14: Conditional Expectation

Jerry Cain
April 28, 2021
Quick slide reference

3 Conditional distributions 14a_conditional_distributions

11 Conditional expectation 14b_cond_expectation

17 Law of Total Expectation and Exercises LIVE
Discrete conditional distributions
Discrete conditional distributions

Recall the definition of the conditional probability of event E given event F:

$$P(E | F) = \frac{P(EF)}{P(F)}$$

For discrete random variables X and Y, the conditional PMF of X given Y is

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Different notation, same idea:

$$p_{X|Y}(x | y) = \frac{p_{X,Y}(x, y)}{p_Y(y)}$$
Discrete probabilities of CS109

Each student responds with:

Year Y
- 1: Frosh/Soph
- 2: Jr/Sr
- 3: Co-term/grad/NDO

Timezone T (12pm California time in my timezone is):
- -1: AM
- 0: noon
- 1: PM

<table>
<thead>
<tr>
<th></th>
<th>$Y = 1$</th>
<th>$Y = 2$</th>
<th>$Y = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = -1$</td>
<td>.06</td>
<td>.01</td>
<td>.01</td>
</tr>
<tr>
<td>$T = 0$</td>
<td>.29</td>
<td>.14</td>
<td>.09</td>
</tr>
<tr>
<td>$T = 1$</td>
<td>.30</td>
<td>.08</td>
<td>.02</td>
</tr>
</tbody>
</table>

$P(Y = 3, T = 1)$

Joint PMFs sum to 1.
Discrete probabilities of CS109

The below are **conditional probability tables** for conditional PMFs

(A) $P(Y = y | T = t)$ and (B) $P(T = t | Y = y)$.

1. Which is which?
2. What’s the missing probability?

<table>
<thead>
<tr>
<th>$Y = 1$</th>
<th>$Y = 2$</th>
<th>$Y = 3$</th>
<th>Joint PMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = -1$</td>
<td>.06</td>
<td>.01</td>
<td>.01</td>
</tr>
<tr>
<td>$T = 0$</td>
<td>.29</td>
<td>.14</td>
<td>.09</td>
</tr>
<tr>
<td>$T = 1$</td>
<td>.30</td>
<td>.08</td>
<td>.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$Y = 1$</th>
<th>$Y = 2$</th>
<th>$Y = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = -1$</td>
<td>.75</td>
<td>.125</td>
</tr>
<tr>
<td>$T = 0$</td>
<td>.56</td>
<td>.27</td>
</tr>
<tr>
<td>$T = 1$</td>
<td>.75</td>
<td>.2</td>
</tr>
</tbody>
</table>
Discrete probabilities of CS109

The below are **conditional probability tables** for conditional PMFs

(A) $P(Y = y|T = t)$ and (B) $P(T = t|Y = y)$.

1. Which is which?

2. What’s the missing probability?

(A) $P(Y = y|T = t)$

<table>
<thead>
<tr>
<th>T</th>
<th>$Y = 1$</th>
<th>$Y = 2$</th>
<th>$Y = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = -1$</td>
<td>.06</td>
<td>.01</td>
<td>.01</td>
</tr>
<tr>
<td>$T = 0$</td>
<td>.29</td>
<td>.14</td>
<td>.09</td>
</tr>
<tr>
<td>$T = 1$</td>
<td>.30</td>
<td>.08</td>
<td>.02</td>
</tr>
</tbody>
</table>

(B) $P(T = t|Y = y)$

<table>
<thead>
<tr>
<th>Y</th>
<th>$T = -1$</th>
<th>$T = 0$</th>
<th>$T = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y = 1$</td>
<td>.09</td>
<td>.45</td>
<td>.46</td>
</tr>
<tr>
<td>$Y = 2$</td>
<td>.04</td>
<td>.61</td>
<td>.35</td>
</tr>
<tr>
<td>$Y = 3$</td>
<td>.08</td>
<td>.75</td>
<td>.17</td>
</tr>
</tbody>
</table>

1. $P(Y = 1|T = 0) = .56\quad P(Y = 2|T = 0) = .27\quad P(Y = 3|T = 0) = .17$

Conditional PMFs also sum to 1 conditioned on different events!
P(bought item X | bought item Y)
Quick check

Number or function?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$P(X = 2 \mid Y = 5)$</td>
</tr>
<tr>
<td>2.</td>
<td>$P(X = x \mid Y = 5)$</td>
</tr>
<tr>
<td>3.</td>
<td>$P(X = 2 \mid Y = y)$</td>
</tr>
<tr>
<td>4.</td>
<td>$P(X = x \mid Y = y)$</td>
</tr>
</tbody>
</table>

True or false?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>$\sum_x P(X = x \mid Y = 5) = 1$</td>
</tr>
<tr>
<td>6.</td>
<td>$\sum_y P(X = 2 \mid Y = y) = 1$</td>
</tr>
<tr>
<td>7.</td>
<td>$\sum_x \sum_y P(X = x \mid Y = y) = 1$</td>
</tr>
<tr>
<td>8.</td>
<td>$\sum_x \left(\sum_y P(X = x \mid Y = y) P(Y = y) \right) = 1$</td>
</tr>
</tbody>
</table>
Quick check

Number or function?

1. \(P(X = 2|Y = 5) \)
 number

2. \(P(X = x|Y = 5) \)
 1-D function

3. \(P(X = 2|Y = y) \)
 1-D function

4. \(P(X = x|Y = y) \)
 2-D function

True or false?

5. \(\sum_x P(X = x|Y = 5) = 1 \) true

6. \(\sum_y P(X = 2|Y = y) = 1 \) false

7. \(\sum_x \sum_y P(X = x|Y = y) = 1 \) false

8. \(\sum_x \left(\sum_y P(X = x|Y = y)P(Y = y) \right) = 1 \) true

\[P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} \]
Conditional Expectation
Conditional expectation

Recall the conditional PMF of X given $Y = y$:

$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

The conditional expectation of X given $Y = y$ is

$$E[X|Y = y] = \sum_x xP(X = x|Y = y) = \sum_x xp_{X|Y}(x|y)$$
It’s been so long, our dice friends

• Roll two 6-sided dice.
• Let roll 1 be D_1, roll 2 be D_2.
• Let $S = \text{value of } D_1 + D_2$.

1. What is $E[S|D_2 = 6]$?

$$E[S|D_2 = 6] = \sum_{x = 7}^{12} x P(S = x|D_2 = 6)$$

$$= \left(\frac{1}{6}\right) (7 + 8 + 9 + 10 + 11 + 12)$$

$$= \frac{57}{6} = 9.5$$

Intuitively: $6 + E[D_1] = 6 + 3.5 = 9.5$

Let’s prove this!
Properties of conditional expectation

1. LOTUS:

\[E[g(X) \mid Y = y] = \sum_x g(x)p_{X \mid Y}(x \mid y) \]

2. Linearity of conditional expectation:

\[E \left[\sum_{i=1}^{n} X_i \mid Y = y \right] = \sum_{i=1}^{n} E[X_i \mid Y = y] \]

3. Law of total expectation (next time)
It’s been so long, our dice friends

• Roll two 6-sided dice.
• Let roll 1 be D_1, roll 2 be D_2.
• Let $S =$ value of $D_1 + D_2$.

1. What is $E[S|D_2 = 6]$?

2. What is $E[S|D_2]$?
 A. A function of S
 B. A function of D_2
 C. A number

$E[X|Y = y] = \sum_x x p_{x|y}(x|y)$
It’s been so long, our dice friends

- Roll two 6-sided dice.
- Let roll 1 be D_1, roll 2 be D_2.
- Let $S = \text{value of } D_1 + D_2$.

1. What is $E[S|D_2 = 6]$?
 \[
 \frac{57}{6} = 9.5
 \]

2. What is $E[S|D_2]$?
 - A function of S
 - A function of D_2
 - A number

 \[
 E[S|D_2 = d_2] = E[D_1 + d_2|D_2 = d_2]
 = \sum_{d_1} (d_1 + d_2) P(D_1 = d_1|D_2 = d_2)
 = \sum_{d_1} d_1 P(D_1 = d_1) + d_2 \sum_{d_1} P(D_1 = d_1)
 = E[D_1] + d_2 = 3.5 + d_2
 \]
 \[
 E[S|D_2] = 3.5 + D_2
 \]
14: Conditional Expectation

Jerry Cain
April 28, 2021
Where are we now? A roadmap of CS109

Monday: Statistics of multiple RVs!
- \(\text{Var}(X + Y) \)
- \(E[X + Y] \)
- \(\text{Cov}(X, Y) \)
- \(\rho(X, Y) \)

Today:
Conditional distributions
- \(p_{X|Y}(x|y) \)
- \(E[X|Y] \)

Time to kick it up a notch!

Friday: Modeling with Bayesian Networks

Last week: Joint distributions
- \(p_{X,Y}(x, y) \)
Conditional Expectation

Conditional Distributions

Expectation
Law of Total Expectation
Properties of conditional expectation

1. LOTUS:

\[E[g(X)|Y = y] = \sum_x g(x)p_{X|Y}(x|y) \]

2. Linearity of conditional expectation:

\[E \left[\sum_{i=1}^{n} X_i | Y = y \right] = \sum_{i=1}^{n} E[X_i|Y = y] \]

3. Law of total expectation:

\[E[X] = E[E[X|Y]] \]

what?!
Proof of Law of Total Expectation

\[E[E[X|Y]] = E[g(Y)] = \sum_y P(Y = y)E[X|Y = y] \]

\[= \sum_y P(Y = y) \sum_x xP(X = x|Y = y) \]

\[= \sum_y \left(\sum_x xP(X = x|Y = y)P(Y = y) \right) = \sum_y \left(\sum_x xP(X = x, Y = y) \right) \]

\[= \sum_x \sum_y xP(X = x, Y = y) = \sum_x x \sum_y P(X = x, Y = y) \]

\[= \sum_x xP(X = x) \]

\[= E[X] \quad \text{...what?} \]

(LOTUS, \(g(Y) = E[X|Y] \))

(def of conditional expectation)

(chain rule)

(switch order of summations)

(marginalization)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021
Another way to compute $E[X]$

$$E[E[X|Y]] = \sum_y P(Y = y)E[X|Y = y] = E[X]$$

If we only have a conditional PMF of X on some discrete variable Y, we can compute $E[X]$ as follows:

1. Compute expectation of X given some value of $Y = y$
2. Repeat step 1 for all values of Y
3. Compute a weighted sum (where weights are $P(Y = y)$)

```python
def recurse():
    if (random.random() < 0.5):
        return 3
    else: return (2 + recurse())
```

Useful for analyzing recursive code!!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021
Check out the question on the next slide (Slide 25). Post any clarifications here!

https://edstem.org/us/courses/5090/discussion/392856

Breakout rooms: 4 min. Introduce yourself!
Quick check

1. $E[X]$
2. $E[X, Y]$
3. $E[X + Y]$
4. $E[X|Y]$
5. $E[X|Y = 6]$
6. $E[X = 1]$
7. $E[Y|X = x]$

Options:
A. value
B. one RV, function on Y
C. one RV, function on X
D. two RVs, function on X and Y
E. doesn’t make sense
Analyzing recursive code

```
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let $Y = \text{return value of } \text{recurse()}$. What is $E[Y]$?

\[
E[X] = E[E[X|Y]] = \sum_y E[X|Y = y]P(Y = y)
\]
Analyzing recursive code

```python
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1):
        return 3
    elif (x == 2):
        return (5 + recurse())
    else:
        return (7 + recurse())
```

Let \(Y \) = return value of `recurse()`.
What is \(E[Y] \)?

\[
E[X] = E[E[X|Y]] = \sum_y E[X|Y = y]P(Y = y)
\]

\[
\]

\[
E[Y|X = 1] = 3
\]

When \(X = 1 \), return 3.
Think

Slide 29 has a question to go over by yourself.

Post any clarifications here!

https://edstem.org/us/courses/5090/discussion/392856

Think by yourself: 2 min
Analyzing recursive code

```python
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let $Y =$ return value of `recurse()`. What is $E[Y]$?

What is $E[Y|X = 1]$?

$E[Y|X = 1] = 3$

What is $E[Y|X = 2]$?

B. $E[5 + Y] = 5 + E[Y]$
C. $5 + E[Y|X = 2]$
Analyzing recursive code

```python
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let $Y = \text{return value of } \text{recurse()}$. What is $E[Y]$?

When $X = 2$, return $5 + \text{a future return value of } \text{recurse()}$.

What is $E[Y|X = 2]$?

B. $E[5 + Y] = 5 + E[Y]$
C. $5 + E[Y|X = 2]$
Analyzing recursive code

```python
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let $Y = \text{return value of } \text{recurse()}$. What is $E[Y]$?

When $X = 3$, return $7 + \text{a future return value of } \text{recurse()}$.

$$E[Y|X = 3] = E[7 + Y]$$
Analyzing recursive code

```python
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1):
        return 3
    elif (x == 2):
        return (5 + recurse())
    else:
        return (7 + recurse())
```

Let $Y =$ return value of `recurse()`. What is $E[Y]$?

$$E[Y|X = 1] = 3$$
$$E[Y|X = 2] = E[5 + Y]$$
$$E[Y|X = 3] = E[7 + Y]$$

$$E[Y] = 3(1/3) + (5 + E[Y])(1/3) + (7 + E[Y])(1/3)$$

$$E[Y] = (1/3)(15 + 2E[Y]) = 5 + (2/3)E[Y]$$

$$E[Y] = 15$$

On your own: What is $\text{Var}(Y)$?
Independent RVs, defined another way

If X and Y are independent discrete random variables, then $\forall x, y:\$

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{P(X = x)P(Y = y)}{P(Y = y)} = P(X = x)$$

$$p_{X|Y}(x | y) = \frac{p_{X,Y}(x, y)}{p_Y(y)} = \frac{p_X(x)p_Y(y)}{p_Y(y)} = p_X(x)$$

Note for conditional expectation, independent X and Y implies

$$E[X|Y = y] = \sum_x xp_{X|Y}(x | y) = \sum_x xp_X(x) = E[X]$$
Check out the question on the next slide (Slide 35). Post any clarifications here!

https://edstem.org/us/courses/5090/discussion/392856

Breakout rooms: 4 min.
Random number of random variables

Say you have a website: BestJokesEver.com. Let:

- $X = \#$ of people per day who visit your site. $X \sim \text{Bin}(100, 0.5)$
- $Y_i = \#$ of minutes spent per day by visitor i. $Y_i \sim \text{Poi}(8)$
- X and all Y_i are independent.

The time spent by all visitors per day is $W = \sum_{i=1}^{X} Y_i$. What is $E[W]$?
Random number of random variables

Say you have a website: BestJokesEver.com. Let:

- $X =$ # of people per day who visit your site. $X \sim \text{Bin}(100,0.5)$
- $Y_i =$ # of minutes spent by visitor i. $Y_i \sim \text{Poi}(8)$
- X and all Y_i are independent.

The time spent by all visitors per day is $W = \sum_{i=1}^{X} Y_i$. What is $E[W]$?

\[
E[W] = E \left[\sum_{i=1}^{X} Y_i \right] = E \left[\sum_{i=1}^{X} E[Y_i | X] \right]
\]

\[
= E[XE[Y_i]]
\]

\[
= E[Y_i]E[X] \quad \text{(scalar $E[Y_i]$)}
\]

\[
= 8 \cdot 50
\]
See you next time!

Have a super Wednesday!
Extra
Hiring software engineers

Your company has only one job opening for a software engineer.

• n candidates interview, in order (n! orderings equally likely)
• Must decide hire/no hire immediately after each interview

Strategy:
1. Interview k (of n) candidates and reject all k
2. Accept the next candidate better than all of first k candidates.

What is your target k that maximizes P(get best candidate)?

Fun fact:
• There is an α-to-1 factor difference in productivity b/t the “best” and “average” software engineer.
• Steve jobs said $\alpha=25$, Mark Zuckerberg claims $\alpha=100$, some even claim $\alpha=300$
Hiring software engineers

Your company has only one job opening for a software engineer.
• n candidates interview, in order ($n!$ orderings equally likely)
• Must decide hire/no hire *immediately* after each interview

Strategy:
1. Interview k (of n) candidates and reject all k
2. Accept the next candidate better than all of first k candidates.

What is your target k that maximizes $P(\text{get best candidate})$?

Define: $X =$ position of best engineer candidate ($1, 2, ..., n$)
$B =$ event that you hire the best engineer
Want to maximize for k: $P_k(B) =$ probability of B when using strategy for a given k

$$P_k(B) = \sum_{i=1}^{n} P_k(B | X = i)P(X = i) = \frac{1}{n} \sum_{i=1}^{n} P_k(B | X = i)$$ \hspace{1cm} \text{(law of total probability)}$$
Hiring software engineers

Your company has only one job opening for a software engineer.

Strategy:
1. Interview k (of n) candidates and reject all k
2. Accept the next candidate better than all of first k candidates.

What is your target k that maximizes $P(\text{get best candidate})$?

Define:
$X =$ position of best engineer candidate
$B =$ event that you hire the best engineer

If $i \leq k : \ P_k(B|X = i) = 0$
(we fired best candidate already)

Else:
We must not hire prior to the i-th candidate.
$P_k(B|X = i) = \frac{k}{i - 1}$

We must have fired the best of the $i-1$ first candidates.
\Rightarrow The best of the $i-1$ needs to be our comparison point for positions $k+1, ..., i-1$.
\Rightarrow The best of the $i-1$ needs to be one of our first k comparison/auto-fire

$P_k(B) = \frac{1}{n} \sum_{i=1}^{n} P_k(B|X = i) = \frac{1}{n} \sum_{i=k+1}^{n} \frac{k}{i - 1}$
\leftarrow Want to maximize over k
Hiring software engineers

Your company has only one job opening for a software engineer.

Strategy: 1. Interview k (of n) candidates and reject all k
2. Accept the next candidate better than all of first k candidates.

What is your target k that maximizes $P(\text{get best candidate})$?

Want to maximize over k:

$$P_k(B) = \frac{1}{n} \sum_{i=k+1}^{n} \frac{k}{i-1} \approx \frac{k}{n} \int_{i=k+1}^{n} \frac{1}{i-1} di = \frac{k}{n} \ln(i-1) \bigg|_{i=k+1}^{n} = \frac{k}{n} \ln \frac{n-1}{k} \approx \frac{k}{n} \ln \frac{n}{k}$$

Maximize by differentiating w.r.t k, set to 0, solve for k:

$$\frac{d}{dk} \left(\frac{k \ln n}{k} \right) = \frac{1}{n} \ln \frac{n}{k} + \frac{k}{n} \cdot \frac{-n}{k^2} = 0$$

1. Interview $\frac{n}{e}$ candidates
2. Pick best based on strategy
3. $P_k(B) \approx \frac{1}{e} \approx 0.368$