

Conditional Independence

Conditional Paradigm

For any events A, B, and E, you can condition consistently on E, and all formulas still hold:

Axiom 1

Corollary 1 (complement)

Commutativity

Chain Rule

Bayes' Theorem

$$0 \le P(A|E) \le 1$$

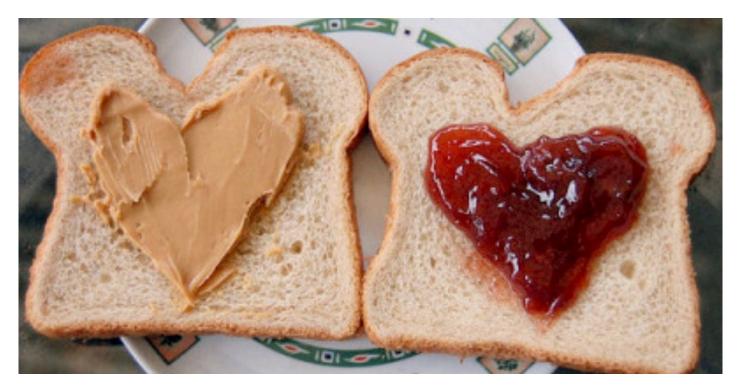
$$P(A|E) = 1 - P(A^C|E)$$

$$P(AB|E) = P(BA|E)$$

$$P(AB|E) = P(B|E)P(A|BE)$$

$$P(A|BE) = \frac{P(B|AE)P(A|E)}{P(B|E)}$$
 BAE's theorem?

Conditional Independence



Conditional Probability

Independence

Conditional Independence

Independent events
$$E$$
 and F $P(EF) = P(E)P(F)$
 $P(E|F) = P(E)$

Two events A and B are defined as conditionally independent given E if:

$$P(AB|E) = P(A|E)P(B|E)$$

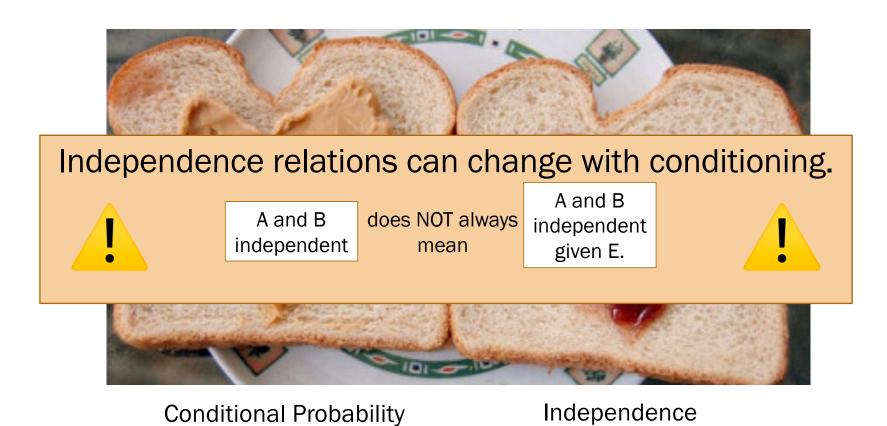
Which one of the three statements below is an equivalent definition?

$$A. P(A|B) = P(A)$$

B.
$$P(A|BE) = P(A)$$

C.
$$P(A|BE) = P(A|E)$$

Conditional Independence



Netflix and Condition

Let E = a user watches Life is Beautiful.

Let F = a user watches Amelie.

What is P(E)?

$$P(E) \approx \frac{\text{# people who have watched movie}}{\text{# people on Netflix}} = \frac{10,234,231}{50,923,123} \approx 0.20$$

What is the probability that a user watches Life is Beautiful, given they watched Amelie?

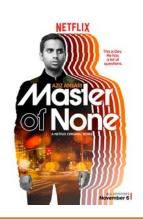
$$P(E|F) = \frac{P(EF)}{P(F)} = \frac{\text{# people who have watched both}}{\text{# people who have watched Amelie}} \approx 0.42$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Let *E* be the event that a user watches the given movie. Let F be the event that the same user watches Amelie.

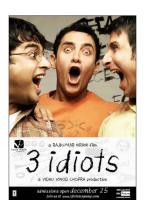
$$P(E) = 0.32$$

$$P(E|F) = 0.14$$
 $P(E|F) = 0.35$



$$P(E) = 0.20$$

$$P(E|F) = 0.20$$



$$P(E) = 0.09$$
 $P(E) = 0.20$

$$P(E|F) = 0.20$$
 $P(E|F) = 0.72$

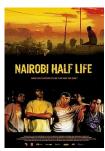
$$P(E) = 0.20$$

$$P(E|F) = 0.42$$

Netflix and Condition (on many movies)

Watched:

Will they watch?



 E_4

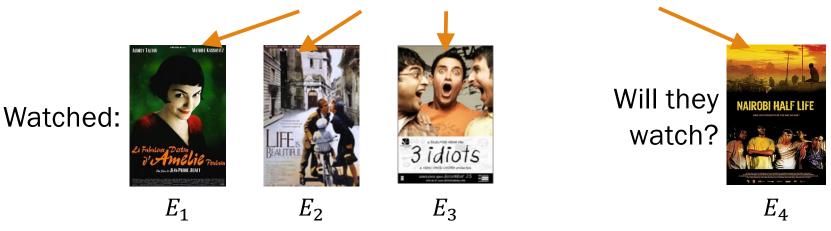
What if $E_1E_2E_3E_4$ are not independent? (e.g., all international emotional comedies)

$$P(E_4|E_1E_2E_3) = \frac{P(E_1E_2E_3E_4)}{P(E_1E_2E_3)} = \frac{\text{\# people who have watched all 4}}{\text{\# people who have watched those 3}}$$

We need to keep track of an exponential number of movie-watching statistics

Netflix and Condition (on many movies)

K: likes international emotional comedies



Assume: $E_1E_2E_3E_4$ are conditionally independent given K

$$P(E_4|E_1E_2E_3) = \frac{P(E_1E_2E_3E_4)}{P(E_1E_2E_3)} \quad P(E_4|E_1E_2E_3K) = P(E_4|K)$$
 An easier probability to store and compute!

Conditional independence is a Big Deal

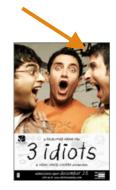
Conditional independence is a practical, real-world way of decomposing hard probability questions.

"Exploiting conditional independence to generate fast probabilistic computations is one of the main contributions CS has made to probability theory."

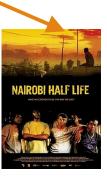
> -Judea Pearl wins 2011 Turing Award, "For fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning"

Netflix and Condition

K: likes international emotional comedies



 E_3



 E_4

Challenge: How do we determine K? Stay tuned in 6 weeks' time!

 $E_1E_2E_3E_4$ are dependent

 $E_1E_2E_3E_4$ are conditionally independent given *K*

Dependent events can become conditionally independent.

And vice versa: Independent events can become conditionally dependent.

Random Variables

Random variables are like typed variables

int
$$a = 5$$
;

double
$$b = 4.2;$$

CS variables

A is the number of Pokemon we bring to our future battle.

$$A \in \{1, 2, ..., 6\}$$

B is the amount of money we get after we win a battle.

$$B \in \mathbb{R}^+$$

C is 1 if we successfully beat the Elite Four. O otherwise.

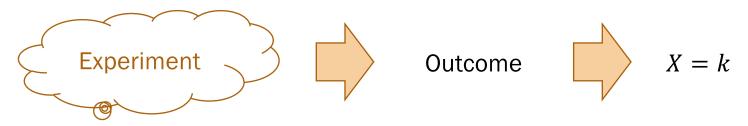
$$C \in \{0,1\}$$

Random

Random variables are like typed variables (but with uncertainty)

Random Variable

A random variable is a real-valued function defined on a sample space.



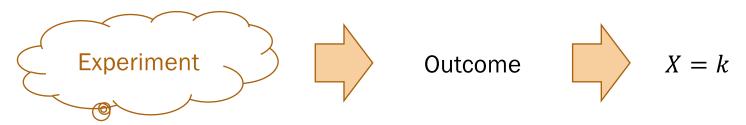
Example:

3 coins are flipped. Let X = # of heads. X is a random variable.

- 1. What is the value of *X* for the outcomes:
- (T,T,T)?
- (H,H,T)?
- 2. What is the event (set of outcomes) where X = 2?
- 3. What is P(X = 2)?

Random Variable

A random variable is a real-valued function defined on a sample space.



Example:

3 coins are flipped. Let X = # of heads. X is a random variable.

- 1. What is the value of X for the outcomes:
- (T,T,T)?
- (H,H,T)?
- 2. What is the event (set of outcomes) where X = 2?
- 3. What is P(X = 2)?

Random variables are **not** events!

It is confusing that random variables and events use the same notation.

- Random variables ≠ events.
- We can define an event to be a particular assignment of a random variable.

Example:

3 coins are flipped.
Let
$$X = \#$$
 of heads.
 X is a random variable.

$$X = 2$$

$$P(X = 2)$$
probability
(number b/t 0 and 1)

Random variables are not events!

It is confusing that random variables and events use the same notation.

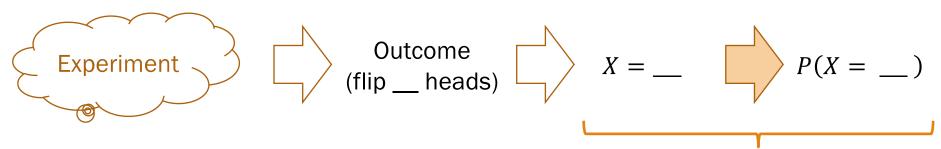
- Random variables ≠ events.
- We can define an event to be a particular assignment of a random variable.

	X = x	Set of outcomes	P(X=k)
Example:	X = 0	$\{(T,\;T,\;T)\}$	1/8
	X = 1	{(H, T, T), (T, H, T), (T, T, H)}	3/8
3 coins are flipped. Let $X = \#$ of heads.	X = 2	{(H, H, T), (H, T, H), (T, H, H)}	3/8
X is a random variable.	X = 3	$\{(H, H, H)\}$	1/8
	$X \ge 4$	{}	0

PMFs and CDFs

So far

3 coins are flipped. Let X = # of heads. X is a random variable.



X = x	P(X=k)	Set of outcomes
X = 0	1/8	{(T, T, T)}
X = 1	3/8	{(H, T, T), (T, H, T), (T, T, H)}
X = 2	3/8	{(H, H, T), (H, T, H), (T, H, H)}
X = 3	1/8	{(H, H, H)}
$X \ge 4$	0	{}

Can we get a "shorthand" for this last step? Seems like it might be useful!

Probability Mass Function

3 coins are flipped. Let X = # of heads. X is a random variable.

parameter/input k

A function on k with range [0,1]

$$P(X = k)$$
 return value/output number between 0 and 1

What would be a useful function to define? The probability of the event that a random variable X takes on the value k!For discrete random variables, this is a probability mass function, or PMF.

Probability Mass Function

3 coins are flipped. Let X = # of heads. X is a random variable.

A function on k with range [0,1]

2 parameter/input k:
a value of X $P(X = k) \longrightarrow 0.375$ return value/output:
probability of the event
<math display="block">X = k

Discrete RVs and Probability Mass Functions

A random variable X is discrete if it can take on countably many values.

• X = x, where $x \in \{x_1, x_2, x_3, ...\}$

The probability mass function of a discrete random variable is

$$P(X = x) = p(x) = p_X(x)$$
shorthand notation

Probabilities must sum to 1:

$$\sum_{i=1}^{\infty} p(x_i) = 1$$

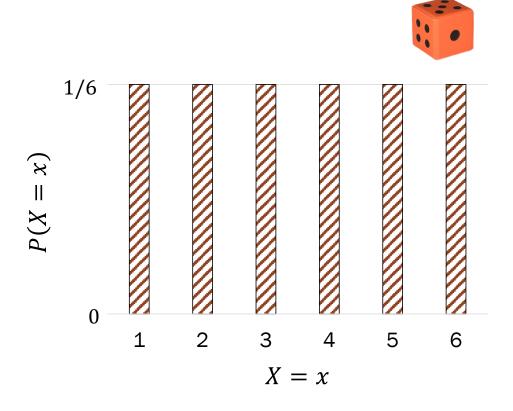
This last point is a good way to verify any PMF you create.

PMF for a single 6-sided die

Let X be a random variable that represents the result of a single dice roll.

- Support of *X* : {1, 2, 3, 4, 5, 6}
- Therefore X is a discrete random variable.
- PMF of X:

$$p(x) = \begin{cases} 1/6 & x \in \{1, \dots, 6\} \\ 0 & \text{otherwise} \end{cases}$$



Cumulative Distribution Functions

For a random variable X, the cumulative distribution function (CDF) is defined as

$$F(a) = F_X(a) = P(X \le a)$$
, where $-\infty < a < \infty$

For a discrete RV X, the CDF is:

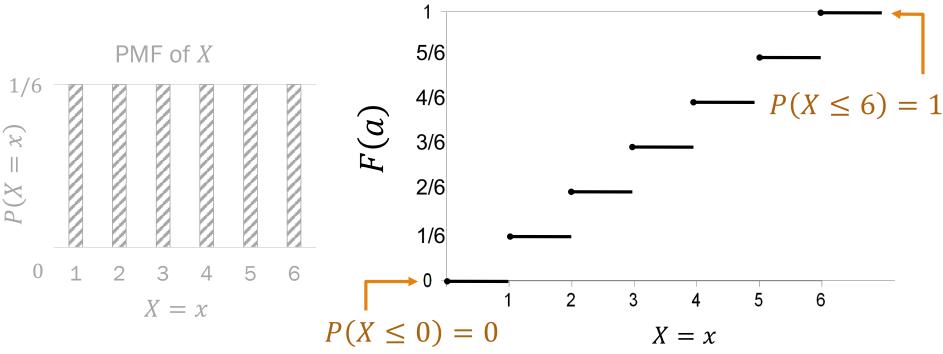
$$F(a) = P(X \le a) = \sum_{\substack{\text{all } x \le a}} p(x)$$

CDFs as graphs

CDF (cumulative distribution function) $F(a) = P(X \le a)$

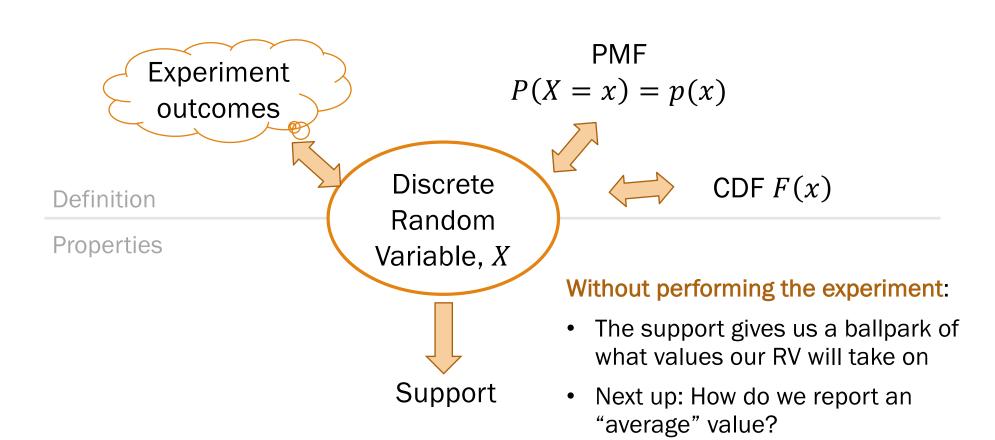
CDF of X

Let *X* be a random variable that represents the result of a single dice roll.



Expectation

Discrete random variables



Expectation

The expectation of a discrete random variable X is defined as:

$$E[X] = \sum_{x:p(x)>0} p(x) \cdot x$$

- Note: sum over all values of X = x that have non-zero probability.
- Other names: mean, expected value, weighted average, center of mass, first moment

Expectation of a die roll

$$E[X] = \sum_{x:p(x)>0} p(x) \cdot x \quad \text{Expectation}$$
 of X

What is the expected value of a 6-sided die roll?

Define random variables

X = RV for value of roll

$$P(X = x) = \begin{cases} 1/6 & x \in \{1, \dots, 6\} \\ 0 & \text{otherwise} \end{cases}$$

2. Solve

$$E[X] = 1\left(\frac{1}{6}\right) + 2\left(\frac{1}{6}\right) + 3\left(\frac{1}{6}\right) + 4\left(\frac{1}{6}\right) + 5\left(\frac{1}{6}\right) + 6\left(\frac{1}{6}\right) = \frac{7}{2}$$

Important properties of expectation

1. Linearity:

$$E[aX + b] = aE[X] + b$$

- Let X = 6-sided dice roll, Y = 2X - 1
- E[X] = 3.5
- E[Y] = 6

Expectation of a sum = sum of expectation:

$$E[X + Y] = E[X] + E[Y]$$

Sum of two dice rolls:

- Let X = roll of die 1Y = roll of die 2
- E[X + Y] = 3.5 + 3.5 = 7

3. Unconscious statistician:

$$E[g(X)] = \sum_{x} g(x)p(x)$$

These properties let you avoid defining difficult PMFs.

Important properties of expectation

1. Linearity:

$$E[aX + b] = aE[X] + b$$

Expectation of a sum = sum of expectation:

$$E[X + Y] = E[X] + E[Y]$$

Unconscious statistician:

$$E[g(X)] = \sum_{x} g(x)p(x)$$

Linearity of Expectation: Proof

$$E[X] = \sum_{x:p(x)>0} p(x) \cdot x$$

$$E[aX + b] = aE[X] + b$$

Proof:

$$E[aX + b] = \sum_{x} (ax + b)p(x) = \sum_{x} axp(x) + bp(x)$$
$$= a \sum_{x} xp(x) + b \sum_{x} p(x)$$
$$= a E[X] + b \cdot 1$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

Expectation of Sum: Intuition

$$E[X] = \sum_{x:p(x)>0} p(x) \cdot x$$

$$E[X + Y] = E[X] + E[Y]$$
 (we'll prove this in two weeks)

Intuition for now:

X	Y	X + Y
3	6	9
2	4	6
6	12	18
10	20	30
-1	-2	-3
0	0	0
8	16	24

Average:

$$\frac{1}{n}\sum_{i=1}^{n}x_{i} + \frac{1}{n}\sum_{i=1}^{n}y_{i} = \frac{1}{n}\sum_{i=1}^{n}(x_{i} + y_{i})$$

$$\frac{1}{7}(28) + \frac{1}{7}(56) = \frac{1}{7}(84)$$

$$E[g(X)] = \sum_{x} g(x)p(x)$$
 Expectation of $g(X)$

Let Y = g(X), where g is some real-valued function.

$$E[g(X)] = E[Y] = \sum_{j} y_{j} p(y_{j})$$

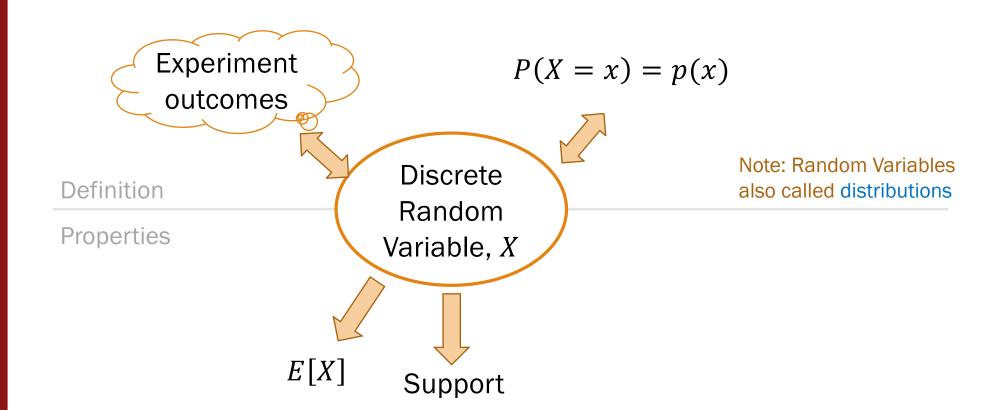
$$= \sum_{j} y_{j} \sum_{i:g(x_{i})=y_{j}} p(x_{i})$$

$$= \sum_{j} \sum_{i:g(x_{i})=y_{j}} y_{j} p(x_{i})$$

$$= \sum_{j} \sum_{i:g(x_{i})=y_{j}} g(x_{i}) p(x_{i})$$

$$= \sum_{j} g(x_{i}) p(x_{i})$$
Lisa Yan, Chris-Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021

For you to review so that you can sleep at night



A Whole New World with Random Variables

Event-driven probability

- Relate only binary events
 - Either happens (E)
 - or doesn't happen (E^{C})
- Can only report probability

Lots of combinatorics

Random Variables

- Link multiple but similar events together (X = 1, X = 2, ..., X = 6)
- Can compute statistics: e,g. report the expectation
- Once we have the PMF (for discrete RVs), we can employ traditional math

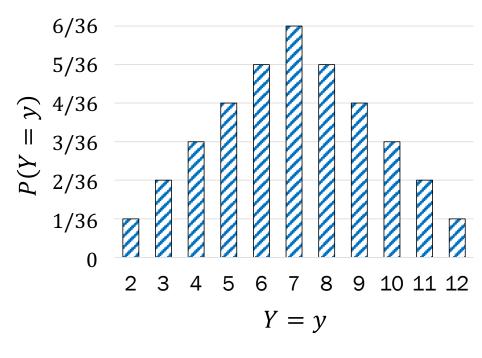
PMF for the sum of two dice

Let Y be a random variable that represents the sum of two independent dice rolls.

Support of *Y*: {2, 3, ..., 11, 12}

$$p(y) = \begin{cases} \frac{y-1}{36} & y \in \mathbb{Z}, 2 \le y \le 6\\ \frac{13-y}{36} & y \in \mathbb{Z}, 7 \le y \le 12\\ 0 & \text{otherwise} \end{cases}$$

Sanity check:
$$\sum_{y=2}^{12} p(y) = 1$$



Ponder

Let's take a one-minute breather.

Slide 40 has three questions to think over by yourself while you do that breathing. We'll go over it together afterwards.

Example random variable

Consider 5 flips of a coin which comes up heads with probability p. Each coin flip is an independent trial. Let Y = # of heads on 5 flips.

- 1. What is the support of Y? In other words, what are the values that Y can take on with non-zero probability?
- 2. Define the event Y = 2. What is P(Y = 2)?

3. What is the PMF of Y? In other words, what is P(Y = k), for k in the support of Y?

Example random variable

Consider 5 flips of a coin which comes up heads with probability p. Each coin flip is an independent trial. Let Y = # of heads on 5 flips.

- 1. What is the support of Y? In other words, what are the values that Y can take on with non-zero probability? $\{0, 1, 2, 3, 4, 5\}$
- 2. Define the event Y = 2. What is P(Y = 2)? $P(Y = k) = {5 \choose 2} p^2 (1 p)^3$

3. What is the PMF of Y? In other words, what is P(Y = k), for k in the support of Y? $P(Y = k) = {5 \choose k} p^k (1-p)^{5-k}$

$$E[X] = \sum_{x:p(x)>0} p(x) \cdot x$$

Expectation: The average value of a random variable

Remember that the expectation of a die roll is 3.5.

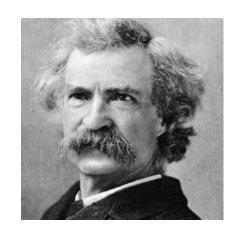
X = RV for value of roll

$$E[X] = 1\left(\frac{1}{6}\right) + 2\left(\frac{1}{6}\right) + 3\left(\frac{1}{6}\right) + 4\left(\frac{1}{6}\right) + 5\left(\frac{1}{6}\right) + 6\left(\frac{1}{6}\right) = \frac{7}{2}$$

Lying with statistics

"There are three kinds of lies: lies, damned lies, and statistics" -popularized by Mark Twain, 1906

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain CS109, Winter 2021



Lying with statistics

A school has 3 classes with 5, 10, and 150 students. What is the average class size?

- 1. Interpretation #1
- Randomly choose a <u>class</u> with equal probability.
- X =size of chosen class

$$E[X] = 5\left(\frac{1}{3}\right) + 10\left(\frac{1}{3}\right) + 150\left(\frac{1}{3}\right)$$
$$= \frac{165}{3} = 55$$

- Interpretation #2
- Randomly choose a <u>student</u> with equal probability.
- Y = size of chosen class

$$E[Y] = 5\left(\frac{5}{165}\right) + 10\left(\frac{10}{165}\right) + 150\left(\frac{150}{165}\right)$$
$$= \frac{22635}{165} \approx 137$$

What universities usually report

Average student perception of class size

Important properties of expectation

1. Linearity:

$$E[aX + b] = aE[X] + b$$

Roll a die, outcome is X. You win \$2X - 1. What are your expected winnings?

Let
$$X = 6$$
-sided dice roll.
 $E[2X - 1] = 2(3.5) - 1 = 6$

2. Expectation of a sum = sum of expectation:

$$E[X + Y] = E[X] + E[Y]$$

3. Unconscious statistician:

$$E[g(X)] = \sum g(x)p(x)$$

Important properties of expectation

1. Linearity:

$$E[aX + b] = aE[X] + b$$

2. Expectation of a sum = sum of expectation:

$$E[X + Y] = E[X] + E[Y]$$

Roll a die. outcome is X. You win 2X - 1. What are your expected winnings?

Let
$$X = 6$$
-sided dice roll.
 $E[2X - 1] = 2(3.5) - 1 = 6$

What is the expectation of the sum of two dice rolls?

Let
$$X = \text{roll of die 1}$$
, $Y = \text{roll of die 2}$.
 $E[X + Y] = 3.5 + 3.5 = 7$

3. Unconscious statistician:

$$E[g(X)] = \sum g(x)p(x)$$

Important properties of expectation

1. Linearity:

$$E[aX + b] = aE[X] + b$$

2. Expectation of a sum = sum of expectation:

$$E[X + Y] = E[X] + E[Y]$$

Roll a die. outcome is X. You win 2X - 1. What are your expected winnings?

Let
$$X = 6$$
-sided dice roll.
 $E[2X - 1] = 2(3.5) - 1 = 6$

What is the expectation of the sum of two dice rolls?

Let
$$X = \text{roll of die 1}$$
, $Y = \text{roll of die 2}$.
 $E[X + Y] = 3.5 + 3.5 = 7$

3. Unconscious statistician:

$$E[g(X)] = \sum g(x)p(x)$$

(next up)

Being a statistician unconsciously

$$E[g(X)] = \sum_{x} g(x)p(x)$$
 Expectation of $g(X)$

Let *X* be a discrete random variable.

•
$$P(X = x) = \frac{1}{3}$$
 for $x \in \{-1, 0, 1\}$

Let Y = |X|. What is E[Y]?

A.
$$\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot -1 = 0$$

B.
$$E[Y] = E[0] = 0$$

C.
$$\frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1 = \frac{2}{3}$$

D.
$$\frac{1}{3} \cdot |-1| + \frac{1}{3} \cdot |0| + \frac{1}{3} |1| = \frac{2}{3}$$

E. C and D

Being a statistician unconsciously

$$E[g(X)] = \sum_{x} g(x)p(x)$$
 Expectation of $g(X)$

Let X be a discrete random variable.

•
$$P(X = x) = \frac{1}{3}$$
 for $x \in \{-1, 0, 1\}$

Let Y = |X|. What is E[Y]?

A.
$$\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot -1 = 0$$
 \times $E[X]$

B.
$$E[Y] = E[0] = 0 \times E[E[X]]$$

D.
$$\frac{1}{3} \cdot |-1| + \frac{1}{3} \cdot |0| + \frac{1}{3} |1| = \frac{2}{3}$$
 Use LOTUS by using PMF of X:
1. $P(X = x) \cdot |x|$
2. Sum up

1.
$$P(X = x) \cdot |x|$$

I want to play a game

$$E[g(x)] = \sum_{x} g(x)p(x)$$
 Expectation of $g(X)$

Ponder

Let's take another break, this time for two minutes.

Slide 52 has three questions to think over by yourself while you do take that break.

St. Petersburg Paradox

$$E[g(x)] = \sum_{x} g(x)p(x)$$
 Expectation of $g(X)$

- A fair coin (comes up "heads" with p = 0.5)
- Define Y = number of coin flips ("heads") before first "tails"
- You win $\$2^Y$

How much would you pay to play? (How much you expect to win?)

- A. \$10000
- B. \$∞
- C. \$1
- D. \$0.50
- E. \$0 but let's play
- F. I will not play

St. Petersburg Paradox

$$E[g(x)] = \sum_{x} g(x)p(x)$$
 Expectation of $g(X)$

- A fair coin (comes up "heads" with p = 0.5)
- Define Y = number of coin flips ("heads") before first "tails"
- You win $\$2^Y$

How much would you pay to play? (How much you expect to win?)

Define random variables

For
$$i \ge 0$$
: $P(Y = i) = \left(\frac{1}{2}\right)^{i+1}$
Let $W = \text{your winnings, } 2^Y$.

2. Solve

$$E[W] = E[2^Y] = \left(\frac{1}{2}\right)^1 2^0 + \left(\frac{1}{2}\right)^2 2^1 + \left(\frac{1}{2}\right)^3 2^2 + \cdots$$
$$= \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i+1} 2^i = \sum_{i=0}^{\infty} \left(\frac{1}{2}\right) = \infty$$

St. Petersburg + Reality

$$E[g(x)] = \sum_{x} g(x)p(x)$$
 Expectation of $g(X)$

What if the house has only \$65,536?

- Same game
- Define Y = # heads before first tails
- You win $W = \$2^Y$
- If you win over \$65,536, you break the house and pay 2020 -21 tuition
- Define random variables

For
$$i \ge 0$$
: $P(Y = i) = \left(\frac{1}{2}\right)^i$

Let

 $W = \text{your winnings, } 2^{Y}$.

2. Solve

$$E[W] = \left(\frac{1}{2}\right)^{1} 2^{0} + \left(\frac{1}{2}\right)^{2} 2^{1} + \left(\frac{1}{2}\right)^{3} 2^{2} + \cdots$$

$$k = \log_2(65,536)$$

= 16

$$= \sum_{k=1}^{k} \left(\frac{1}{2}\right)^{i+1} 2^{i} = \sum_{k=1}^{16} \left(\frac{1}{2}\right)^{i} = 8.5$$

