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Overview of Section Materials
The warmup questions provided will help students practice concepts introduced in lectures. The section prob-
lems are meant to apply these concepts in more complex scenarios similar to what you will see in problem sets
and quizzes.

1 Warmups

1.1 Lecture 1: Counting
The Inclusion Exclusion Principle for three sets is:

|𝐴 ∪ 𝐵 ∪ 𝐶 | = |𝐴| + |𝐵 | + |𝐶 | − |𝐴 ∩ 𝐵 | − |𝐴 ∩ 𝐶 | − |𝐵 ∩ 𝐶 | + |𝐴 ∩ 𝐵 ∩ 𝐶 |

Explain why in terms of a venn-diagram.

We want a, b, c, d, e, f, & g to each be accounted for exactly once. If we add A, B, and C together, we properly
count a, b, & c exactly once. However we will double count d, e, & f, and triple count g. Removing 𝐴∩ 𝐵, 𝐴∩𝐶,
& 𝐵 ∩ 𝐶 will reduce the counts for d, e, & f down to one. However, g went from being counted 3 times too many
to being counted zero times. The expression corresponding to g is 𝐴 ∩ 𝐵 ∩ 𝐶, so we add it in to allow g to have a
count of exactly one.

1.2 Lecture 2 Warmup: Permutations and Combinations
Suppose there are 7 blue fish, 4 red fish, and 8 green fish in a large fishing tank. You drop a net into it and end up
with 6 fish. What is the probability you get 2 of each color?

For our event space, we consider the number of ways we can select 2 of then 7 blue fish, independently select
2 of the 4 red fish, and independently choose 2 of the 8 green fish. For the full sample space, we consider the
number of ways we can select a 6 fish from all 19 fish without regard for blue, red, or green. Therefore:
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1.3 Lecture 3 Warmup: Axioms of Probability
Decide whether each of the three statements below is true or false.

𝑃(𝐴) + 𝑃(𝐴𝐶) = 1, 𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐴 ∩ 𝐵𝐶) = 1, 𝑃(𝐴) = 0.4 ∧ 𝑃(𝐵) = 0.6 =⇒ 𝐴 = 𝐵𝐶

T F F

The first one is simply saying that an event either falls inside of an event space 𝐴 or outside of it. The second is
false, as the left hand side, in general, is 𝑃(𝐴), which isn’t guaranteed to be 1. And the fact that 𝑃(𝐴) and 𝑃(𝐵𝐶)
are each 0.4 doesn’t require the event spaces to be the same.

2 Problems

2.1 Lecture 1 Generative Processes: The Birthday Problem
When solving a counting problem, it can often be useful to come up with a generative process, a series of steps
that “generates" examples. A correct generative process to count the elements of set 𝐴 will (1) generate every el-
ement of 𝐴 and (2) not generate any element of 𝐴 more than once. If our process has the added property that (3)
any given step always has the same number of possible outcomes, then we can use the product rule of counting.

Example: Say we want to count the number of ways to roll two (distinct) dice where one die is even and one die
is odd. Our process could be: (1) roll the first die and note if the value is even or odd, then (2) count the number
of ways the second die can be rolled for a value of the opposite parity. Since the first step has 6 options and the
second step has 3 options regardless of the outcome of the first step, the number of possibilities is 6 ∗ 3 = 18.

Problem: Assume that birthdays happen on any of the 365 days of the year with equal likelihood (we’ll ignore
leap years).

a. What is the probability that of the 𝑛 people in class, at least two people share the same birthday?

It is much easier to calculate the probability that no one shares a birthday. Let our sample space, 𝑆 be the
set of all possible assignments of birthdays to the students in section. By the assumptions of this problem,
each of those assignments is equally likely, so this is a good choice of sample space. We can use the prod-
uct rule of counting to calculate |𝑆 |:

|𝑆 | = (365)𝑛

Our event 𝐸 will be the set of assignments in which there are no matches (i.e. everyone has a different
birthday). We can think of this as a generative process where there are 365 choices of birthdays for the first
student, 364 for the second (since it can’t be the same birthday as the first student), and so on. Verify for
yourself that this process satisfies the three conditions listed above. We can then use the product rule of
counting:

|𝐸 | = (365) · (364) · · · · · (365 − 𝑛 + 1)



𝑃(birthday match) = 1 − 𝑃(no matches)

= 1 − |𝐸 |
|𝑆 |

= 1 − (365) · (364) . . . (365 − 𝑛 + 1)
(365)𝑛

A common misconception is that the size of the event 𝐸 can be computed as |𝐸 | =
(365
𝑛

)
by choosing 𝑛

distinct birthdays from 365 options. However, outcomes in this event (𝑛 unordered distinct dates) cannot
recreate any outcomes in the sample space |𝑆 | = 365𝑛 (𝑛 distinct dates, one for each distinct person). How-
ever if we compute the size of event 𝐸 as |𝐸 | =

(365
𝑛

)
𝑛! (equivalent to the number above), then we can

assign the 𝑛 birthdays to each person in a way consistent with the sample space.
Interesting values: (𝑛 = 13 : 𝑝 ≈ 0.19), (𝑛 = 23 : 𝑝 ≈ 0.5), (𝑛 = 70 : 𝑝 ≥ 0.99).

b. What is the probability that this class contains exactly one pair of people who share a birthday?

We can use the same sample space, but our event is a little bit trickier. Now 𝐸 is the set of birthday assignments
in which exactly two students share a birthday and the rest have different birthdays. One generative process that
works for this is (1) choose the two students who share a birthday, (2) choose 𝑛 − 1 birthdays in the same manner
as in part a (i.e. one for the pair of students and one for each of the remaining students). We then have:

𝑃(exactly one match) = |𝐸 |
|𝑆 | =

(𝑛
2
)
(365) · (364) · ... · (365 − 𝑛 + 2)

(365)𝑛

Many other generative processes work for this problem. Try to think of some other ones and make sure you get
the same answer!

2.2 Lecture 2: Flipping Coins
One thing that students often find tricky when learning combinatorics is how to figure out when a problem in-
volves permutations and when it involves combinations. Naturally, we will look at a problem that can be solved
with both approaches. Pay attention to what parts of your solution represent distinct objects and what parts rep-
resent indistinct objects.

Problem: We flip a fair coin 𝑛 times, hoping (for some reason) to get 𝑘 heads.

a. How many ways are there to get exactly 𝑘 heads? Characterize your answer as a permutation of H’s and
T’s.

We want to know the number of sequences of 𝑛 H’s and T’s such that there are 𝑘 H’s and 𝑛 − 𝑘 T’s. This is
the same as permuting 𝑛 objects of which one set of 𝑘 is indistinguishable and one set of 𝑛 − 𝑘 is indistin-
guishable. Using our formula for the permutation of indistinguishable objects, we get 𝑛!

𝑘!(𝑛−𝑘)!

b. For what 𝑥 and 𝑦 is your answer to part a equal to
(𝑥
𝑦

)
? Why does this combination make sense as an an-

swer?



Our answer to part a is equal to
(𝑛
𝑘

)
. This makes sense because we can come up with a valid sequence by

choosing 𝑘 flips to come out to heads (and implicitly define the other 𝑛 − 𝑘 to be tails). The answer is also
equivalent to

( 𝑛
𝑛−𝑘

)
for which the same logic applies except with choosing flips to be tails.

c. What is the probability that we get exactly 𝑘 heads?

If we define our sample space to be all possible sequences of flips, then our event is the number of se-
quences where we get exactly 𝑘 heads, meaning that |𝐸 | is (conveniently) the answer to the previous two
parts. Our probability is then |𝐸 |

|𝑆 | =
(𝑛𝑘)
2𝑛 .

2.3 Lecture 2: Combinatorial Proofs
Example: Prove why

(𝑛
𝑘

)
=
( 𝑛
𝑛−𝑘

)
.

A fully algebraic proof is possible by simply showing the left hand side is equivalent to the right, as with:

(
𝑛

𝑛 − 𝑘

)
=

𝑛!
(𝑛 − 𝑘)!(𝑛 − (𝑛 − 𝑘))! =

𝑛!
(𝑛 − 𝑘)!((𝑛 − 𝑛) + 𝑘)! =

𝑛!
(𝑛 − 𝑘)!𝑘!

=

(
𝑛

𝑘

)
An equally compelling proof is a combinatorial one, which relies on our ability to describe the counting problem
in two, equivalent ways. In this case, we can simply say the above is true because choosing 𝑘 items from a set of
𝑛 items is equivalent to choosing the 𝑛 − 𝑘 items to be excluded. These types of proofs are called combinatorial
proofs, or story proofs.

a. Present a combinatorial proof arguing that
( 𝑟
𝑚

) (𝑚
𝑘

)
=
(𝑟
𝑘

) ( 𝑟−𝑘
𝑚−𝑘

)
.

We’ll contrive a college admissions backstory for our combinatorial proof.
The left hand side count the number of ways we can admit 𝑚 applicants from a pool of 𝑟 applications, and
then from those 𝑚 admits choose 𝑘 to receive a full academic scholarship. The right hand side counts
the same set of possibilities by choosing the 𝑘 applicants to admit and award a full scholarship and then
choosing 𝑚 − 𝑘 other applicants from the remaining 𝑟 − 𝑘 to round out the full set of 𝑚 admitted students.
This can also be proved algebraically, but the above argument is much more illuminating and would be
considered a valid proof unless the problem specifically asked for a strictly mathematical one.

b. Present a combinatorial proof arguing that
∑

𝑘

( 𝑟
𝑚+𝑘

) ( 𝑠
𝑛−𝑘

)
=
( 𝑟+𝑠
𝑚+𝑛

)
for all integer values of 𝑘 , assuming 𝑟 , 𝑠,

𝑚, and 𝑛 are integer constants.

The right hand side counts the number of ways we can choose a total of 𝑚 + 𝑛 items from two sets of size
𝑟 and 𝑠. The left hand side counts the number of ways one can select 𝑚 + 𝑘 items from the first set and the
remaining 𝑛 − 𝑘 items from the second set, so that the total number of selected items is still 𝑚 + 𝑛. This
combinatoric identity, as it turns out, is related to the idea of a convolution, and we’ll study them more in a
few weeks.
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