
E[g(X)h(Y)] = E[g(X)]E[h(Y)]
$$
\nProof: $E[g(X)h(Y)] = \sum_{y} \sum_{x} g(x)h(y)p_{X,Y}(x, y)$ (for continuous proof, replace
\nsummations with integrals)
\n
$$
= \sum_{y} \sum_{x} g(x)h(y)p_{X}(x)p_{Y}(y)
$$
\nand Y are independent
\n
$$
= \sum_{y} \left(h(y)p_{Y}(y) \sum_{x} g(x)p_{X}(x) \right)
$$
\n
$$
= \left(\sum_{x} g(x)p_{X}(x) \right) \left(\sum_{y} h(y)p_{Y}(y) \right)
$$
\n
$$
= \sum_{x} E[g(X)]E[h(X)]_{\text{slipy (Sall) S, Vinter (Sall S), Winter 2Q21}} \text{Summations separate}
$$
\nStransd University so

Variance of Sums of Variables

$$
\text{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \text{Var}(X_i) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \text{Cov}\left(X_i, X_j\right)
$$

Proof:

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) \stackrel{\text{val}(X)}{\leq} \operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}\right) \stackrel{\text{cov}^{\text{alpha}}\text{ial}}{\leq} \sum_{i=1}^{\text{val} \text{val} \text{val} \text{val} \text{val}} \sum_{i=1}^{\text{loc}} \sum_{j=1}^{\text{val} \text{val} \text{val} \text{val} \text{val} \text{val} \text{val} \text{val}} \operatorname{Cov}(X_{i}, X_{j})
$$
\n
$$
= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \operatorname{Cov}(X_{i}, X_{j}) \qquad \text{Symmetry of covariance}
$$
\n
$$
= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}(X_{i}, X_{j}) \qquad \text{Adjust summation bounds}
$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021