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CS109: General Inference 
and Bayesian Networks



General 
Inference: 
Introduction
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General inference question:

Given the values of some random
variables, what are the conditional
distributions of some other random
variables?
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Inference
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Nausea

One inference question:

𝑃 𝐹 = 1|𝑁 = 1, 𝑇 = 1

=
𝑃 𝐹 = 1,𝑁 = 1, 𝑇 = 1

𝑃 𝑁 = 1, 𝑇 = 1

Strep
Throat
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Inference

7

Flu

Cold

Under-
grad

Chest 
pain

TiredSore
Throat

Fever

Nausea

Another inference question:

𝑃 𝐶! = 1,𝑈 = 1|𝑆 = 0, 𝐹" = 0

=
𝑃 𝐶! = 1, 𝑈 = 1, 𝑆 = 0, 𝐹" = 0

𝑃 𝑆 = 0, 𝐹" = 0

Strep
Throat
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Inference
If we knew the joint distribution,
we can answer all probabilistic
inference questions.

What is the size of the joint 
probability table? 
A. 2#$% entries
B. 𝑁& entries
C. 2# entries
D. None/other/don’t know

Flu
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Chest 
pain

TiredSore
Throat

Fever

Nausea 𝑁 = 9
all binary RVs

Strep
Throat
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Inference
If we knew the joint distribution,
we can answer all probabilistic
inference questions.

What is the size of the joint 
probability table? 
A. 2#$% entries
B. 𝑁& entries
C. 2# entries
D. None/other/don’t know

Flu

Cold

Under-
grad

Chest 
pain

TiredSore
Throat

Fever

Nausea 𝑁 = 9
all binary RVs

Naively specifying a joint distribution 
is, in general, intractable.

Strep
Throat
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N can be large…
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Conditional Probability Independence

Conditionally Independent RVs
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Conditional Distributions Independent RVs
Conditional Probability Independence
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Conditionally Independent RVs
Recall that two events 𝐴 and 𝐵 are
conditionally independent given 𝐸 if:

𝑛 discrete random variables 𝑋%, 𝑋&, … , 𝑋' are called conditionally 
independent given 𝑌 if: 

for all 𝑥%, 𝑥&, … , 𝑥' , 𝑦:

𝑃 𝑋% = 𝑥%, 𝑋& = 𝑥&, … , 𝑋' = 𝑥'|𝑌 = 𝑦 =6
()%

'

𝑃 𝑋( = 𝑥(|𝑌 = 𝑦

This implies the following (cool to remember for later):

log 𝑃 𝑋% = 𝑥%, 𝑋& = 𝑥&, … , 𝑋' = 𝑥'|𝑌 = 𝑦 =:
()%

'

log 𝑃 𝑋( = 𝑥(|𝑌 = 𝑦

12

𝑃 𝐴𝐵|𝐸 = 𝑃 𝐴|𝐸 𝑃 𝐵 𝐸
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Review: Independence of multiple random variables
Recall independence of
𝑛 events 𝐸%, 𝐸&, … , 𝐸':

We have independence of 𝑛 discrete random variables 𝑋%, 𝑋&, … , 𝑋' if
for all 𝑥%, 𝑥&, … , 𝑥':

𝑃 𝑋% = 𝑥%, 𝑋& = 𝑥&, … , 𝑋' = 𝑥' =6
()%

'

𝑃 𝑋( = 𝑥(

13

for 𝑟 = 1,… , 𝑛:
for every subset 𝐸!, 𝐸", … , 𝐸#: 

𝑃 𝐸!, 𝐸", … , 𝐸# = 𝑃 𝐸! 𝑃 𝐸" ⋯𝑃 𝐸#



Bayesian 
Networks
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A simpler WebMD

Great! Just specify 2* = 16 joint 
probabilities…?

𝑃 𝐹+, = 𝑎, 𝐹"- = 𝑏, 𝑈 = 𝑐, 𝑇 = 𝑑

What would a Stanford flu expert do?

15

Flu Under-
grad

TiredFever

Describe the joint distribution using 
causality!
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Constructing a Bayesian Network
What would a Stanford flu expert do?

1. Describe the joint distribution using 
causality.

2. Assume conditional independence.
3. Provide 𝑃 values|parents for each 

random variable

16

Flu Under-
grad

TiredFever

✅
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Constructing a Bayesian Network
In a Bayesian Network,
Each random variable is 
conditionally independent of its 
non-descendants, given its parents. 

• Node: random variable
• Directed edge: conditional dependency

Examples:
• 𝑃 𝐹!" = 1|𝑇 = 0, 𝐹#$ = 1 = 𝑃 𝐹!" = 1|𝐹#$ = 1
• 𝑃 𝐹#$ = 1,𝑈 = 0 = 𝑃 𝐹#$ = 1 𝑃 𝑈 = 0

17

Flu Under-
grad

TiredFever
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Constructing a Bayesian Network
What would a Stanford flu expert do?

1. Describe the joint distribution using 
causality.

2. Assume conditional independence.
3. Provide 𝑃 values|parents for each 

random variable

What conditional probabilities
should our expert specify?

18

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑈 = 1 = 0.8

✅
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Constructing a Bayesian Network
What would a Stanford flu expert do?

1. Describe the joint distribution using 
causality.

2. Assume conditional independence.
3. Provide 𝑃 values|parents for each 

random variable

What conditional probabilities
should our expert specify?

19

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑈 = 1 = 0.8

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1

✅
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What would a CS109 student do?
1. Populate a Bayesian network by 

asking a Stanford flu expert
or

by using reasonable assumptions

2. Answer inference questions

Using a Bayes Net

20

Our focus
today

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑈 = 1 = 0.8

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0



Inference (I): 
Math

21
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Bayes Nets: Conditional independence
In a Bayesian Network,
Each random variable is 
conditionally independent of its 
non-descendants, given its parents. 

• Node: random variable
• Directed edge: conditional dependency

22

Flu Under-
grad

TiredFever

Review
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Inference via math
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Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

1. 𝑃 𝐹+, = 0, 𝑈 = 1, 𝐹"- = 0, 𝑇 = 1 ?

Compute joint probabilities
using chain rule.
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Inference via math

24

Flu Under-
grad

TiredFever

𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

1. Compute joint probabilities

2. Definition of conditional probability

𝑃 𝐹-. = 1, 𝐹/0 = 0, 𝑈 = 0, 𝑇 = 1
𝑃 𝐹-. = 0, 𝐹/0 = 0, 𝑈 = 0, 𝑇 = 1

𝑃 𝐹-. = 1, 𝐹/0 = 0, 𝑈 = 0, 𝑇 = 1
∑1 𝑃 𝐹-. = 𝑥, 𝐹/0 = 0, 𝑈 = 0, 𝑇 = 1

2. 𝑃 𝐹+, = 1|𝐹"- = 0, 𝑈 = 0, 𝑇 = 1 ?
𝑃 𝐹!" = 1 = 0.1

= 0.095
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Inference via math

3. 𝑃 𝐹+, = 1|𝑈 = 1, 𝑇 = 1 ?

25

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Inference via math

3. 𝑃 𝐹+, = 1|𝑈 = 1, 𝑇 = 1 ?

26

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

1. Compute joint probabilities

2. Definition of conditional probability

𝑃 𝐹-. = 1, 𝑈 = 1, 𝐹/0 = 1, 𝑇 = 1
…

𝑃 𝐹-. = 0, 𝑈 = 1, 𝐹/0 = 0, 𝑇 = 1 ?

∑2 𝑃 𝐹-. = 1, 𝑈 = 1, 𝐹/0 = 𝑦, 𝑇 = 1
∑1∑2 𝑃 𝐹-. = 𝑥, 𝑈 = 1, 𝐹/0 = 𝑦, 𝑇 = 1

= 0.122



Bayesian
Brain 
Food

Let’s take a two-minute break to brush our 
teeth and gargle with plaque-deterring 
peppermint mouthwash.

Once our teeth are clean and our breath 
minty fresh, we’ll come back and take on 
this next problem about Bayesian Inference.

27

🤔
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Inference via math

𝑃 𝐹+, = 1|𝐹"- = 1, 𝑈 = 1, 𝑇 = 1 ?

28

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

🤔
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Inference via math

𝑃 𝐹+, = 1|𝐹"- = 1, 𝑈 = 1, 𝑇 = 1 ?

29

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0
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Inference via math

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?

= 0.122

30

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

Review

(from earlier slide)
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Inference via math

31

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

Solving inference questions 
precisely is possible, but 
sometimes tedious.

Can we use sampling
to solve inference questions 
approximately, but with high 
enough confidence that it 
deserves to be taught in 
CS109?

Yes!
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Rejection sampling algorithm

Step 0:
Have a fully specified
Bayesian Network

32

Flu Under-
grad

TiredFever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0
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def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = …

# number of samples with 𝑈 = 1, 𝑇 = 1
samples_event =

# number of samples with 𝐹-. = 1, 𝑈 = 1, 𝑇 = 1
return len(samples_event)/len(samples_observation)

Rejection sampling algorithm

33

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question: [flu, und, fev, tir]
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Rejection sampling algorithm

N_SAMPLES = 100000
# Method: Sample a ton
# -------------------
# create N_SAMPLES with likelihood proportional
# to the joint distribution
def sample_a_ton():

samples = []
for i in range(N_SAMPLES):

sample = make_sample() # a particle
samples.append(sample)

return samples

34

How do we construct a sample
𝐹-. = 𝑎, 𝑈 = 𝑏, 𝐹/0 = 𝑐, 𝑇 = 𝑑

that respects all joint 
probability distributions?

Create a sample using the Bayesian Network!!
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Rejection sampling algorithm

35

Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

# Method: Make Sample
# -------------------
# construct one sample from the joint distribution
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else:        fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)
# 
# TODO: fill in
# 
# 

# a sample from the joint has an
# assignment to *all* random variables
return [flu, und, fev, tir]
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Rejection sampling algorithm

36

Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

# Method: Make Sample
# -------------------
# create a single sample from the joint distribution
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else:        fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)
# 
# TODO: fill in
# 
# 

# a sample from the joint has an
# assignment to *all* random variables
return [flu, und, fev, tir]



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Rejection sampling algorithm

37

Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

# Method: Make Sample
# -------------------
# create a single sample from the joint distribution
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else:        fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)
# 
# TODO: fill in
# 
# 

# a sample from the joint has an
# assignment to *all* random variables
return [flu, und, fev, tir]
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# Method: Make Sample
# -------------------
# create a single sample from the joint distribution
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else:        fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)
# 
# TODO: fill in
# 
# 

# a sample from the joint has an
# assignment to *all* random variables
return [flu, und, fev, tir]

Rejection sampling algorithm

38

Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05
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Rejection sampling algorithm
# Method: Make Sample
# -------------------
# create a single sample from the joint distribution
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else:        fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)
if flu == 0 and und == 0: tir = bernoulli(0.1)
elif flu == 0 and und == 1: tir = bernoulli(0.8)
elif flu == 1 and und == 0: tir = bernoulli(0.9)
else:                       tir = bernoulli(1.0)

# a sample from the joint has an
# assignment to *all* random variables
return [flu, und, fev, tir] 39

Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0
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Rejection sampling algorithm
# Method: Make Sample
# -------------------
# create a single sample from the joint distribution
# based on the medical "WebMD" Bayesian Network
def make_sample():

# prior on causal factors
flu = bernoulli(0.1)
und = bernoulli(0.8)

# choose fever based on flu
if flu == 1: fev = bernoulli(0.9)
else:        fev = bernoulli(0.05)

# choose tired based on (undergrad and flu)
if flu == 0 and und == 0: tir = bernoulli(0.1)
elif flu == 0 and und == 1: tir = bernoulli(0.8)
elif flu == 1 and und == 0: tir = bernoulli(0.9)
else:                       tir = bernoulli(1.0)

# a sample from the joint has an
# assignment to *all* random variables
return [flu, und, fev, tir] 40

Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0
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Rejection sampling algorithm

41

def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = …

# number of samples with 𝑈 = 1, 𝑇 = 1
samples_event =

# number of samples with 𝐹-. = 1, 𝑈 = 1, 𝑇 = 1
return len(samples_event)/len(samples_observation)

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question: [flu, und, fev, tir]
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Rejection sampling algorithm

42

def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = …

# number of samples with 𝑈 = 1, 𝑇 = 1
samples_event =

# number of samples with 𝐹-. = 1, 𝑈 = 1, 𝑇 = 1
return len(samples_event)/len(samples_observation)

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:
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Rejection sampling algorithm

43

def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = 

reject_inconsistent(samples, observation)
samples_event =

# number of samples with 𝐹-. = 1, 𝑈 = 1, 𝑇 = 1
return len(samples_event)/len(samples_observation)

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:
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Rejection sampling algorithm

44

def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = 

reject_inconsistent(samples, observation)
samples_event =

# number of samples with 𝐹-. = 1, 𝑈 = 1, 𝑇 = 1
return len(samples_event)/len(samples_observation)

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

Keep only samples that are consistent
with the observation 𝑈 = 1, 𝑇 = 1 .
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Rejection sampling algorithm

45

def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = 

reject_inconsistent(samples, observation)
samples_event =

# number of samples with 𝐹-. = 1, 𝑈 = 1, 𝑇 = 1
return len(samples_event)/len(samples_observation)

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

Keep only samples that are consistent
with the observation 𝑈 = 1, 𝑇 = 1 .

# Method: Reject Inconsistent
# -------------------
# Rejects all samples that do not align with the outcome.
# Returns a list of consistent samples.
def reject_inconsistent(samples, outcome):

consistent_samples = []
for sample in samples:

if check_consistent(sample, outcome):
consistent_samples.append(sample)

return consistent_samples

𝑈 = 1, 𝑇 = 1
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def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = 

reject_inconsistent(samples, observation)
samples_event =

reject_inconsistent(samples_observation, event)
return len(samples_event)/len(samples_observation)

Rejection sampling algorithm

46

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

Conditional event = samples with 𝐹+, = 1, 𝑈 = 1, 𝑇 = 1 .
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def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = 

reject_inconsistent(samples, observation)
samples_event =

reject_inconsistent(samples_observation, event)
return len(samples_event)/len(samples_observation)

Rejection sampling algorithm

47

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

def reject_inconsistent(samples, outcome):

...

return consistent_samples

𝐹-. = 1𝐹-. = 𝑥, 𝑈 = 1, 𝐹/0 = 𝑦, 𝑇 = 1
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Rejection sampling algorithm

48

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

# samples with 𝐹+, = 1, 𝑈 = 1, 𝑇 = 1
# samples with 𝑈 = 1, 𝑇 = 1

probability ≈  

def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = 

reject_inconsistent(samples, observation)
samples_event =

reject_inconsistent(samples_observation, event)
return len(samples_event)/len(samples_observation)
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Rejection sampling algorithm

49

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

# samples with 𝐹+, = 1, 𝑈 = 1, 𝑇 = 1
# samples with 𝑈 = 1, 𝑇 = 1

🤔

Why would this definition of approximate probability make sense?

probability ≈  
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Why would this approximate probability make sense?

50

What is 𝑃 𝐹!" = 1|𝑈 = 1, 𝑇 = 1 ?Inference
question:

# samples with 𝐹+, = 1, 𝑈 = 1, 𝑇 = 1
# samples with 𝑈 = 1, 𝑇 = 1

Recall our definition of 
probability as a frequency:

𝑃 𝐸 = lim
'→<

𝑛(𝐸)
𝑛

𝑛 = # of total trials
𝑛(𝐸) = # trials where 𝐸 occurs

# samples with 𝑈 = 1, 𝑇 = 1
probability ≈  
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To the code!

51
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Rejection sampling

With enough samples, you can correctly compute:
• Probability estimates
• Conditional probability estimates
• Expectation estimates

Because your samples are a representation
of the joint distribution!

52

[flu, und, fev, tir]

P(has flu | undergrad and is tired) = 0.122

If you can sample enough from the joint distribution, 
you can answer any probability inference question.
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Other applications

53

Chemical 
present?

Chemical 
detected?

Trajectory 
deviation

Solar 
panel 
failure

Electrical 
system 
failure

Battery 
failure

Communi-
cation loss

Take CS238/AA228: Decision Making under Uncertainty!
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Challenge with Bayesian Networks

54

Flu Under-
grad

Tired
Fever

What if we don’t know the structure?

Take CS228: Probabilistic Graphical Models!

? ?

?

?
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Disadvantages of rejection sampling

What if we never encounter 
some samples?

55

Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

𝑃 𝐹#$ = 1|𝐹!" = 1 = 0.9
𝑃 𝐹#$ = 1|𝐹!" = 0 = 0.05

𝑃 𝐹!" = 1|𝐹#$ = 1 ?

[flu=0, und, fev=1, tir]
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Disadvantages of rejection sampling

What if we never encounter 
some samples?

What if random variables 
are continuous?

56

Flu Under-
grad

Tired
Fever

𝑃 𝐹!" = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 0 = 0.1
𝑃 𝑇 = 1|𝐹!" = 0, 𝑈 = 1 = 0.8
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 0 = 0.9
𝑃 𝑇 = 1|𝐹!" = 1, 𝑈 = 1 = 1.0

𝐹#$|𝐹!" = 1 ~𝒩(100,1.81)
𝐹#$|𝐹!" = 0~𝒩 98.25,0.73

𝑃 𝐹!" = 1|𝐹#$ = 99.4 ?


