11: Joint (Multivariate) Distributions

Jerry Cain
April 21, 2021
<table>
<thead>
<tr>
<th></th>
<th>Quick slide reference</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Normal Approximation</td>
<td>11a_normal_approx</td>
</tr>
<tr>
<td>13</td>
<td>Discrete Joint RVs</td>
<td>11b_discrete_joint</td>
</tr>
<tr>
<td>26</td>
<td>Multinomial RV</td>
<td>11c_multinomial</td>
</tr>
<tr>
<td>34</td>
<td>Exercises</td>
<td>LIVE</td>
</tr>
</tbody>
</table>
Normal Approximation
Normal RVs

\[X \sim \mathcal{N}(\mu, \sigma^2) \]

- Used to model many real-life situations because it maximizes entropy (i.e., randomness) for a given mean and variance
- Also useful for approximating the Binomial random variable!
Website testing

- 100 people are presented with a new website design.
- \(X \) = # people whose time on site increases
- The design has no effect, so \(P(\text{time on site increases}) = 0.5 \) independently.
- CEO will endorse the new design if \(X \geq 65 \).

What is \(P(\text{CEO endorses change}) \)? Give a numerical approximation.

Approach 1: Binomial

Define
\[
X \sim \text{Bin}(n = 100, p = 0.5)
\]

Want: \(P(X \geq 65) \)

Solve
\[
P(X \geq 65) = \sum_{i=65}^{100} \binom{100}{i} 0.5^i (1 - 0.5)^{100-i}
\]
Don’t worry, Normal approximates Binomial

(We’ll explain why in 2 weeks’ time)
Website testing

- 100 people are given a new website design.
- $X = \#$ people whose time on site increases
- The design actually has no effect, so $P(\text{time on site increases}) = 0.5$ independently.
- CEO will endorse the new design if $X \geq 65$.

What is $P(\text{CEO endorses change})$? *Give a numerical approximation.*

Approach 1: Binomial

Define

$X \sim \text{Bin}(n = 100, p = 0.5)$

Want: $P(X \geq 65)$

Solve

$P(X \geq 65) \approx 0.0018$

⚠️ ⚠️ (this approach is missing something important)

Approach 2: approximate with Normal

Define

$Y \sim \mathcal{N}(\mu, \sigma^2)$

$\mu = np = 50$

$\sigma^2 = np(1-p) = 25$

$\sigma = \sqrt{25} = 5$

Solve

$P(X \geq 65) \approx P(Y \geq 65) = 1 - F_Y(65)$

$= 1 - \Phi \left(\frac{65-50}{5} \right) = 1 - \Phi(3) \approx 0.0013$?
Website testing (with continuity correction)

In our website testing, $Y \sim \mathcal{N}(50, 25)$ approximates $X \sim \text{Bin}(100, 0.5)$.

$P(X \geq 65)$ \hspace{1cm} Binomial

$\approx P(Y \geq 64.5)$ \hspace{1cm} Normal

≈ 0.0018 \hspace{1cm} ✅ the better

Approach 2

You must perform a continuity correction when approximating a Binomial RV with a Normal RV.
Continuity correction

If $Y \sim \mathcal{N}(np, np(1 - p))$ approximates $X \sim \text{Bin}(n, p)$, how do we approximate the following probabilities?

<table>
<thead>
<tr>
<th>Discrete (e.g., Binomial) probability question</th>
<th>Continuous (Normal) probability question</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = 6)$</td>
<td></td>
</tr>
<tr>
<td>$P(X \geq 6)$</td>
<td></td>
</tr>
<tr>
<td>$P(X > 6)$</td>
<td></td>
</tr>
<tr>
<td>$P(X < 6)$</td>
<td></td>
</tr>
<tr>
<td>$P(X \leq 6)$</td>
<td></td>
</tr>
</tbody>
</table>
Continuity correction

If $Y \sim \mathcal{N}(np, np(1 - p))$ approximates $X \sim \text{Bin}(n, p)$, how do we approximate the following probabilities?

<table>
<thead>
<tr>
<th>Discrete (e.g., Binomial) probability question</th>
<th>Continuous (Normal) probability question</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = 6)$</td>
<td>$P(5.5 \leq Y \leq 6.5)$</td>
</tr>
<tr>
<td>$P(X \geq 6)$</td>
<td>$P(Y \geq 5.5)$</td>
</tr>
<tr>
<td>$P(X > 6)$</td>
<td>$P(Y \geq 6.5)$</td>
</tr>
<tr>
<td>$P(X < 6)$</td>
<td>$P(Y \leq 5.5)$</td>
</tr>
<tr>
<td>$P(X \leq 6)$</td>
<td>$P(Y \leq 6.5)$</td>
</tr>
</tbody>
</table>

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021
Who gets to approximate?

\[X \sim \text{Bin}(n, p) \]
\[E[X] = np \]
\[\text{Var}(X) = np(1 - p) \]

\[Y \sim \text{Poi}(\lambda) \]
\[\lambda = np \]

\[? \]

\[Y \sim \mathcal{N}(\mu, \sigma^2) \]
\[\mu = np \]
\[\sigma^2 = np(1 - p) \]
1. If there is a choice, use Normal to approximate.
2. When using Normal to approximate a discrete RV, use a continuity correction.
Discrete Joint RVs
From last time

What is the probability that the Warriors win?
How do you model zero-sum games?

\[P(A_W > A_B) \]

This is a probability of an event involving two random variables!
Joint probability mass functions

Roll two 6-sided dice, yielding values X and Y.

X
random variable

$P(X = 1)$
probability of an event

$P(X = k)$
probability mass function
Joint probability mass functions

Roll two 6-sided dice, yielding values X and Y.

<table>
<thead>
<tr>
<th>X</th>
<th>$P(X = 1)$</th>
<th>$P(X = k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>random variable</td>
<td>probability of an event</td>
<td>probability mass function</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X, Y</th>
<th>$P(X = 1 \cap Y = 6)$</th>
<th>$P(X = a, Y = b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>random variables</td>
<td>$P(X = 1, Y = 6)$</td>
<td>joint probability mass function</td>
</tr>
</tbody>
</table>

new notation: the comma

probability of the intersection of two events

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021
Discrete joint distributions

For two discrete joint random variables \(X \) and \(Y \), the joint probability mass function is defined as:

\[
p_{X,Y}(a, b) = P(X = a, Y = b)
\]

The marginal distributions of the joint PMF are defined as:

\[
p_X(a) = P(X = a) = \sum_y p_{X,Y}(a, y)
\]

\[
p_Y(b) = P(Y = b) = \sum_x p_{X,Y}(x, b)
\]

Use marginal distributions to get a 1-D RV from a joint PMF.
Two dice

Roll two 6-sided dice, yielding values X and Y.

1. What is the joint PMF of X and Y?

$$p_{X,Y}(a, b) = \frac{1}{36} \quad \text{for } (a, b) \in \{(1,1), \ldots, (6,6)\}$$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1/36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/36</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1/36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/36</td>
</tr>
</tbody>
</table>

Probability table
- All possible outcomes for several discrete RVs
- Not parametric (e.g., parameter p in $\text{Ber}(p)$)
Two dice

Roll two 6-sided dice, yielding values X and Y.

1. What is the joint PMF of X and Y?

$$p_{X,Y}(a, b) = 1/36 \quad (a, b) \in \{(1,1), \ldots, (6,6)\}$$

2. What is the marginal PMF of X?

$$p_X(a) = P(X = a) = \sum_y p_{X,Y}(a, y) = \sum_{y=1}^{6} \frac{1}{36} = \frac{1}{6} \quad a \in \{1, \ldots, 6\}$$
A computer (or three) in every house.

Consider households in Silicon Valley.

- A household has X Macs and Y PCs.
- Each house has a maximum of 3 computers (Macs + PCs) in the house.

1. What is $P(X = 1, Y = 0)$, the missing entry in the probability table?

<table>
<thead>
<tr>
<th>Y (# PCs)</th>
<th>X (# Macs)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.16</td>
<td>?</td>
<td>.07</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>.12</td>
<td>.14</td>
<td>.12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.07</td>
<td>.12</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
A computer (or three) in every house.

Consider households in Silicon Valley.
- A household has X Macs and Y PCs.
- Each house has a maximum of 3 computers (Macs + PCs) in the house.

1. What is $P(X = 1, Y = 0)$, the missing entry in the probability table?

A joint PMF must sum to 1:

$$\sum_x \sum_y p_{X,Y}(x,y) = 1$$
A computer (or three) in every house.

Consider households in Silicon Valley.
- A household has X Macs and Y PCs.
- Each house has a maximum of 3 computers (Macs + PCs) in the house.

2. How do you compute the marginal PMF of X?

<table>
<thead>
<tr>
<th></th>
<th>Y (# PCs)</th>
<th>X (# Macs)</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>.16</td>
<td>.12</td>
<td>.07</td>
<td>.04</td>
<td>.39</td>
</tr>
<tr>
<td>1</td>
<td>.12</td>
<td>.14</td>
<td>.12</td>
<td>0</td>
<td>.38</td>
</tr>
<tr>
<td>2</td>
<td>.07</td>
<td>.12</td>
<td>0</td>
<td>0</td>
<td>.19</td>
</tr>
<tr>
<td>3</td>
<td>.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>.04</td>
</tr>
</tbody>
</table>

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021
A computer (or three) in every house.

Consider households in Silicon Valley.
• A household has X Macs and Y PCs.
• Each house has a maximum of 3 computers (Macs + PCs) in the house.

2. How do you compute the marginal PMF of X?

A. $p_{X,Y}(x, 0) = P(X = x, Y = 0)$

B. Marginal PMF of X

\[p_x(x) = \sum_y p_{x,y}(x, y) \]

C. Marginal PMF of Y

\[p_y(y) = \sum_x p_{x,y}(x, y) \]

To find a marginal distribution over one variable, sum over all other variables in the joint PMF.
A computer (or three) in every house.

Consider households in Silicon Valley.

- A household has X Macs and Y PCs.
- Each house has a maximum of 3 computers (Macs + PCs) in the house.

3. Let $C = X + Y$. What is $P(C = 3)$?

<table>
<thead>
<tr>
<th>Y (# PCs)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.16</td>
<td>.12</td>
<td>.07</td>
<td>.04</td>
</tr>
<tr>
<td>1</td>
<td>.12</td>
<td>.14</td>
<td>.12</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>.07</td>
<td>.12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
A computer (or three) in every house.

Consider households in Silicon Valley.

- A household has \(X \) Macs and \(Y \) PCs.
- Each house has a maximum of 3 computers (Macs + PCs) in the house.

3. Let \(C = X + Y \). What is \(P(C = 3) \)?

\[
P(C = 3) = P(X + Y = 3) \]

\[
= \sum_{x} \sum_{y} P(X + Y = 3 | X = x, Y = y) P(X = x, Y = y)
\]

\[
= P(X = 0, Y = 3) + P(X = 1, Y = 2) + P(X = 2, Y = 1) + P(X = 3, Y = 0)
\]

We’ll come back to sums of RVs next lecture!
Multinomial RV
Recall the good times

Permutations $n!$
How many ways are there to order n objects?
Counting unordered objects

Binomial coefficient

How many ways are there to group n objects into two groups of size k and $n - k$, respectively?

\[
\binom{n}{k} = \frac{n!}{k! (n - k)!}
\]

Called the binomial coefficient because of something from Algebra

Multinomial coefficient

How many ways are there to group n objects into r groups of sizes n_1, n_2, \ldots, n_r respectively?

\[
\binom{n}{n_1, n_2, \ldots, n_r} = \frac{n!}{n_1! n_2! \ldots n_r!}
\]

Multinomials generalize Binomials for counting.
Probability

Binomial RV

What is the probability of getting k successes and $n - k$ failures in n trials?

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Multinomial RV

What is the probability of getting c_1 of outcome 1, c_2 of outcome 2, ..., and c_m of outcome m in n trials?

- Binomial # of ways of ordering the successes
- Probability of each ordering of k successes is equal + mutually exclusive
- Multinomial RVs also generalize Binomial RVs for probability!
Multinomial Random Variable

Consider an experiment of n independent trials:

- Each trial results in one of m outcomes. $P(\text{outcome } i) = p_i$, $\sum_{i=1}^{m} p_i = 1$
- Let $X_i = \#$ trials with outcome i

Joint PMF

$$P(X_1 = c_1, X_2 = c_2, ..., X_m = c_m) = \binom{n}{c_1, c_2, ..., c_m} p_1^{c_1} p_2^{c_2} ... p_m^{c_m}$$

where $\sum_{i=1}^{m} c_i = n$ and $\sum_{i=1}^{m} p_i = 1$

Multinomial # of ways of ordering the outcomes

Probability of each ordering is equal + mutually exclusive
Hello dice rolls, my old friends

A 6-sided die is rolled 7 times.

What is the probability of getting:

- 1 one
- 1 two
- 2 fours
- 0 threes
- 0 fives
- 3 sixes
Hello dice rolls, my old friends

A 6-sided die is rolled 7 times.

What is the probability of getting:

- 1 one
- 0 threes
- 0 fives
- 1 two
- 2 fours
- 3 sixes

\[
P(X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 2, X_5 = 0, X_6 = 3) = \binom{7}{1,1,0,2,0,3} \left(\frac{1}{6} \right)^1 \left(\frac{1}{6} \right)^1 \left(\frac{1}{6} \right)^0 \left(\frac{1}{6} \right)^2 \left(\frac{1}{6} \right)^0 \left(\frac{1}{6} \right)^3 = 420 \left(\frac{1}{6} \right)^7
\]
Hello dice rolls, my old friends

A 6-sided die is rolled 7 times. What is the probability of getting:

- 1 one
- 0 threes
- 0 fives
- 1 two
- 2 fours
- 3 sixes

\[
P(X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 2, X_5 = 0, X_6 = 3)
\]

\[
= \binom{7}{1,1,0,2,0,3} \left(\frac{1}{6}\right)^1 \left(\frac{1}{6}\right)^1 \left(\frac{1}{6}\right)^0 \left(\frac{1}{6}\right)^2 \left(\frac{1}{6}\right)^0 \left(\frac{1}{6}\right)^3 = 420 \left(\frac{1}{6}\right)^7
\]

- choose where the sixes appear
- probability of rolling a six this many times

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021
11: Joint (Multivariate) Distributions

Jerry Cain
April 21, 2021
Normal RVs

\[X \sim \mathcal{N}(\mu, \sigma^2) \]

- Used to model many real-life situations because it maximizes entropy (i.e., randomness) for a given mean and variance

- Also useful for approximating the Binomial random variable!
Who gets to approximate?

\[X \sim \text{Bin}(n, p) \]
\[E[X] = np \]
\[\text{Var}(X) = np(1 - p) \]

\[Y \sim \text{Poi}(\lambda) \]
\[\lambda = np \]

\[Y \sim \mathcal{N}(\mu, \sigma^2) \]
\[\mu = np \]
\[\sigma^2 = np(1 - p) \]

- Computing probabilities on Binomial RVs is often computationally expensive.
- Two reasonable approximations, but when to use which?

\[Y \sim \text{Poi}(\lambda) \]
\[\lambda = np \]

- \(n \) large (> 20), \(p \) mid-ranged \((np(1 - p) > 10)\)
- independence

\[Y \sim \mathcal{N}(\mu, \sigma^2) \]
\[\mu = np \]
\[\sigma^2 = np(1 - p) \]

- \(n \) large (> 20), \(p \) small (< 0.05)
- slight dependence okay

- need continuity correction
Think

Check out the question on the next slide (Slide 38).

Post any clarifications here!

https://edstem.org/us/courses/5090/discussion/377743

Breakout rooms: 5 mins
Stanford Admissions (a while back)

Stanford accepts 2480 students.
- Each admitted student matriculates w.p. 0.68 (independent trials)
- Let $X = \#$ of students who will attend

What is $P(X > 1745)$? Give a numerical approximation.

Strategy:
- A. Just Binomial
- B. Poisson
- C. Normal
- D. None/other
Stanford Admissions (a while back)

Stanford accepts 2480 students.
- Each admitted student matriculates w.p. 0.68 (independent trials)
- Let $X = \#$ of students who will attend

What is $P(X > 1745)$? Give a numerical approximation.

Strategy:
A. Just Binomial not an approximation (also computationally expensive)
B. Poisson $p = 0.68$, not small enough
C. Normal ✓ Variance $np(1 - p) = 540 > 10$
D. None/other

Define an approximation

Let $Y \sim \mathcal{N}(E[X], \text{Var}(X))$

$E[X] = np = 1686$

$\text{Var}(X) = np(1 - p) \approx 540 \rightarrow \sigma = 23.3$

$P(X > 1745) \approx P(Y \geq 1745.5)$! Continuity correction

Solve

$P(Y \geq 1745.5) = 1 - F(1745.5)$

$= 1 - \Phi \left(\frac{1745.5 - 1686}{23.3} \right)$

$= 1 - \Phi(2.54) \approx 0.0055$
Changes in Stanford Admissions

Stanford accepts 2480 students.

- Each admitted student matriculates w.p. 0.68 (independent trials)
- Let $X = \#$ of students who will attend

What is $P(X > 1745)$? Give a numerical approximation.

People love coming to Stanford!

Overview for the Class of 2022

- Total Applicants: 47,451
- Total Admits: 2,071
- Total Enrolled: 1,706

Admit rate: 4.3%
Yield rate: 81.9%
Multinomial Random Variable

Consider an experiment of n independent trials:
- Each trial results in one of m outcomes. $P(\text{outcome } i) = p_i$, $\sum_{i=1}^{m} p_i = 1$
- Let $X_i = \# \text{ trials with outcome } i$

Joint PMF

$$P(X_1 = c_1, X_2 = c_2, \ldots, X_m = c_m) = \binom{n}{c_1, c_2, \ldots, c_m} p_1^{c_1} p_2^{c_2} \cdots p_m^{c_m}$$

where $\sum_{i=1}^{m} c_i = n$ and $\sum_{i=1}^{m} p_i = 1$

Example:
- Rolling 2 twos, 3 threes, and 5 fives on 10 rolls of a fair-sided die
- Generating a random 5-word phrase with 1 “the”, 2 “bacon”, 1 “put”, 1 “on”
Hello dice rolls, my old friends

A 6-sided die is rolled 7 times. What is the probability of getting:

- 1 one
- 0 threes
- 1 two
- 2 fours
- 0 fives
- 3 sixes

\[
P(X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 2, X_5 = 0, X_6 = 3) = \binom{7}{1,1,0,2,0,3} \left(\frac{1}{6}\right)^1 \left(\frac{1}{6}\right)^1 \left(\frac{1}{6}\right)^0 \left(\frac{1}{6}\right)^2 \left(\frac{1}{6}\right)^0 \left(\frac{1}{6}\right)^3 = 420 \left(\frac{1}{6}\right)^7
\]
Parameters of a Multinomial RV?

$X \sim \text{Bin}(n, p)$ has parameters n, p...

\[P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k} \]

p: probability of success outcome on a single trial

A Multinomial RV has parameters $n, p_1, p_2, ..., p_m$ (Note $p_m = 1 - \sum_{i=1}^{m-1} p_i$)

\[P(X_1 = c_1, X_2 = c_2, ..., X_m = c_m) = \binom{n}{c_1, c_2, ..., c_m} p_1^{c_1} p_2^{c_2} \cdots p_m^{c_m} \]

p_i: probability of outcome i on a single trial

Where do we get p_i from?
Interlude for announcements
Announcements

Quiz #1

Time frame: Wednesday, 4/21 11:00am – Friday, 4/23, 10:00am PT
Covers: Up to end of Week 2 (including Lecture 6), PSets 1 and 2

Thoughts on CS109, pre-quiz:
• A checkpoint for you, not other people.
• The quiz is comprehensive, but it’s specifically written to focus on CS109 concepts without relying on tedious algebra or clever insights more easily drawn by those who came in knowing some of the material already.

Other things this week
• Friday’s concept check #12 isn’t due until Monday.
Prelude: The Federalist Papers
Probabilistic text analysis

Ignoring the order of words...

What is the probability of any given word that you write in English?

- \(P(\text{word} = \text{"the"}) > P(\text{word} = \text{"pokemon"}) \)
- \(P(\text{word} = \text{"Stanford"}) > P(\text{word} = \text{"Cal"}) \)

Probabilities of \textit{counts} of words = Multinomial distribution

A document is a large multinomial.

(according to the Global Language Monitor, there are 988,968 words in the English language used on the internet.)
Probabilistic text analysis

Probabilities of counts of words = Multinomial distribution

Example document:

“When my late husband was alive he deposited some amount of Money with china Bank in which the amount will be declared to you once you respond to this message indicating your interest in helping to receive the fund and use it for Gods work as my wish.”

#words: \(n = 48 \)

\[
P \left(\begin{array}{l}
\text{bank} = 1 \\
\text{fund} = 1 \\
\text{money} = 1 \\
\text{wish} = 1 \\
\text{to} = 3 \\
\end{array} \mid \text{spam} \right) = \frac{n!}{1! 1! 1! \cdots 3!} p_\text{bank}^1 p_\text{fund}^1 \cdots p_\text{to}^3
\]

Note: \(P \left(\text{bank} \mid \text{spam} \right) \gg P \left(\text{bank} \mid \text{writer=you} \right) \)
Old and New Analysis

Authorship of the Federalist Papers

• 85 essays advocating ratification of the US constitution
• Written under the pseudonym “Publius” (really, Alexander Hamilton, James Madison, John Jay)

Who wrote which essays?

• Analyze probability of words in each essay and compare against word distributions from known writings of three authors
• Curious what the analysis is? You’ll love PSet 4!
Statistics of Two RVs
Expectation and Covariance

In real life, we often have many RVs interacting at once.

• We’ve seen some simpler cases (e.g., sum of independent Poissons).
• Computing joint PMFs in general is hard!
• But often you don’t need to model joint RVs completely.

Instead, we’ll focus next on reporting statistics of multiple RVs:

• **Expectation of sums** (you’ve seen some of this, more on this today)
• **Covariance**: measure of how two RVs vary with each other (more on this next week)
Properties of Expectation, extended to two RVs

1. Linearity:

\[E[aX + bY + c] = aE[X] + bE[Y] + c \]

2. Expectation of a sum = sum of expectation:

\[E[X + Y] = E[X] + E[Y] \]

3. Unconscious statistician:

\[E[g(X, Y)] = \sum_x \sum_y g(x, y)p_{X,Y}(x, y) \]

True for both independent and dependent random variables!

(we’ve seen this; we’ll prove today!)
Proof of expectation of a sum of RVs

\[E[X + Y] = \sum_x \sum_y (x + y)p_{X,Y}(x, y) \]

\[= \sum_x \sum_y xp_{X,Y}(x, y) + \sum_x \sum yyp_{X,Y}(x, y) \]

\[= \sum_x x \sum y p_{X,Y}(x, y) + \sum_y y \sum x p_{X,Y}(x, y) \]

\[= \sum_x xp_X(x) + \sum_y yp_Y(y) \]

\[= E[X] + E[Y] \]

\[E[X + Y] = E[X] + E[Y] \]

LOTUS,
\[g(X, Y) = X + Y \]

Linearity of summations
(cont. case: linearity of integrals)

Marginal PMFs for \(X \) and \(Y \)
Expectations of common RVs: Binomial

\[X \sim \text{Bin}(n, p) \quad E[X] = np \]

\# of successes in \(n \) independent trials with probability of success \(p \)

Recall: \(\text{Bin}(1, p) = \text{Ber}(p) \)

\[X = \sum_{i=1}^{n} X_i \]

Let \(X_i = i \)th trial is heads \(X_i \sim \text{Ber}(p), E[X_i] = p \)

\[E[X] = E \left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} p = np \]