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Inference

WeoMD
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Inference

WebMD Sym ptom Checker withsooy map

CONDITIONS DETAILS TREATMENT

What are your symptoms? W
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Inference

Strep

Throat . )
General inference question:

Under- Given the values of some random
grad variables, what are the conditional
distributions of some other random

variables?

Sore
Throat
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Inference

=
Throat One inference question:
S
grad P(F=1IN=1,T=1)
‘ P(F=1,N=1T=1)
T P(N=1T=1)
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Throat



Inference

Strep

Throat Another inference question:
Under-
grad P(CO=1,U=1|5=O;F3=O)

_P(C,=1,U=1,5=0,F,=0)

P(S=0,F, = 0)

Sore
Throat
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Inference

If we knew the joint distribution,

we can answer all probabilistic
@ ﬂ inference questions.
Throat
‘ under.\ What is the size of the joint
N=9 srad | Probability table?
all binary RVs 2N~1 entries

N? entries
2N entries
None/other/don’t know

Sore ’

Throat ;@4
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Inference

If we knew the joint distribution,

we can answer all probabilistic
@ Strep inference questions.
Throat
under- \ What is the size of the joint
N=9 srad | Probability table?
all binary RVs 2N~1 entries

N? entries

2N entries

None/other/don’t know
Sore . . . .
Throat Naively specifying a joint distribution

is, in general, intractable.
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N can be large...
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Conditionally Independent RVs

Conditional Distributions Independent RVs
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Conditionally Independent RVs

Recall that two events A and B are _
conditionally independent given E if: P(AB|E) = P(A|E)P(BIE)

n discrete random variables X, X, ..., X,, are called conditionally
independent given Y if:
forall xq,x,, ..., X, V-

n
P(X{=x,X, =%y, ..., X, =x,|Y =y) = HP(Xi = x;|Y = y)
i=1

This implies the following (cool to remember for later):

n
logP(X; = x1,X;, = X9, e, Xy = x,|Y = y) = z logP(X; = x;|Y = y)
i=1
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Review: Independence of multiple random variables

Recall independence of forr=1,.. n:
nevents £, E,, ..., Ey: for every subset Eq, E,, ..., E;-:
P(Ey, Ey, ..., Er) = P(E1)P(E;) - P(E;)

We have independence of n discrete random variables X4, X5, ..., X, if
forall x{, x5, ..., X"

n
P(Xl — xl,XZ — xZ, ""XTl — xn) — HP(Xl — xl)
i=1
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Bayesian
Networks




A simpler WebMD

Under-

grad Great! Just specify 2% = 16 joint
probabilities...?
P(F, =aF,=bU=cT=d)

‘ ‘ What would a Stanford flu expert do”?

Describe the joint distribution using
causality!
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Constructing a Bayesian Network

What would a Stanford flu expert do?

Under- Describe the joint distribution using
grad causality.

Assume conditional independence.

Provide P(values|parents) for each
random variable

(D=
()=
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Constructing a Bayesian Network

In @ Bayesian Network,
Under. Each random variable is
srad conditionally independent of its
non-descendants, given its parents.

* Node: random variable
* Directed edge: conditional dependency

(D=
()=

Examples:
© P(Fepy = 1T =0,Fy =1) = P(Fep, = 1|F, = 1)
¢ P(Flu:].,U:O):P(Flu:].)P(U:O)
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Constructing a Bayesian Network

P(F, =1)=0.1 P(U=1)=0.8

What would a Stanford flu expert do?

Under- 1. Describe the joint distribution using
grad causality.

2. Assume conditional independence.
3. Provide P(values|parents) for each
random variable

What conditional probabilities
should our expert specify?

(D=
()=

P(F,, =1|Fy =1) = 0.9
P(F,, = 1|F;y = 0) = 0.05

0/
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Constructing a Bayesian Network

P(Fp=1)=01  P(U=1)=08 What would a Stanford flu expert do?

Under- Describe the joint distribution using
grad causality.

Assume conditional independence.

Provide P(values|parents) for each
random variable

What conditional probabilities
should our expert specify?

P(T =1|F, =0,U = 0)
P(T=1|F, =0,U=1)
P(Foy = 1|Fp, =1) =09 P(T = 1|Fiu =1,U = 0)
P(Fey = 1|Fy, = 0) = 0.05 P(T =1|F, =1,U = 1)

(D=2
(=01
<
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Using a Bayes Net

P(Fp, =1) =01 P(U=1)=08 What would a CS109 student do?

1. Populate a Bayesian network by
asking a Stanford flu expert
or
by using reasonable assumptions

Under-
grad

2. Answer inference questions

0)
(/,f

0., %
%, %

(D=
()=

P(Fev= 1|Fy, = 1) =0.9 P(T = 1|Flu=0;U=O) = 0.1
P(Fpy, = 1|F;,, = 0) = 0.05 P(T=1|F, =0U=1)=038
P(T=1|F,=1,U=0)=09
P(T=1|F,=1,U=1)=1.0
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Inference (I):
Math




Bayes Nets: Conditional independence Review

In a Bayesian Network,
Under. Each random variable is
srad conditionally independent of its
non-descendants, given its parents.

* Node: random variable
* Directed edge: conditional dependency

(D=
()=
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Inference via math

P(F, =1)=0.1 PU=1)=08
1. P(Fp=0,U=1F, =0T=1)?

Under- . -
grad Compute joint probabilities

using chain rule.

(D=
()=

P(F,, =1|F, =1)=09 P = 1|Fyy, = 0,U = 0) = 0.1
P(F,, = 1|Fy = 0) = 0.05 FPT =1lF,=0U=1)=08
P(T=1|F, =1U=0)=09
P(T=1|F,=1U=1)=1.0
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Inference via math

P(F, =1)=0.1 PU=1)=0.8
2. P(Fy =1|F,, =0,U=0,T =1)?

Under- o -
grad 1. Compute joint probabilities

P(Fy=1,F,=0U=0,T=1)
P(F, =0,F,=0U=0T=1)

2. Definition of conditional probability

P(Fy,=1F,=0U=0T=1)

(D=
()=

Y P(Fy, =xF,,=0U=0T=1)

P(F,, =1|Fy, =1)=09 PT=1F,=0U=0)=0.1

P(F,, = 1|Fy, = 0) = 0.05 PT =1|Fp=0U=1) =08 — 0.095
P(T=1|F,=1,U=0)=09
P(T=1|F,=1U=1)=1.0
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Inference via math

P(Fy =1)=0.1 P(U=1)=08

3. P(Fp, =1U=1T=1)7?
Under-
grad

(D=
()=

P(F,, =1|F, =1)=09 P = 1|Fyy, = 0,U = 0) = 0.1
P(F,, = 1|Fy = 0) = 0.05 FPT =1lF,=0U=1)=08
P(T=1|F, =1U=0)=09
P(T=1|F,=1U=1)=1.0
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Inference via math

P(F, =1)=0.1 PU=1)=0.8
3. P(F,=1U=1T=1)?

Under- o -
grad 1. Compute joint probabilities

P(Fy=1U=1F,=1T=1)

P(F,,=0,U=1,F,, =0T =1)?

2. Definition of conditional probability
ZyP(qu =1,U=1F,,=y,T=1)

ZnyP(qu =x,U=1F,,=y,T=1)

(D=
()=

P(F,, =1|Fy,=1) =09 PT=1F,=0U=0)=01

_ N P(T=1|F,=0,U=1)=0.8
P(F,, = 1|F,, = 0) = 0.05 lu —
(ev | lu ) P(T= 1|Flu= 1,U=O) —~ 0.9 — 0122

P(T=1|F,=1U=1)=1.0
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Let’s take a two-minute break to brush our

- teeth and gargle with plaque-deterring
BayeSIan peppermint mouthwash.

Brain
Food

Once our teeth are clean and our breath
minty fresh, we’ll come back and take on
this next problem about Bayesian Inference.

&




Inference via math

P(F, =1)=0.1 P(U=1)=0.8

P(F, =1|F,,=1,U=1,T = 1)?
Under-
grad

(D=
()=

P(F,, =1|F, =1)=09 P = 1|Fyy, = 0,U = 0) = 0.1
P(F,, = 1|Fy = 0) = 0.05 FPT =1lF,=0U=1)=08
P(T=1|F, =1U=0)=09
P(T=1|F,=1U=1)=1.0
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Inference via math

P(Fp, =1)=0.1 P(U=1)=0.8

P(F, =1|F,,=1,U=1,T = 1)?
Under-

grad

(D=
()=

P(Fev= 1|Fy, = 1) =0.9 P(T = 1|Flu=0;U=O) = 0.1
P(Fpy, = 1|F;,, = 0) = 0.05 P(T=1|F, =0U=1)=038
P(T=1|F,=1,U=0)=09
P(T=1|F,=1,U=1)=1.0
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Inference via math Review

P(F, =1)=0.1 PU=1)=08

Under-
OR©
Whatis P(F;, = 1|U = 1,T = 1)?
(from earlier slide)

P(F,, =1|F, =1)=09 P = 1|Fyy, = 0,U = 0) = 0.1
P(F,, = 1|Fy = 0) = 0.05 FPT =1lF,=0U=1)=08
P(T=1|F, =1U=0)=09
P(T=1|F,=1U=1)=1.0
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Inference via math

P(F, =1)=0.1 P(U=1)=08

Under-
grad

(D=
()=

P(F,, =1|Fy,=1) =09 PT=1F,=0U=0)=01
P(Fpy, = 1|F;,, = 0) = 0.05 P(T=1|F, =0U=1)=038
P(T=1|F,=1,U=0)=09
P(T=1|F,=1,U=1)=1.0

Solving inference questions
precisely is possible, but
sometimes tedious.

Can we use sampling

to solve inference questions
approximately, but with high
enough confidence that it
deserves to be taught in
CS109?

Yes!
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Rejection sampling algorithm

P(F,=1)=01  PWU=1)=08

Under-
grad
Step O:

Have a fully specified
Bayesian Network

(D=
()=

0 —

P(F,, =1|Fy,=1) =09 FPT=1F,=0U=0)=0.
P(Fev=1|F1u=0)=0.05 P(T=1|Flu=O;U=1) 0
P(T=1|F, =1U=0)=09
P(T=1|F,=1U=1)=1.0
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Rejection sampling algorithm

nference \what is P(Fy, = 1|U = 1,T = 1)?

question: [flu, und, fev, tir]
def rejection_sampling(event, observation): fgmpilng--i]
r ’ !
samples = sample_a_ton() » (o, 1, 0, 1]
[0, 1, 0, 1]
[0, O, O, 0]
[0, 1, 0, 1)
(0, 1, 1, 1]
[0, 1, 0, 0]
(1, 1, 1, 1]
[0, O, 1, 1]
[0' 1’ 0' 1]
Finished sampling
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Rejection sampling algorithm

N_SAMPLES = 100000
# Method: Sample a ton

# create N_SAMPLES with likelihood proportional

# to the joint distribution
def sample_a_ton():

samples = []

for i in range(N_SAMPLES):

sample = make_sample() # a particle

samples.append(sample)
return samples

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

How do we construct a sample

(F, =a,U=D>b,F,,=c,T=d)
that respects all joint

| probability distributions?

Create a sample using the Bayesian Network!!

Stanford University 34




Rejection sampling algorithm

# Method: Make Sample

# construct one sample from the joint distribution
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors

flu = bernoulli(0.1)

und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev bernoulli(0.9)
else: fev bernoulli(0.05)

choose tired based on (undergrad and flu)

TODO: fill in

a sample from the joint has an

#
#
#
#
#
#
# assignment to xallx random variables

return [flu , U nd ’ fev , Li& fioi” dhris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

P(F,=1)=01 PWU=1)=038

Under-
grad

D=
—(

P(F,, = 1|Fy, = 1) = 0.9
P(F,, = 1|F;, = 0) = 0.05

P(T =1|F;y =0,U = 0) = 0.1
P(T=1|Fy=0U=1)=0.8
P(T =1|Fy =1,U=10) =09
P(T =1|Fp =10 =1) =10

anford University 35



Rejection sampling algorithm

# Method: Make Sample P(F,=1) =01 P(U=1)=0.8

Under-
grad

# create a single sample from the joint distributior
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors

flu = bernoulli(0.1)

und bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev bernoulli(0.9)

U O

else: fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)

# P(F,, =1|F, =1)=0.9

# TODO: fill in P(F,, = 1|F;, = 0) = 0.05

’ P(T = 1|Fy = 0,U = 0) = 0.1
P(T=1|F,=0,U=1)=0.8

# a sample from the joint has an P(T=1|Fy,=1U=0)=09

# assignment to *xallx random variables P(T=1|Fy=1U=1)=1.0

return [flu, und, fev, ud®rdisriccn, menran sanami, and ery cain cs109, winter 2021 Ytanford University 36



Rejection sampling algorithm

# Method: Make Sample

# create a single sample from the joint distributior
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors

flu = bernoulli(0.1)

und bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else: fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)

# P(Fev—llFlu—l)—Og

# TODO: fill in P(F,, = 1|F;, = 0) = 0.05

’ P(T = 1|Fy, = 0,U = 0) = 0.1
P(T=1|F,=0,U=1)=0.8

# a sample from the joint has an P(T =1|F,, =1,U=0)=0.9

# assignment to xallx random variables P(T=1|Fy =1,U=1)=1.0

return [flu, und, fev, ud®rdisriccn, menran sanami, and ery cain cs109, winter 2021 uStanford University 37



Rejection sampling algorithm

# Method: Make Sample

# create a single sample from the joint distributior
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors

flu = bernoulli(0.1)

und bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else: fev = bernoulli(0.05)

choose tired based on (undergrad and flu)

TODO: fill in

a sample from the joint has an
assignment to xallx random variables
return [flu , U nd ’ fev , Li& 4~ dhris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

#
#
#
#
#
#
#

P(T = 1|F,, =0,U =0) = 0.1
P(T =1|F, =0,U=1) = 0.8
P(T =1|F,, = 1,U =0) = 0.9
P(T =1|Fy =1,U=1) = 1.0

anford University 38



Rejection sampling algorithm

# Method: Make Sample

# create a single sample from the joint distributior
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors

flu = bernoulli(0.1)

und bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else: fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)

if flu == 0 and und == 0: tir bernoulli(0.1
elif flu == @ and und == 1: tir bernoulli(0.8
elif flu == 1 and und == 0: tir bernoulli(0.9
else: tir bernoulli(1.0

)
)
)
)

# a sample from the joint has an
# assignment to xallx random variables
return [flu , U nd ’ fev , Li& fioi” dhris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

P(T = 1|F,, =0,U =0) = 0.1
P(T =1|F,, =0,U=1)=0.8
P(T =1|F,, = 1,U =0) = 0.9
P(T =1|Fy =1,U=1) = 1.0

anford University 39



Rejection sampling algorithm

# Method: Make Sample

# create a single sample from the joint distributior
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors

flu = bernoulli(0.1)

und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else: fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)

if flu == 0 and und == 0: tir bernoulli(0.1
elif flu == 0 and und == 1: tir bernoulli(0.8
elif flu == 1 and und == 0: tir bernoulli(0.9
else: tir bernoulli(1.0

)
)
)
)

# a sample from the joint has an
# assignment to xallx random variables
return [flu, und, fev, tir] in CS109, Winter 2021

Stanford University 40



Rejection sampling algorithm

nference \what is P(Fy, = 1|U = 1,T = 1)?

question: [flu, und, fev, tir]
def rejection_sampling(event, observation): fgmpilng--i]
r ’ !
samples = sample_a_ton() » (o, 1, 0, 1]
[0, 1, 0, 1]
[0, O, O, 0]
[0, 1, 0, 1)
(0, 1, 1, 1]
[0, 1, 0, 0]
(1, 1, 1, 1]
[0, O, 1, 1]
[0' 1’ 0' 1]
Finished sampling

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 41



Rejection sampling algorithm

Inference

nrerenee Whatis P(F,, = 1|U = 1,T = 1)?

def rejection_sampling(event, observation):
samples = sample_a_ton()

samples_observation = ..
# number of samples with (U=1T=1)

samples_event =
# number of samples with (F, =1,U=1,T =1)

return len(samples_event)/len(samples_observation)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 42



Rejection sampling algorithm

Inference What iS P(Flu — 1|U — LT — 1)?

question:

def rejection_sampling(event, observation):
samples = sample_a_ton()

samples_observation =
reject_inconsistent(samples, observation)

samples_event =
# number of samples with (F, =1,U=1,T =1)

return len(samples_event)/len(samples_observation)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 43



Rejection sampling algorithm

Inference What iS P(Flu — 1|U — 1’T — 1)?

question:

def rejection_sampling(event, observation):
samples = sample_a_ton()

samples_observation =
reject_inconsistent(samples, observation)

samples_event =
# number of samples with (F, =1,U=1,T =1)

return len(samples_event)/len(samples_observation)

Keep only samples that are consistent
with the observation (U = 1,T = 1).

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 44



Rejection sampling algorithm

Inference What iS P(Flu — 1|U — 1’T — 1)?

question:

def rejection_sampling(event, observation):
samples = sample_a_ton()

samples_observation =
reject_inconsistent(samples, observation)

sanu;les__# Method: Reject Inconsistent

I

return U # Returns a list of consistent samples.
def reject_inconsistent(samples, outcome):
consistent_samples = []
for sample in samples: v U=1T=1)
if check_consistent(sample, outcome):
consistent_samples.append(sample)
return consistent_samples

# Rejects all samples that do not align with the outcome.

fy 45




Rejection sampling algorithm

Inference What iS P(Flu — 1|U — LT — 1)?

question:

def rejection_sampling(event, observation):
samples = sample_a_ton()

samples_observation =
reject_inconsistent(samples, observation)

samples_event =
reject_inconsistent(samples_observation, event)

return len(samples_event)/len(samples_observation)

Conditional event = samples with (F,, =1, U =1,T = 1).

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 46



Rejection sampling algorithm

Inference What iS P(Flu — 1|U — 1’T — 1)?

question:

def rejection_sampling(event, observation):
samples = sample_a_ton()

samples_observation =
reject_inconsistent(samples, observation)

samples_event =
reject_inconsistent(samples_observation, event)
return 1l¢def reject_inconsistent(samples, outcome): 3tion)
—4
(Fpy,=x,U=1F,,=y,T =1) (F, =1)

return consistent_samples

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 47



Rejection sampling algorithm

Inference What iS P(Flu — 1|U — 1’T — 1)?

question:

def rejection_sampling(event, observation):
samples = sample_a_ton()

samples_observation =
reject_inconsistent(samples, observation)

samples_event =
reject_inconsistent(samples observation, event)

return len(samples_event)/len(samples_observation)

# samples with (Fj, =1, U =1,T = 1)
# samples with (U =1,T = 1)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 4s
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Rejection sampling algorithm

nference \what is P(Fy, = 1|U = 1,T = 1)?

question:

# samples with (F,, =1, U =1,T = 1)

robability =
g / # samples with (U =1,T = 1)

Why would this definition of approximate probability make sense?

S

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 Stanford University 49




Why would this approximate probability make sense?

Inference What iS P(Flu — 1|U — 1’T — 1)?

question:

# samples with (F,, =1, U =1,T = 1)

robability =
g / # samples with (U =1,T = 1)

Recall our definition of P(E) = lim 7@ n = # of total trials

probability as a frequency: n-o n n(E) = # trials where E occurs

>~

tt
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To the code!
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Rejection sampling

Fl ) nd [} Fe ’ t 1 r
If you can sample enough from the joint distribution, [flu, u v, tir]

you can answer any probability inference question. ??pilng. 1

[0: 1: 0: 1]

With enough samples, you can correctly compute: :g' (1)' g' (1);

* Probability estimates [o: 1: 0: 1)

» Conditional probability estimates (0, 1, 1, 1)

- Expectation estimates {(1)' i' 2' (1)}

[0: 0: 1: 1]

Because your samples are a representation [0, 1, 0, 1]
of the joint distribution! Finished sampling

P(has flu | undergrad and is tired) = 0.122
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Other applications

Chemical
present?

Chemical
detected?

Battery
failure

Electrical
system
failure

Trajectory
deviation

Communi-
cation loss

Take CS238/AA228: Decision Making under Uncertainty!
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Challenge with Bayesian Networks

OF
N sy M4

&OUNy G
-

What if we don’t know the structure?

Take CS228: Probabilistic Graphical Models!
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Disadvantages of rejection sampling

P(F,=1)=01 PWU=1)=08

Under-

P(Fy, = 1|F,, = 1)7? grad

What if we never encounter
some samples?

D=
()=

[flu=0, und, fev=1, tir] P(E,, =1|F,, =1) =09
P(Fev = 1|Flu = 0) = 0.05

P(T =1|F,, =0,U =0) = 0.1
P(T=1|Fy=0,U=1)=0.8
P(T =1|Fy =1,U=0) =09

. P =1Fy=1Us1)=1
Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021 tanior UI'llVCI'Slty 55



Disadvantages of rejection sampling

P(Fp=1)=01 PWU=1)=08

Under-

P(Flu — 1|Fev — 99.4)? grad

What if we never encounter
some samples?

D=
()=

_ _ Fop|Fpy = 1 ~ (100,1.81)
What if random variables E,,|F,, = 0~ '(98.25,0.73)

i ?
are continuous P(T = 1|F,, =0,U =0) = 0.1

P(T=1|F, =0,U=1) =08
P(T = 1|F, =1,U =0) = 0.9

- | S PT=1F,=1U=1) =1
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