19: Sampling and the Bootstrap

Jerry Cain
May 10, 2021
Quick slide reference

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Sampling definitions</td>
<td>19a_intro</td>
</tr>
<tr>
<td>11</td>
<td>Unbiased estimators</td>
<td>19b_sample_stats</td>
</tr>
<tr>
<td>23</td>
<td>Reporting estimation error</td>
<td>19c_statistical_error</td>
</tr>
<tr>
<td>29</td>
<td>Bootstrap: Sample mean</td>
<td>19d_bootstrap_mean</td>
</tr>
<tr>
<td>40</td>
<td>Bootstrap: Sample variance</td>
<td>LIVE</td>
</tr>
<tr>
<td>*</td>
<td>Bootstrap: Hypothesis testing</td>
<td>LIVE</td>
</tr>
</tbody>
</table>
Sampling definitions
Motivating example

You want to know the true mean and variance of happiness in Bhutan.

• But you can’t ask everyone.
• You poll 200 random people.
• Your data looks like this:

 Happiness = {72, 85, 79, 91, 68, ..., 71}

• The mean of all these numbers is 83.

Is this the true mean happiness of Bhutanese people?
Population

This is a population.
A sample is selected from a population.
A **sample** is selected from a population.
A sample, mathematically

Consider n random variables X_1, X_2, \ldots, X_n.

The sequence X_1, X_2, \ldots, X_n is a sample from distribution F if:

- X_i are all independent and identically distributed (i.i.d.)
- X_i all have same distribution function F (the underlying distribution), where $E[X_i] = \mu$, $\text{Var}(X_i) = \sigma^2$
A sample, mathematically

A sample of **sample size 8**:
\((X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)\)

A **realization** of a sample of size 8:
\((59, 87, 94, 99, 87, 78, 69, 91)\)
A single sample

If we had a distribution F of our entire population, we could compute exact statistics about happiness.

But we only have 200 people (a sample).

Today: If we only have a single sample,
- How do we report estimated statistics?
- How do we report estimated error of these estimates?
- How do we perform hypothesis testing?
Unbiased estimators
A single sample

If we had a distribution F of our entire population, we could compute exact statistics about about happiness.

But we only have 200 people (a sample).

So these population statistics are unknown:
- μ, the population mean
- σ^2, the population variance
A single sample

If we had a distribution F of our entire population, we could compute exact statistics about happiness.

But we only have 200 people (a sample).

- From these 200 people, what is our best estimate of population mean and population variance?
- How do we define best estimate?
Estimating the population mean

1. What is our best estimate of μ, the mean happiness of Bhutanese people?

If we only have a sample, (X_1, X_2, \ldots, X_n):

The best estimate of μ is the sample mean:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

\bar{X} is an unbiased estimator of the population mean μ. $E[\bar{X}] = \mu$

Intuition: By the CLT, $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

If we could take multiple samples of size n:
1. For each sample, compute sample mean
2. On average, we would get the population mean
Sample mean

Even if we can’t report μ, we can report our sample mean 83.03, which is an unbiased estimate of μ.
Estimating the population variance

2. What is \(\sigma^2 \), the variance of happiness of Bhutanese people?

If we knew the entire population \((x_1, x_2, \ldots, x_N)\):

\[
\sigma^2 = E[(X - \mu)^2] = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2
\]

If we only have a sample, \((X_1, X_2, \ldots, X_n)\):

\[
S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2
\]
Calculating population statistics exactly requires us knowing all \(N \) datapoints.
Intuition about the sample variance, S^2

Actual, σ^2

$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$

Estimate, S^2

$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

Population size, N

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021
Intuition about the sample variance, S^2

Actual, σ^2

- Population variance
- $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$

Estimate, S^2

- Sample variance
- $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

Diagram:
- Happiness
- Population size, N
- μ
- \bar{X}
Intuition about the sample variance, \(S^2 \)

Actual, \(\sigma^2 \):
\[
\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2
\]

Estimate, \(S^2 \):
\[
S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2
\]

Sample variance is an estimate using an estimate, so it needs additional scaling.
Estimating the population variance

2. What is \(\sigma^2 \), the variance of happiness of Bhutanese people?

If we only have a sample, \((X_1, X_2, \ldots, X_n)\):

The best estimate of \(\sigma^2 \) is the sample variance:

\[
S^2 = \frac{1}{n - 1} \sum_{i=1}^{n} (X_i - \bar{X})^2
\]

\(S^2 \) is an unbiased estimator of the population variance, \(\sigma^2 \).
\[E[S^2] = \sigma^2 \]
Proof that S^2 is unbiased

(just for reference) \[E[S^2] = \sigma^2 \]

\[
E[S^2] = E \left[\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \right] \Rightarrow (n-1)E[S^2] = E \left[\sum_{i=1}^{n} (X_i - \bar{X})^2 \right]
\]

\[
(n-1)E[S^2] = E \left[\sum_{i=1}^{n} ((X_i - \mu) + (\mu - \bar{X}))^2 \right]
\]

(introduce $\mu - \mu$)

\[
= E \left[\sum_{i=1}^{n} (X_i - \mu)^2 + \sum_{i=1}^{n} (\mu - \bar{X})^2 + 2 \sum_{i=1}^{n} (X_i - \mu)(\mu - \bar{X}) \right]
\]

\[
= E \left[\sum_{i=1}^{n} (X_i - \mu)^2 + n(\mu - \bar{X})^2 - 2n(\mu - \bar{X})^2 \right]
\]

\[
= E \left[\sum_{i=1}^{n} (X_i - \mu)^2 - n(\mu - \bar{X})^2 \right] = \sum_{i=1}^{n} E[(X_i - \mu)^2] - nE[(\bar{X} - \mu)^2]
\]

\[
= n\sigma^2 - n\text{Var}(\bar{X}) = n\sigma^2 - n \frac{\sigma^2}{n} = n\sigma^2 - \sigma^2 = (n-1)\sigma^2
\]

Therefore $E[S^2] = \sigma^2$
Standard error
Estimating population statistics

1. Collect a sample, X_1, X_2, \ldots, X_n.

2. Compute sample mean, $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

3. Compute sample deviation, $X_i - \bar{X}$.

4. Compute sample variance, $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$.

How “close” are our estimates \bar{X} and S^2?

A particular outcome

$(72, 85, 79, 79, 91, 68, \ldots, 71)$

$n = 200$

$\bar{X} = 83$

$(-11, 2, -4, -4, 8, -15, \ldots, -12)$

$S^2 = 793$
Sample mean

\[X_i \sim F \]

- \(\text{Var}(\bar{X}) \) is a measure of how “close” \(\bar{X} \) is to \(\mu \).
- **How do we estimate \(\text{Var}(\bar{X}) \)?**

\[\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n}) \]
How “close” is our estimate \bar{X} to μ?

$$E[\bar{X}] = \mu$$

$$\text{Var}(\bar{X}) = \frac{\sigma^2}{n}$$

def The **standard error** of the mean is an estimate of the standard deviation of \bar{X}.

Intuition:
- S^2 is an unbiased estimate of σ^2
- S^2/n is an unbiased estimate of $\sigma^2/n = \text{Var}(\bar{X})$
- $\sqrt{S^2/n}$ can estimate $\sqrt{\text{Var}(\bar{X})}$

More info on bias of standard error: [wikipedia](https://en.wikipedia.org/wiki/Standard_error)
Standard error of the mean

1. Mean happiness:

Claim: The average happiness of Bhutan is 83, with a standard error of 1.99.

Closed form: \[SE = \sqrt{\frac{S^2}{n}} \]

These 2 statistics give a sense of how the sample mean random variable \(\bar{X} \) behaves.
Standard error of variance?

1. Mean happiness:

Claim: The average happiness of Bhutan is 83, with a standard error of 1.99.

Closed form: \[SE = \sqrt{\frac{S^2}{n}} \]

2. Variance of happiness:

Claim: The variance of happiness of Bhutan is 793.

Closed form: Not covered in CS109

But how close are we?

⚠ this is our best estimate of \(\sigma^2 \)

Up next: Compute Statistics with code!
Bootstrap: Sample mean
Bootstrap

The Bootstrap:

Probability for Computer Scientists
Computing statistic of sample mean

What is the standard deviation of the sample mean \(\bar{X} \)? (sample size \(n = 200 \))

\[
\frac{\sigma}{\sqrt{n}} = 1.886
\]

Exact statistic (we don’t have this)

1.869

Simulated statistic (we don’t have this)

\[
SE = \frac{S}{\sqrt{n}} = 1.992
\]

Estimated statistic, by formula, standard error

Simulated estimated statistic

Note: We don’t have access to the population. But Lisa is sharing the exact statistic with you.
Bootstrap insight 1: Estimate the true distribution
Bootstrap insight 1: Estimate the true distribution

You can estimate the PMF of the underlying distribution, using your sample.*

The underlying distribution F \approx \hat{F}

*This is just a histogram of your data!
Bootstrap insight 2: Simulate a distribution

Approximate the procedure of simulating a distribution of a statistic, e.g., \bar{X}.

Population distribution (we don’t have this)

≈

Sample distribution (we do have this)
Bootstrapped sample means

Estimate the true PMF using our “PMF” (histogram) of our sample.

...generate a whole bunch of sample means of this estimated distribution...

...and compute the standard deviation of this distribution.

![Histogram of Happiness](Image)

![Histogram of Sample Means](Image)

\[
\text{means} = [84.7, 83.9, 80.6, 79.8, 90.3, \ldots, 85.2]
\]

\[
\text{np.std(means)} = 2.003
\]
Computing statistic of sample mean

What is the standard deviation of the sample mean \bar{X}? (sample size $n = 200$)

- **Population distribution** (we don’t have this)
 - $\sigma / \sqrt{n} = 1.886$
 - Exact statistic (we don’t have this)

- **Sample distribution** (we do have this)
 - $SE = S / \sqrt{n} = 1.992$
 - Estimated statistic, by formula, standard error
 - Simulated estimated statistic, bootstrapped standard error

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021
Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
 a. Resample `sample.size()` from PMF
 b. Recalculate the `sample mean` on the resample
3. You now have a distribution of your `sample mean`

What is the distribution of your `sample mean`?

We’ll talk about this algorithm in detail during live lecture!
Bootstrap algorithm

Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat **10,000** times:
 a. Resample `sample.size()` from PMF
 b. Recalculate the **statistic** on the resample
3. You now have a **distribution of your statistic**

What is the distribution of your **statistic**?
Bootstrapped sample variance

Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
 a. Resample `sample.size()` from PMF
 b. Recalculate the sample variance on the resample
3. You now have a distribution of your sample variance

What is the distribution of your sample variance?

Even if we don’t have a closed form equation, we estimate statistics of sample variance with bootstrapping!
19: Sampling and the Bootstrap (live)

Jerry Cain
May 10, 2021
Think Slide 42 has a question to go over by yourself.

Post any clarifications here or in Zoom chat! https://edstem.org/us/courses/5090/discussion/428950

Think by yourself: 2 min
Quick check

1. \(\mu \), the population mean

2. \((X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) \), a sample

3. \(\sigma^2 \), the population variance

4. \(\bar{X} \), the sample mean

5. \(\bar{X} = 83 \)

6. \((X_1 = 59, X_2 = 87, X_3 = 94, X_4 = 99, X_5 = 87, X_6 = 78, X_7 = 69, X_8 = 91) \)
Quick check

1. μ, the population mean

2. $(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$, a sample

3. σ^2, the population variance

4. \bar{X}, the sample mean

5. $\bar{X} = 83$

6. $(X_1 = 59, X_2 = 87, X_3 = 94, X_4 = 99, X_5 = 87, X_6 = 78, X_7 = 69, X_8 = 91)$

These are outcomes from your collected data.
Today: Crash course on (bootstrapped) statistics

If we only have a single sample of RVs generated i.i.d. from the same unknown distribution, how can we perform statistical analysis?

- What is the probability that a Bhutanese peep is just straight up loving life?
- What is a good estimate of the population mean (and how “close” is the estimate)?
- What is a good estimate of the population variance (and how “close” is the estimate)?
1. Mean happiness:

Claim: The average happiness of Bhutan is 83, with a standard error of 1.99.

Closed form: \[SE = \sqrt{\frac{S^2}{n}} \]

\(\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \)

Verified via bootstrap: \[\text{np.std(means)} = 2.003 \]

\[83 \]

\[0 \]

Bhutan

Average Happiness

SE

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021
1. Mean happiness:

Claim: The average happiness of Bhutan is 83, with a standard error of 1.99.

Closed form: \[SE = \frac{S^2}{\sqrt{n}} \]

2. Variance of happiness:

Claim: The variance of happiness of Bhutan is 793.

Closed form: Not covered in CS109

\[S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \]

We can bootstrap for standard error of sample variance—a statistic of a statistic.
Bootstrap

The Bootstrap:

Probability for Computer Scientists

Allows you to do the following:

• Calculate distributions over statistics
• Calculate p values
Bootstrapped sample variance

Bootstrap Algorithm (sample):
1. Estimate the **PMF** using the sample
2. Repeat **10,000** times:
 a. Resample `sample.size()` from PMF
 b. Recalculate the **sample variance** on the resample
3. You now have a **distribution of your sample variance**

Goal
What is the distribution of your **sample variance**?
Bootstrapped variance

1. Estimate the **PMF** using the sample

2. Repeat **10,000** times:
 a. Resample `sample.size()` from PMF
 b. Recalculate the **sample variance** on the resample

3. You now have a **distribution of your sample variance**
Bootstrapped variance

1. Estimate the PMF using the sample

2. Repeat 10,000 times:
 a. Resample `sample.size()` from PMF
 b. Recalculate the `sample variance` on the resample

3. You now have a distribution of your sample variance
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
 a. Resample `sample.size()` from PMF
 b. Recalculate the `sample variance` on the resample
3. You now have a distribution of your

This resampled sample is generated with replacement.

Why are these samples different?
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
 a. Resample `sample.size()` from PMF
 b. Recalculate the sample variance on the resample
3. You now have a distribution of your sample variance

 variances = [827.4]
Bootstrapped variance

1. Estimate the PMF using the sample

2. Repeat 10,000 times:
 a. Resample `sample.size()` from PMF
 b. Recalculate the `sample variance` on the resample

3. You now have a distribution of your sample variance

 variances = [827.4]
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
 a. Resample `sample.size()` from PMF
 b. Recalculate the sample variance on the resample
3. You now have a distribution of your sample variance

 variances = [827.4]
1. Estimate the **PMF** using the sample

2. Repeat **10,000** times:
 a. Resample `sample.size()` from PMF
 b. Recalculate the **sample variance** on the resample

3. You now have a **distribution of your sample variance**

 \[\text{variances} = [827.4, 846.1] \]
1. Estimate the PMF using the sample

2. Repeat 10,000 times:
 a. Resample `sample.size()` from PMF
 b. Recalculate the `sample variance` on the resample

3. You now have a distribution of your sample variance

 \[\text{variances} = [827.4, 846.1] \]
Bootstrapped variance

1. Estimate the PMF using the sample

2. Repeat 10,000 times:
 a. Resample `sample.size()`
 b. Recalculate the sample variance

3. You now have a distribution of your sample variance

 \[
 \text{variances} = [827.4, 846.1, 726.0, \ldots, 860.7]
 \]
3. You now have a **distribution of your sample variance**

$$\text{variances} = [827.4, 846.1, 726.0, ..., 860.7]$$

What is the bootstrapped standard error?

```
np.std(variances)
```

Bootstrapped standard error: 66.16

- Simulate a distribution of sample variances
- Compute standard deviation
Standard error

1. Mean happiness:

Claim: The average happiness of Bhutan is 83, with a standard error of 1.99.

Closed form: \(SE = \sqrt{\frac{S^2}{n}} \)

2. Variance of happiness:

Claim: The variance of happiness of Bhutan is 793, with a bootstrapped standard error of 66.16.

\(S^2 \) is our best estimate of \(\sigma^2 \)

this is how close we are, calculated by bootstrapping
Algorithm in practice: Resampling

1. Estimate the PMF using the sample
2. Repeat 10,000 times:
 a. Resample `sample.size()` from PMF
 b. Recalculate the statistic on the resample
3. You now have a distribution of your statistic

\[
P(X = k) = \frac{\text{# values in sample equal to } k}{n}
\]

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021
Algorithm in practice: Resampling

```python
def resample(sample, n):
    # estimate the PMF using the sample
    # draw n new samples from the PMF
    return np.random.choice(sample, n, replace=True)
```

This resampled sample is generated with replacement.

$$P(X = k) = \frac{\text{# values in sample equal to } k}{n}$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021
To the code!

Bootstrap provides a way to calculate probabilities of statistics using code.

Bootstrapping works for any statistic*

*as long as your sample is i.i.d. and the underlying distribution does not have a long tail

Google colab notebook [link](#)
(we will use this in Breakout rooms)
Bradley Efron

- Invented bootstrapping in 1979
- Still a professor at Stanford
- Won a National Science Medal

Efron’s dice: 4 dice A, B, C, D such that

$$P(A > B) = P(B > C) = P(C > D) = P(D > A) = \frac{2}{3}$$
Interlude for announcements
Announcements

Problem Set 5
Out: now
Due: Friday 5/21 10:00am
Covers: Up to and including today

Quiz #2
Time frame: This Wednesday 5/12 11:00am – Friday 5/14 10:00am PT
Covers: Up to end of Week 5 (including Lecture 15). PS3+PS4
Emma’s Review session: Tonight at 7pm PT (and will be recorded)
Info and practice: http://web.stanford.edu/class/cs109/quizzes/
Bootstrap: p-value
Null hypothesis test

<table>
<thead>
<tr>
<th>Nepal Happiness</th>
<th>Bhutan Happiness</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.45</td>
<td>0.91</td>
</tr>
<tr>
<td>2.45</td>
<td>0.34</td>
</tr>
<tr>
<td>6.37</td>
<td>1.91</td>
</tr>
<tr>
<td>2.07</td>
<td>1.61</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1.63</td>
<td>1.08</td>
</tr>
</tbody>
</table>

$$\bar{X}_1 = 3.1$$ \quad $$\bar{X}_2 = 2.4$$

Claim: The difference in mean happiness between Nepal and Bhutan is 0.7 happiness points, and this is significant.
Null hypothesis test

def null hypothesis – Even if there is no pattern (i.e., the two samples are from identical distributions), your claim might have arisen by chance.

def p-value – What is the probability that the observed difference occurs under the null hypothesis?

Example:
- Flip some coin 100 times.
- Flip the same coin another 150 times.
- Compute fraction of heads in both groups.
- There is a possibility we’ll see the observed difference in these fractions even if we used the same coin.

A **significant** p-value (< 0.05) means we **reject** the null hypothesis.
Universal sample (this is what the null hypothesis assumes)

\[X_1 = 3.1 \]

\[X_2 = 2.4 \]

Want **p-value**: probability \(|X_1 - X_2| = |3.1 - 2.4|\) happens under null hypothesis
Bootstrap for p-values

1. Create a **universal sample** using your two samples

 i.e., recreate the null hypothesis

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021
Bootstrap for p-values

1. Create a **universal sample** using your two samples
2. Repeat **10,000** times:
 a. Resample both samples
 b. Recalculate the mean difference between the resamples
3. \[p\text{-value} = \frac{\# (\text{mean diffs} \geq \text{observed diff})}{n} \]
Bootstrap for p-values

```python
def pvalue_boot(bhutan_sample, nepal_sample):
    N = size of the bhutan_sample
    M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample - mean of nepal_sample|

    uni_sample = combine bhutan_sample and nepal_sample
    count = 0

    repeat 10,000 times:
        bhutan_resample = draw N resamples from the uni_sample
        nepal_resample = draw M resamples from the uni_sample
        muBhutan = sample mean of the bhutan_resample
        muNepal = sample mean of the nepal_resample
        diff = |muNepal - muBhutan|
        if diff >= observed_diff:
            count += 1

    pValue = count / 10,000
```

Bootstrap for p-values

```python
def pvalue_boot(bhutan_sample, nepal_sample):
    N = size of the bhutan_sample
    M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample – mean of nepal_sample|
    uni_sample = combine bhutan_sample and nepal_sample
    count = 0

    repeat 10,000 times:
        bhutan_resample = draw N resamples from the uni_sample
        nepal_resample = draw M resamples from the uni_sample
        muBhutan = sample mean of the bhutan_resample
        muNepal = sample mean of the nepal_resample
        diff = |muNepal - muBhutan|
        if diff >= observed_diff:
            count += 1

    pValue = count / 10,000
```

1. Create a universal sample using your two samples
Bootstrap for p-values

```python
def pvalue_boot(bhutan_sample, nepal_sample):
    N = size of the bhutan_sample
    M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample – mean of nepal_sample|

    uni_sample = combine bhutan_sample and nepal_sample
    count = 0

    repeat 10,000 times:
        bhutan_resample = draw N resamples from the uni_sample
        nepal_resample = draw M resamples from the uni_sample
        muBhutan = sample mean of the bhutan_resample
        muNepal = sample mean of the nepal_resample
        diff = |muNepal - muBhutan|
        if diff >= observed_diff:
            count += 1

    pValue = count / 10,000
```

2. a. Resample both samples

2. b. Repeat this process 10,000 times to get a p-value.

2. c. Calculate the proportion of times the absolute difference between the resampled means is greater than or equal to the observed difference.
Bootstrap for p-values

```python
def pvalue_boot(bhutan_sample, nepal_sample):
    N = size of the bhutan_sample
    M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample - mean of nepal_sample|

    uni_sample = combine bhutan_sample and nepal_sample
    count = 0

    repeat 10,000 times:
        bhutan_resample = draw N resamples from the uni_sample
        nepal_resample = draw M resamples from the uni_sample
        muBhutan = sample mean of the bhutan_resample
        muNepal = sample mean of the nepal_resample
        diff = |muNepal - muBhutan|
        if diff >= observed_diff:
            count += 1

    pValue = count / 10,000
```

2. b. Recalculate the mean difference b/t resamples
Bootstrap for p-values

3. **p-value** = \(\frac{\# \text{(mean diffs} > \text{observed diff})}{n} \)

```python
def pvalue_boot(bhutan_sample, nepal_sample):
    N = size of the bhutan_sample
    M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample - mean of nepal_sample|

    uni_sample = combine bhutan_sample and nepal_sample
    count = 0

    repeat 10,000 times:
        bhutan_resample = draw N resamples from the uni_sample
        nepal_resample = draw M resamples from the uni_sample
        muBhutan = sample mean of the bhutan_resample
        muNepal = sample mean of the nepal_resample
        diff = |muNepal - muBhutan|
        if diff >= observed_diff:
            count += 1

    pValue = count / 10,000
```

P. Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021
Bootstrap for p-values

```python
def pvalue_boot(bhutan_sample, nepal_sample):
    N = size of the bhutan_sample
    M = size of the nepal_sample
    observed_diff = |mean of bhutan_sample - mean of nepal_sample|

    uni_sample = combine bhutan_sample and nepal_sample
    count = 0

    repeat 10,000 times:
        bhutan_resample = draw N resamples from the uni_sample
        nepal_resample = draw M resamples from the uni_sample
        muBhutan = sample mean of the bhutan_resample
        muNepal = sample mean of the nepal_resample
        diff = |muNepal - muBhutan|
        if diff >= observed_diff:
            count += 1

    pValue = count / 10,000
```

Bootstrap

Let’s try it!

Google colab notebook [link]
Null hypothesis test

<table>
<thead>
<tr>
<th>Nepal Happiness</th>
<th>Bhutan Happiness</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.45</td>
<td>0.91</td>
</tr>
<tr>
<td>2.45</td>
<td>0.34</td>
</tr>
<tr>
<td>6.37</td>
<td>1.91</td>
</tr>
<tr>
<td>2.07</td>
<td>1.61</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1.63</td>
<td>1.08</td>
</tr>
</tbody>
</table>

Claim: The happiness of Nepal and Bhutan have a 0.7 difference of means, and this is significant ($p < 0.05$).